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Abstract

We determine the exact power of a prime p which divides the power sum 1"42"+- - -+ (b —1)"
provided that m and b are positive integers, p divides b, and m is large enough.

1. Introduction

Let n and k be positive integers, p be a prime, and let do(k) and p,(k) denote the number
of ones in the binary representation of k£ and the highest power of p dividing k, respectively.
The latter one is often referred to as the p-adic order of k. For rational n/k we set p,(n/k) =

pp(n) = pp(k).

Let b and m be positive integers. In this paper we determine the p-adic order of 1" +
2" 4 .- 4 (™ — 1) for any positive integer n in the exponent, provided that p divides b.

Our original motivation was to find the 2-adic order of the power sum O, (2" — 1) =
1" +3"+-- -+ (2™ —1)" in order to prove the congruence S(c2", 2™ —1) = 3-2™"! mod 2™*!
for Stirling numbers of the second kind, with integer ¢ so that ¢2" > 2™ — 1 and m > 2.
Thus we first consider the case with p = 2. We observe that p2(0,(2™ — 1)) > m — 1 by an
easy induction proof on m. In fact, more can be said. For n > 2 even, the same proof yields
p2(0,(2™ — 1)) = m — 1, too. Clearly, O;(2™ — 1) = 220"~ but in general, the odd case
seems more difficult.

We set
Su(x) =) K"
k=0
and determine the exact 2-adic order of S, (2™ — 1) by using Bernoulli polynomials in The-
orem 1 in Section 3.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY (2007), #A41 2

We generalize Theorem 1 and its proof in Theorem 3 in Section 4 for any prime p. We
also obtain Theorem 4 in order to get a lower bound on the p-adic order of S,,(b™ — 1) and
Theorem 5 to determine the exact order for any large enough m.

2. An Odd Divisibility Property
There is a general divisibility property that we can apply here to prove that S;(b™ — 1) |
Sp(b™ — 1) for n > 1 odd. Of course, this already implies that p,(S, (0™ — 1)) > m.

So, in general, we write S, = S,(c) where ¢ is an arbitrary odd positive integer. We
can easily prove that S, is divisible by S;. Note that S; = (Cgl). Then, by two different
grouping of the terms in 5, we get

L+ (e— 1)) + (2" + (c—2)") 4+ + (<0;1>n+ (“;)n) +¢", and

CJ2rl | (1" + )+ 2"+ (c=1)") + -+ + ((C;1>n+(c‘£3)n)+(c;1)”’

and the proof is complete since ¢ and ¢ + 1 are relatively prime.

We note that Faulhaber had already known in 1631 (cf. [2]) that S,(c) can be expressed
as a polynomial in S (c) and Sy(c), although with fractional coefficients. In fact, S,(c) can be
written as a polynomial in ¢(c+1) or (c¢(c+ 1))2, if n is even or odd, respectively. This gives
rise to the appearance of factors such as ™ and b*™ in S,,(b™ — 1), depending on whether n
is even or odd.

3. The Exact 2-adic Order

Now we discuss the case with p = 2.
Theorem 1 Form >1 and n > 1, we have that

p2(Sn (27 — 1)) =

m—1, if n is even orn =1,
2(m —1), ifn >3 odd.

We note that clearly, S;(2™—1) = 2"~1(2™—1). For m = 1, we have O, (1) = S, (1) = 1, and
in general, for n > 2, the 2-adic order of O, (2™ —1) and S,,(2™ — 1) are the same, as it easily
follows from O,,(2™—1) = S, (2™ —1)—2"5,, (2™t —1); thus p2(0,(2™—1)) = pa2(S. (2™ —1)).
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Proof of Theorem 1.  The statement is true for n = 1 or m = 1 so we assume that n > 2
and m > 2 from now on. The Bernoulli polynomials [3] are defined by

— gzil kig(—l)’“(é) (x+ k)™, (1)

It is well known [1] that

“~ . Baii(z+1) = B,4(0)
Zk == n+1 ' @)

k=0
The usual Bernoulli numbers can be defined as B, = B,(0), and the initial values are
By=1,B;=-1/2,B,=1/6,B; = 0,8, = —1/30, B5 = 0, etc. Note that B,=0 for every
odd integer n > 3. We form the difference in the numerator of (2) and then, for B,,;1(x+1),
we use the binomial expansion of (z + 1+ k)" and focus on terms with (z +1)7 with small
exponents. We have

Boyi(z +1) — Byt (0) = %H p: k() (il (n+ 1) (z 4+ 1)K+ — kn+1)

=0 N )

:§z+1 ()(n+1)(x+1)k”

(e Yo

Buii(z +1) = Bt (0) _ S ' RN (—1)F (;) (@ + 1)k + g(az + 1)% !

so that

n+1 02—1—1
B B n+1 n

+Z 2 (z+ 1)k J)

Now we rewrite this with x = 2™ — 1 and get that

n+1 n+1 (nl)
m.mn 2mn—1 J— Jjmipn+1l—j
Zz+1 (>(2k 2 k +Z—j 27 ) (3)

J=3

If n > 2 is even then we only need the first term in the last parenthetical expression, otherwise
we need the first two terms.

Let n > 2 be even, then the term with j = 1 contributes

n+1

mZZH ()k”—T”B _szz—i— 1)'i1S(n, ) (4)
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by identity (1), a standard formula for the Stirling numbers of the second kind, and S(n,n+
1) = 0. The other terms are all divisible by 2™.

Clearly, pg(lj_—'l) > 0 if i« > 4. Indeed, in this case i — da(i) — p2(i + 1) > 0 since
i > 2|logy(i + 1)]. Therefore, we need only the 2-adic order of

3
—1 1 2 3

| —— - .
E ; 1zSnz 25(n,1)+35(n,2) 2S(n,3),

=0
which yields pa(S, (2™ — 1)) = p (271 (3S(n,3) + 7)) = pa <2m§3”“T+23> — m — 1, by the

identity S(n,3) = 3(3"' — 2" + 1), n > 1. Note that ps(S5,(2™ — 1)) = p2(2™B,(0)) =
m — 1 also follows by simply noting the well-known fact about the Bernoulli numbers that
p2(BL(0)) = —1 for even n > 2 by a theorem by von Staudt [5]. O

~—
.

A

1
Theorem 2 (von Staudt, [5]) Forn =1 andn > 2 even, we have —B,, = Z — mod 1.
p

p prime
p—1|n

Proof. Clearly, for n even, the denominator of B, is the product of the primes p with
(p — 1) | n, and thus, it must be square-free. It follows that p,(B,) > —1 for all primes p,
and it is nonnegative unless (p — 1) | n.

Now assume that n > 3 is odd. The first two terms in the parenthesis of (3) contribute

m n+1 n mn n+1 7\ 1.n—
2 Zz +0 i+l Zk 0( ) ( )k +22 zz +0 i+1 Zk 0( >k( )k !
= 2" B, + 222 S CDL1S(n — 1,4) = 27 B, + 22" 'nB,, .

The 2-adic order is 2(m — 1) since B,, = 0 and ps(B,_1) = —1 since n > 3 is odd. The
other terms of (3) with j > 3 are all divisible by 2*™ since jm — pa(j) > 2m for m > 2, as

1] > — in this case. O
gy J

Remark 1. The above proof can be generalized to the case in which 2™ is replaced by (2¢)™
with any odd integer ¢ > 1.

4. The General Case: The Exact p-adic Order

We note that S,(2™ — 1) = Z?;rll QijnH_j(j;—.l) by (3) with an observation similar to (4),
and in general, for any positive integer b,

Z b™ B By (le) . (5)

We now prove the generalized version of Theorem 1.
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Theorem 3 For m,n, and b positive integers with p | b, p prime, and m’ = mp,(b), we
have that

m' + pp(Bn)> an = 17
Pp(Sp(b™ = 1)) = < m/ + py(Bn), if nis even and p,(B,) =0 or —1,
2m' + p,(Bn-1) + pp(n/2), ifn >3 odd and py(B,-1) =0 or — 1.
(6)

Proof. We have already proved the statement for p = 2 in Theorem 1 and Remark 1. If
p > 3 then the case with n = 1 is easy to check. Thus, we can also assume that n > 2.
We now prove the theorem with p,(b) = 1, i.e., if m' = m. The general case with p,(b) > 1
easily follows by replacing m by m’ in the proof below.

First, if n is even then all terms with j > 5 on the right hand side of (5) are divisible
by p™*! since jm —1 —p,(j) > m+1 as 2—|—jl;g1pj > L form > 1. If j =3 and p = 3 then
3m+ p3(Bn_2) — p3(3) > m+p3(B,)+1form >1and n > 2even. If j =3 and p > 5 then
clearly 3m — 1 — p,(3) > m+ 1. The term with j = 2 works since B,,_; = 0 except for n = 2
when 2m — p,(2) > m+ 1. The term with j = 4 also works for n > 4 since B,,_3 = 0 except

for n = 4 when 4m — p,(4) > m + 1.

Next, if n is odd then we have two cases.

Case 1. If n = 3 then for j = 3 and 4 we have either p = 3 and thus, jm + p3(Bs—;) —1 >
2m + p3(Bs2) + 1, ie, jm —1 > 2m for m > 1; or p > 5 and thus, jm + p,(Bs—;) >
2m + pp(B2) + 1, i.e., jm > 2m + 1 again.

Case 2. Ifn > 5 odd then we rewrite (jfl) as j%l(?:;) for 7 > 2. All terms with 7 > 5 on
the right hand side of (5) are divisible by p?™*+°r("/2+1 since jm — 1+ p,(n) — p,(i(j — 1)) >
2m + pp(n/2) +1 as Wé—l)) > L for m > 1. If p = 3 then for the term with j = 4, we
get that 4m+ p3(Bn—3) + p3(n) — ps(4-3) > 2m+ p3(B,—1) + p3(n/2) + 1 since 4m —2 > 2m
for m > 1 and p3(By) = —1 for k > 2 even. If p > 5 then for the term with j = 4, we get
that 4m — 1 + p,(n) > 2m + p,(n/2) + 1 since 4m — 1 > 2m + 1 for m > 1. The term with

J = 3 makes no contribution to (5) as B, s = 0. O

We obtain a lower bound and the exact p-adic order of S, (6™ — 1) in the next two
theorems.

Theorem 4 For m,n, and b positive integers with p | b, p prime, and m’ = mp,(b), we
have that
m — 1, if n is even orn =1,

pp(Sn(b™ — 1)) > {Qm/ +pp(n/2) — 1, if n >3 odd.
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Theorem 5 For m,n, and b positive integers so that m is sufficiently large and p | b, p
prime, and m' =m p,(b), we have that

m' + pp(By), if nis even orn =1,

pp(Sn(bm -1)) = {Qm’ + Pp(Bn—l) + ,Op(n/Q), if n >3 odd.

The proof of Theorem 3 shows how to extend it to those of Theorems 4 and 5. A result
by Andrews [6] implies that p,(B,) can be arbitrary large. For example, if (p — 1) { n and
pp(n) = 1> 0 then p,(B,) > [, and this suggests that it might be difficult to get the exact
order of p,(5,(b™ — 1)) with a formula, similar to (6), which is uniformly valid in all m.

Remark 2. We intended to find the p-adic order of S, (z) for special integers of the form
x =b" — 1 with p | b, however, the above theorems remain true for x = ¢b™ — 1 with p | b
and p 1 ¢, by adjusting identity (5). In this case, S,(cb™ 4+ 1) = 1 mod p also follows if m is
sufficiently large.

We note that if p divides b for some prime p, and we calculate B, ;1_; (jfl) /73 in (5) p-
adically, such as by using a theorem discovered independently by Anton, Stickelberger, and
Hensel [4] on binomial coefficients modulo powers of p, then we can find further and more
refined congruential properties of S, (b™ — 1).
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