ON THE PROPERTY P_{-1}

TAO Liqun
Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China
and
Department of Mathematics, University College Dublin, Belfield, Dublin 4, Ireland lqtao99@tom.com

Received: 4/23/07, Revised: 8/30/07, Accepted: 10/22/07, Published: 11/3/07

Abstract

Mohanty and Ramasamy recently proved an interesting result that says that no other integers can be added to the set $\{1,5,10\}$ such that the product of any two numbers from the new set minus one is a perfect square. We give an alternative proof of this result by considering two simultaneous diophantine equations which are equivalent to those considered in [1]. It turns out our method avoids carefully investigating relations between the solutions of Pell's equations. What we do is just solve some simple diophantine equations.

In [1], S. P. Mohanty and A. M .S. Ramasamy defined an interesting concept. Given an integer k, they say two integers α and β have the property P_{k} if $\alpha \beta+k$ is a perfect square. They found that $1,5,10$ share the property P_{-1}, and showed that no other integers can be added to share the property with the three numbers.

Suppose n is another number satisfying the property. Then

$$
\begin{array}{r}
n-1=x^{2} \\
5 n-1=y^{2} \\
10 n-1=z^{2} . \tag{3}
\end{array}
$$

Together, these yield

$$
\begin{equation*}
5 x^{2}+4 z^{2}=9 y^{2} \tag{4}
\end{equation*}
$$

Eliminating n between (2) and (3), we have

$$
\begin{equation*}
z^{2}-2 y^{2}=1 \tag{5}
\end{equation*}
$$

We shall consider in the sequel the nonnegative integer solutions of the simultaneous diophantine equations (4) and (5).

Remark. The authors of [1] considered $5 x^{2}-y^{2}=-4$ and (5) by eliminating n from (1), (2), (3). It seems that these simultaneous equations are a little complicated to treat.

From (5), we see z and y are relatively prime, and z is odd, hence y is even since $z^{2} \equiv 1$ ($\bmod 8)$. From (4), we have

$$
\begin{equation*}
(3 y-2 z)(3 y+2 z)=5 x^{2} . \tag{6}
\end{equation*}
$$

Let $d=(3 x-2 y, 3 x+2 y)$ be the greatest common divisor. Then $d \mid(6 y, 4 z)$. So we have the following two cases depending on whether z is divisible by 3 or not: (1) if $3 \nmid z$, then $d=2$ or 4 ; (2) if $3 \mid z$, then $d=6$ or 12 .

Now from (6), we have $\frac{3 y+2 z}{d} \cdot \frac{3 y-2 z}{d}=5\left(\frac{x}{d}\right)^{2}$. So

$$
\left\{\begin{array}{c}
\frac{3 y+2 z}{d}=5 s^{2} \tag{7}\\
\frac{3 y-2 z}{d}=t^{2}
\end{array}\right.
$$

or

$$
\left\{\begin{array}{c}
\frac{3 y+2 z}{d}=t^{2} \tag{8}\\
\frac{3 y-2 z}{d}=5 s^{2}
\end{array}\right.
$$

where $\frac{x}{d}=s t$.
From (7) and (8), we have

$$
\begin{equation*}
\pm 4 z=d\left(5 s^{2}-t^{2}\right) \tag{9}
\end{equation*}
$$

So when $d=2$ or 6 , we see $s \equiv t(\bmod 2)$, therefore $\pm 2 z=\frac{d}{2}\left(5 s^{2}-t^{2}\right) \equiv 0(\bmod 4)$. So $2 \mid z$, which is impossible. Therefore $d=4$ or 12 .

Also from (7) and (8), we have

$$
\begin{equation*}
6 y=d\left(5 s^{2}+t^{2}\right) \tag{10}
\end{equation*}
$$

Substituting (9) and (10) into (5) yields $9 d^{2}\left(5 s^{2}-t^{2}\right)^{2}-8 d^{2}\left(5 s^{2}+t^{2}\right)^{2}=144$ or, equivalently,

$$
\begin{equation*}
25 s^{4}-170 s^{2} t^{2}+t^{4}=\frac{144}{d^{2}} \tag{11}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\left(5 s^{2}-17 t^{2}\right)^{2}-288 t^{4}=\frac{144}{d^{2}} \tag{12}
\end{equation*}
$$

Now let

$$
\begin{equation*}
w=\frac{d}{12}\left(5 s^{2}-17 t^{2}\right) \tag{13}
\end{equation*}
$$

Then we get

$$
\begin{equation*}
w^{2}-2 d^{2} t^{4}=1 \tag{14}
\end{equation*}
$$

So, when $d=4$, we have

$$
\begin{equation*}
w^{2}-32 t^{4}=1 \tag{15}
\end{equation*}
$$

where $w=\frac{1}{3}\left(5 s^{2}-17 t^{2}\right)$; while, when $d=12$, we have

$$
\begin{equation*}
w^{2}-288 t^{4}=1 \tag{16}
\end{equation*}
$$

where $w=5 s^{2}-17 t^{2}$.
Note. We must be aware that w above is not necessarily nonnegative.
Before solving equations (15) and (16), we recall the following well-known facts (see Mordell [2], pp. 18, 207).

Lemma 1. The equation $x^{4}-2 y^{4}=1$ has only one nonnegative integer solution $(x, y)=(1,0)$.
Lemma 2. The equation $2 x^{4}-y^{4}=1$ has only one positive integer solution $(x, y)=(1,1)$.
Now we start to give a complete answer to equations (15) and (16).
Theorem 1. $w^{2}-32 t^{4}=1$ has only one nonnegative integer solution $(w, t)=(1,0)$.
Remark. So, from (15), we have $5 s^{2}=3$, which is impossible. Therefore, when $d=4$, there is no integer n satisfying (1), (2), and (3) simultaneously.

Proof. From $w^{2}-32 t^{4}=1$, we have $\frac{w+1}{2} \frac{w-1}{2}=8 t^{4}$. Hence

$$
\left\{\begin{array} { l }
{ \frac { w + 1 } { 2 } = 8 u ^ { 4 } } \\
{ \frac { w - 1 } { 2 } = v ^ { 4 } }
\end{array} \quad \text { or } \quad \left\{\begin{array}{c}
\frac{w+1}{2}=v^{4} \\
\frac{w-1}{2}=8 u^{4}
\end{array}\right.\right.
$$

So $8 u^{4}-v^{4}= \pm 1$. Since v is odd, hence $v^{4}+1 \equiv 2(\bmod 8)$, we see $8 u^{4}-v^{4}=1$ is impossible. Now $8 u^{4}-v^{4}=-1$, so $\frac{v^{2}+1}{2} \frac{v^{2}-1}{2}=2 u^{4}$. Since $v^{2} \equiv 1(\bmod 8), \frac{v^{2}-1}{2}$ is even, and we obtain

$$
\left\{\begin{array}{c}
\frac{v^{2}+1}{2}=\alpha^{4} \\
\frac{v^{v^{2}-1}}{2}=2 \beta^{4}
\end{array}\right.
$$

where $u=\alpha \beta$.
Thus, $\alpha^{4}-2 \beta^{4}=1$. By Lemma $1, \beta=0$, so that $u=t=0$. Hence, $(w, t)=(1,0)$ is the only nonnegative integer solution of (15).

Theorem 2. $w^{2}-288 t^{4}=1$ has two nonnegative integer solutions: $(w, t)=(1,0)$ and $(17,1)$.

Remark. So from (16) and (13), we get only one nonnegative solution $(s, t)=(0,1)$ with $(w, t)=(-17,1)$. Then from (9) and (10), we see $y=2, z=3$, hence $n=1$ in (1).

Proof. From $w^{2}-288 t^{4}=1$, we have $\frac{w+1}{2} \frac{w-1}{2}=72 t^{4}$. Then

$$
\left\{\begin{array} { l }
{ \frac { w + 1 } { 2 } = 8 u ^ { 4 } } \\
{ \frac { w - 1 } { 2 } = 9 v ^ { 4 } }
\end{array} \quad \text { or } \quad \left\{\begin{array} { c }
{ \frac { w + 1 } { 2 } = 9 v ^ { 4 } } \\
{ \frac { w - 1 } { 2 } = 8 u ^ { 4 } }
\end{array} \quad \text { or } \quad \left\{\begin{array} { c }
{ \frac { w + 1 } { 2 } = 7 2 u ^ { 4 } } \\
{ \frac { w - 1 } { 2 } = v ^ { 4 } }
\end{array} \quad \text { or } \quad \left\{\begin{array}{c}
\frac{w+1}{2}=v^{4} \\
\frac{w-1}{2}=72 u^{4}
\end{array},\right.\right.\right.\right.
$$

where $u v=t$.
So $8 u^{4}-9 v^{4}= \pm 1$ or $72 u^{4}-v^{4}= \pm 1$. Since v is odd, hence $v^{4}+1 \equiv 2(\bmod 8)$, we see $8 u^{4}-9 v^{4}=1$ and $72 u^{4}-v^{4}=1$ are impossible. We solve the remaining two equations $8 u^{4}-9 v^{4}=-1$ or $72 u^{4}-v^{4}=-1$ in the following separately.

First we consider the equation $8 u^{4}-9 v^{4}=-1$. Since $\frac{3 v^{2}+1}{2} \frac{3 v^{2}-1}{2}=2 u^{4}$, observing that $\frac{3 v^{2}+1}{2}$ is even, we have $\left\{\begin{array}{c}\frac{3 v^{2}+1}{2}=2 \alpha^{4} \\ \frac{3 v^{2}-1}{2}=\beta^{4}\end{array}\right.$. So $2 \alpha^{4}-\beta^{4}=1$. By Lemma 2, we get $(\alpha, \beta)=(1,1)$. Thus $(u, v)=(1,1)$. Hence $(w, t)=(17,1)$.

Now we consider the nonnegative integer solutions of the equation $72 u^{4}-v^{4}=-1$. Suppose $u v \neq 0$. Then $u, v>0$. So $v>1$. Let (u, v) be the solution of the equation such that u (hence v, since $72 u^{4}+1=v^{4}$) is the smallest positive integer. Since $\frac{v^{2}+1}{2} \frac{v^{2}-1}{2}=18 u^{4}$, noticing that $v^{2} \equiv 1(\bmod 24)\left(\right.$ since $v^{4}=72 u^{4}+1 \equiv 1(\bmod 6), v$ is prime to 6$)$, we have

$$
\left\{\begin{array}{c}
\frac{v^{2}+1}{2}=\alpha^{4} \tag{17}\\
\frac{v^{2}-1}{2}=18 \beta^{4}
\end{array}\right.
$$

where $\alpha, \beta>0$.
So $\alpha^{4}-18 \beta^{4}=1$. Then from $\frac{\alpha^{2}+1}{2} \frac{\alpha^{2}-1}{2}=72\left(\frac{\beta}{2}\right)^{4}$, we have

$$
\left\{\begin{array}{c}
\frac{\alpha^{2}+1}{2}=\gamma^{4} \tag{18}\\
\frac{\alpha^{2}-1}{2}=72 \delta^{4}
\end{array}\right.
$$

Therefore $\gamma^{4}-72 \delta^{4}=1$. But since $v>1$, from (17) we have $\alpha>1, v^{2}=2 \alpha^{4}-1>\alpha^{4}$, hence $v>\alpha>1$. Similarly from (18), we get $\alpha>\gamma>1$. So $v>\gamma$, and $\delta, \gamma>0$. This contradicts the minimality of (u, v). So $u v=0$. Thus $(u, v)=(0,1)$. Hence $(w, t)=(1,0)$. This completes the proof of the theorem.

Acknowledgement. The author would like to thank the referee for his/her helpful suggestions.

References

[1] S. P. Mohanty, A. M. S. Ramasamy, The Simultaneous Diophantine Equations $5 Y^{2}-20=X^{2}$ and $2 Y^{2}+1=Z^{2}$, J. Number Theory, 18 (1984), 356-359.
[2] L. J. Mordell, Diophantine Equations, Academic Press, London, 1969.

