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ON THE PROPERTY P−1
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Abstract

Mohanty and Ramasamy recently proved an interesting result that says that no other integers
can be added to the set {1, 5, 10} such that the product of any two numbers from the new
set minus one is a perfect square. We give an alternative proof of this result by considering
two simultaneous diophantine equations which are equivalent to those considered in [1]. It
turns out our method avoids carefully investigating relations between the solutions of Pell’s
equations. What we do is just solve some simple diophantine equations.

In [1], S. P. Mohanty and A. M .S. Ramasamy defined an interesting concept. Given an
integer k, they say two integers α and β have the property Pk if αβ + k is a perfect square.
They found that 1, 5, 10 share the property P−1, and showed that no other integers can be
added to share the property with the three numbers.

Suppose n is another number satisfying the property. Then

n− 1 = x2 (1)

5n− 1 = y2 (2)

10n− 1 = z2. (3)

Together, these yield

5x2 + 4z2 = 9y2. (4)

Eliminating n between (2) and (3), we have

z2 − 2y2 = 1. (5)
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We shall consider in the sequel the nonnegative integer solutions of the simultaneous
diophantine equations (4) and (5).

Remark. The authors of [1] considered 5x2 − y2 = −4 and (5) by eliminating n from (1),
(2), (3). It seems that these simultaneous equations are a little complicated to treat.

From (5), we see z and y are relatively prime, and z is odd, hence y is even since z2 ≡ 1(
mod 8). From (4), we have

(3y − 2z)(3y + 2z) = 5x2. (6)

Let d = (3x−2y, 3x+2y) be the greatest common divisor. Then d | (6y, 4z). So we have
the following two cases depending on whether z is divisible by 3 or not: (1) if 3 ! z, then
d = 2 or 4; (2) if 3 | z, then d = 6 or 12.

Now from (6), we have
3y + 2z

d
· 3y − 2z

d
= 5

(x

d

)2
. So

{
3y+2z

d = 5s2

3y−2z
d = t2

(7)

or
{

3y+2z
d = t2

3y−2z
d = 5s2 , (8)

where x
d = st.

From (7) and (8), we have

±4z = d(5s2 − t2). (9)

So when d = 2 or 6, we see s ≡ t( mod 2), therefore ±2z = d
2(5s

2− t2) ≡ 0(mod 4). So 2 | z,
which is impossible. Therefore d = 4 or 12.

Also from (7) and (8), we have

6y = d(5s2 + t2). (10)

Substituting (9) and (10) into (5) yields 9d2(5s2− t2)2−8d2(5s2 + t2)2 = 144 or, equivalently,

25s4 − 170s2t2 + t4 =
144

d2
, (11)

i.e.,

(5s2 − 17t2)2 − 288t4 =
144

d2
. (12)

Now let

w =
d

12
(5s2 − 17t2). (13)
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Then we get

w2 − 2d2t4 = 1 (14)

So, when d = 4, we have

w2 − 32t4 = 1, (15)

where w = 1
3(5s

2 − 17t2); while, when d = 12, we have

w2 − 288t4 = 1, (16)

where w = 5s2 − 17t2.

Note. We must be aware that w above is not necessarily nonnegative.

Before solving equations (15) and (16), we recall the following well-known facts (see
Mordell [2], pp. 18, 207).

Lemma 1. The equation x4−2y4 =1 has only one nonnegative integer solution (x, y) = (1, 0).

Lemma 2. The equation 2x4 − y4 = 1 has only one positive integer solution (x, y) = (1, 1).

Now we start to give a complete answer to equations (15) and (16).

Theorem 1. w2 − 32t4 = 1 has only one nonnegative integer solution (w, t) = (1, 0).

Remark. So, from (15), we have 5s2 = 3, which is impossible. Therefore, when d = 4, there
is no integer n satisfying (1), (2), and (3) simultaneously.

Proof. From w2 − 32t4 = 1, we have w+1
2

w−1
2 = 8t4. Hence

{
w+1

2 = 8u4

w−1
2 = v4 or

{
w+1

2 = v4

w−1
2 = 8u4 .

So 8u4−v4 = ±1. Since v is odd, hence v4+1 ≡ 2(mod 8), we see 8u4−v4 = 1 is impossible.
Now 8u4 − v4 = −1, so v2+1

2
v2−1

2 = 2u4. Since v2 ≡ 1(mod 8), v2−1
2 is even, and we obtain

{
v2+1

2 = α4

v2−1
2 = 2β4 ,

where u = αβ.

Thus, α4 − 2β4 = 1. By Lemma 1, β = 0, so that u = t = 0. Hence, (w, t) = (1, 0) is the
only nonnegative integer solution of (15).

Theorem 2. w2−288t4 =1 has two nonnegative integer solutions: (w, t) = (1, 0) and (17, 1).
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Remark. So from (16) and (13), we get only one nonnegative solution (s, t) = (0, 1) with
(w, t) = (−17, 1). Then from (9) and (10), we see y = 2, z = 3, hence n = 1 in (1).

Proof. From w2 − 288t4 = 1, we have w+1
2

w−1
2 = 72t4. Then

{
w+1

2 = 8u4

w−1
2 = 9v4 or

{
w+1

2 = 9v4

w−1
2 = 8u4 or

{
w+1

2 = 72u4

w−1
2 = v4 or

{
w+1

2 = v4

w−1
2 = 72u4 ,

where uv = t.

So 8u4 − 9v4 = ±1 or 72u4 − v4 = ±1. Since v is odd, hence v4 + 1 ≡ 2(mod 8), we
see 8u4 − 9v4 = 1 and 72u4 − v4 = 1 are impossible. We solve the remaining two equations
8u4 − 9v4 = −1 or 72u4 − v4 = −1 in the following separately.

First we consider the equation 8u4 − 9v4 = −1. Since 3v2+1
2

3v2−1
2 = 2u4, observing that

3v2+1
2 is even, we have

{
3v2+1

2 = 2α4

3v2−1
2 = β4 . So 2α4−β4 = 1. By Lemma 2, we get (α,β) = (1, 1).

Thus (u, v) = (1, 1). Hence (w, t) = (17, 1).

Now we consider the nonnegative integer solutions of the equation 72u4 − v4 = −1.
Suppose uv #= 0. Then u, v > 0. So v > 1. Let (u, v) be the solution of the equation such
that u (hence v, since 72u4 +1 = v4) is the smallest positive integer. Since v2+1

2
v2−1

2 = 18u4,
noticing that v2 ≡ 1(mod 24) (since v4 = 72u4 + 1 ≡ 1(mod 6), v is prime to 6), we have

{
v2+1

2 = α4

v2−1
2 = 18β4 , (17)

where α,β > 0.

So α4 − 18β4 = 1. Then from α2+1
2

α2−1
2 = 72(β

2 )4, we have
{

α2+1
2 = γ4

α2−1
2 = 72δ4 (18)

Therefore γ4 − 72δ4 = 1. But since v > 1, from (17) we have α > 1, v2 = 2α4 − 1 > α4,
hence v > α > 1. Similarly from (18), we get α > γ > 1. So v > γ, and δ, γ > 0. This
contradicts the minimality of (u, v). So uv = 0. Thus (u, v) = (0, 1). Hence (w, t) = (1, 0).
This completes the proof of the theorem.
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