IMPROVED BOUNDS ON THE NUMBER OF WAYS OF EXPRESSING t AS A BINOMIAL COEFFICIENT

Daniel M. Kane
Department of Mathematics, Harvard University, Cambridge, MA 02139, USA
dankane@math.harvard.edu

Received: 7/5/07, Revised: 9/5/07, Accepted: 10/30/07, Published: 12/3/07

Abstract

Let $N(t)$ denote the number of ways of writing t as a binomial coefficient. We show that $N(t)=O\left(\frac{(\log t)(\log \log \log t)}{(\log \log t)^{3}}\right)$.

1. Introduction

As in [2], we define $N(t)=\left|\left\{(n, m) \in \mathbb{Z}^{2}:\binom{n}{m}=t\right\}\right|$ to be the number of ways of writing an integer $t>1$ as a binomial coefficient. $N(3003)=8$, and $N(t) \geq 6$ for infinitely many t, but essentially no other lower bounds on $N(t)$ are known. Singmaster conjectured in [2] that $N(t)=O(1)$. Although no one has yet managed to achieve this bound (or even gotten particularly close), there has been some work on bounding the size of $N(t)$ (see [1, 2, 3]). The record was that $N(t)=O\left(\frac{(\log t)(\log \log \log t)}{(\log \log t)^{2}}\right)$ proved by the author in [1]. Using a refinement of this argument we improve this bound by a factor of $\log \log t$.

2. Overview of Our Technique

We recall the basics of the argument from [1]. First we note that it suffices to consider only solutions of the form $t=\binom{n}{m}$ where $n>2 m$, since for any other solution (n, m) with $n<2 m$, we have the solution $(n, n-m)$ with $n>2 m$ (there is at most one solution with $n=2 m$).

Next we consider the implicitly defined function $f(x)$ given by $\binom{f(x)}{x}=t$. By interpolating the binomial coefficient using the Γ-function, we make $f(x)$ smooth. We now are trying to bound that number of solutions to $f(m)=n$, or in other words the number of lattice points on the graph of the smooth function f.

We will use the fact that f has derivatives (of appropriate order) that are small but non-zero to bound the number of integral points on its graph.

3. Review of Previous Results

With $f(x)$ defined as above, we have from [1] that f can be extended to a complex analytic function, so that

$$
\begin{equation*}
f(z)=\exp \left(\frac{\log t+\Gamma(z+1)}{z}\right)+\frac{z-1}{2}+O\left(\frac{z^{2}}{f(z)}\right) \tag{1}
\end{equation*}
$$

uniformly where $|f(z)|>|2 z|$, which holds as long as

$$
\left|\exp \left(\frac{\log t+\Gamma(z+1)}{z}\right)\right|>|6 z| .
$$

We define the function $\alpha(x)=\frac{\log f(x)}{\log x}$, so $f(x)=x^{\alpha(x)}$. Using Equation 1 and Sterling's formula, we obtain that as long as $\alpha>1+\epsilon$ (for some constant $\epsilon>0$) that

$$
\begin{equation*}
\alpha(x) \sim \frac{\log t}{x \log x}+1 \tag{2}
\end{equation*}
$$

uniformly as $t \rightarrow \infty$.
Also in [1] it is shown that for t sufficiently large, and k and integer more than 1 , if

$$
\begin{equation*}
x^{7 \alpha / 4-2}>3^{k+1} k! \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
0<\left|\frac{1}{k!} \frac{\partial^{k}}{\partial x^{k}} f(x)\right|<2 x^{\alpha-k} e^{2 \alpha}(\log x)^{k} \tag{4}
\end{equation*}
$$

Note that for k large, this will imply that the $k^{\text {th }}$ derivative of f is small but non-zero.
In order to relate derivatives of f to integer points on its graph, we use the following lemma from [1]:

Lemma 1. If $F(x): \mathbb{R} \rightarrow \mathbb{R}$ is an infinitely differentiable function and if $F(x)=0$ for $x=x_{1}, x_{2}, \ldots, x_{n+1}\left(\right.$ where $\left.x_{1}<x_{2}<\ldots<x_{n+1}\right)$, then $F^{(n)}(y)=0$ for some $y \in\left(x_{1}, x_{n+1}\right)$.

Proof. We proceed by induction on n. The case of $n=1$ is Rolle's Theorem. Given the statement of Lemma 2.1 for $n-1$, if there exists such an F with $n+1$ zeroes, $x_{1}<x_{2}<$ $\ldots<x_{n+1}$, then by Rolle's theorem, there exist points $y_{i} \in\left(x_{i}, x_{i+1}\right)(1 \leq i \leq n)$ so that $F^{\prime}\left(y_{i}\right)=0$. Then since F^{\prime} has at least n roots, by the induction hypothesis there exists a y with $x_{1}<y_{1}<y<y_{n}<x_{n+1}$, and $F^{(n)}(y)=\left(F^{\prime}\right)^{(n-1)}(y)=0$.

Suppose now that f has $k+1$ integer points on its graph, $f\left(m_{i}\right)=n_{i}$, for $1 \leq i \leq k+1$. We let

$$
g(x)=\sum_{i=1}^{k+1} n_{i} \prod_{j \neq i} \frac{\left(x-m_{j}\right)}{\left(m_{i}-m_{j}\right)}
$$

be the polynomial of degree k that interpolates f at these points. By letting $F(x)=$ $f(x)-g(x)$ and applying Lemma 1 we get that for some y between the largest and smallest of the m_{i}, that

$$
\begin{equation*}
\frac{1}{k!} \frac{\partial^{k}}{\partial x^{k}} f(y)=\frac{1}{k!} \frac{\partial^{k}}{\partial x^{k}} g(y)=\sum_{i=1}^{k+1} \frac{n_{i}}{\prod_{j \neq i}\left(m_{i}-m_{j}\right)}=\frac{A}{B\left(m_{1}, \ldots, m_{k+1}\right)} \tag{5}
\end{equation*}
$$

for some integer A and $B\left(m_{1}, \ldots, m_{k+1}\right)=\operatorname{LCM}_{i}\left(\prod_{j \neq i}\left(m_{i}-m_{j}\right)\right)$. Our strategy will be to show that B is small and thus that the $k^{\text {th }}$ derivative of f is either 0 or a multiple of B (which is large), leading to a contradiction.

4. The New Bound

Here we prove the new result that will give us the improvement over [1].
Proposition 2. If m_{i} are integers where the largest and smallest differ by at most S,

$$
\log \left(B\left(m_{1}, \ldots, m_{k}\right)\right)=O\left(S \max \left(1, \log \left(\frac{k^{2} \log S}{S}\right)\right)\right)
$$

Proof. We first show that $\log \left(B\left(m_{1}, \ldots, m_{k}\right)\right)=O(S \log (k))$, thus proving our bound for $k>S^{2 / 3}$. We note that B is at most

$$
\mathrm{LCM} \prod_{i=1}^{k-1} r_{i}
$$

where the LCM is over all sequences of $k-1$ distinct non-zero numbers of absolute value at most S. We compute this by counting the number of multiples of each prime p. Each power of a prime, p^{n}, can divide at most $\max \left(k-1,2\left\lfloor\frac{S}{p^{n}}\right\rfloor\right)$ of the $r_{i}(k-1$ being the number of r_{i} and $2\left\lfloor\frac{S}{p^{n}}\right\rfloor$ the number of non-zero terms of absolute value at most S divisible by p^{n}). Therefore we have that

$$
\log (B) \leq \sum_{p^{n}} \max \left(k-1,2\left\lfloor\frac{S}{p^{n}}\right\rfloor\right) \log p \leq \sum_{p^{n}<S / k}(k-1) \log p+2 \sum_{S \geq p^{n} \geq S / k} S \frac{\log p}{p^{n}}
$$

Using integration by parts we find that this is at most

$$
(k-1) \psi\left(\frac{S}{k}\right)+2 S\left(\int_{S / k}^{S} \frac{\psi(x) d x}{x^{2}}+\frac{\psi(S)}{S}-\frac{\psi(S / k)}{S / k}\right)
$$

where $\psi(x)$ is Chebyshev's function $\sum_{p^{n}<x} \log p$, the sum being over powers of primes, p^{n} that are less than x. Using the prime number theorem, this is at most

$$
O\left((k-1) \frac{S}{k}+2 S\left(\int_{S / k}^{S} \frac{d x}{x}+\frac{S}{S}\right)\right)=O(S+1+S \log k)=O(S \log k)
$$

We now assume that $k<S^{2 / 3}$. We note that since B does not decrease when we add more m_{i} 's, that it suffices to show that

$$
\log \left(B\left(m_{1}, \ldots, m_{k}\right)\right)=O\left(S\left(1+\log \left(k^{2} \log S / S\right)\right)\right)
$$

when $k>2 \sqrt{\frac{S}{\log S}}$.
Consider first the contribution to $\log (B)$ from powers of primes less than $\frac{S}{k}$. There are $\pi\left(\frac{S}{k}\right)$ such primes. The power of such a prime dividing any $\left(m_{i}-m_{j}\right)$ is at most S. Therefore, the power of such a prime dividing B is at most S^{k}. Hence the contribution to $\log (B)$ from such primes is at most

$$
\pi\left(\frac{S}{k}\right) k \log (S)=O\left(S \frac{\log S}{\log \left(\frac{S}{k}\right)}\right)
$$

by the prime number theorem. This in turn is $O(S)$ if $k<S^{2 / 3}$ and hence is $O(S(1+$ $\left.\log \left(k^{2} \log S / S\right)\right)$).

Next consider the contribution from primes larger than $\frac{S^{2}}{k^{2} \log S}$. For each such prime, p, we note that in any term, $\prod_{j \neq i}\left(m_{i}-m_{j}\right)$, since the $\left(m_{i}-m_{j}\right)$ are distinct, non-zero integers of absolute value at most S, p divides at most $O(S / p)$ of them. Furthermore, since $k<S^{2 / 3}$, none are divisible by p^{3}. Therefore, B is divisible by $O(S / p)$ powers of p. Hence the contribution to $\log (B)$ of these primes is (using integration by parts)

$$
\begin{aligned}
O\left(\sum_{p} \frac{S}{p} \log p\right) & =O\left(\sum_{S^{2} /\left(k^{2} \log S\right)<p^{n}<S} \frac{S}{p^{n}} \log p\right) \\
& =O\left(S\left(\int_{S^{2} /\left(k^{2} \log S\right)}^{S} \frac{\psi(x)}{x^{2}} d x+\frac{\psi(S)}{S}\right)\right)
\end{aligned}
$$

Using the prime number theorem, this is

$$
O\left(S\left(\int_{S^{2} /\left(k^{2} \log S\right)}^{S} \frac{d x}{x}+\frac{S}{S}\right)\right)=O\left(S\left(1+\log \left(k^{2} \log S / S\right)\right)\right)
$$

Lastly, we consider the contribution to B from primes between S / k and $\frac{S^{2}}{k^{2} \log S}$. The contribution to $\log B$ from each such prime, p is at most $\log S$ times the maximum (over i) of the number of terms $m_{i}-m_{j}$ divisible by p. Note that since each such p is bigger than $S^{1 / 3}$, no $m_{i}-m_{j}$ is divisible by more than 2 of them. Let l be the number of such primes.

Let $d_{1}, d_{2}, \ldots, d_{l}$ be defined by letting d_{a} be the maximum number of $m_{i}-m_{j}$ (for some i fixed) divisible by the $a^{\text {th }}$ of these primes. Therefore the contribution to $\log B$ by these primes is $O\left(\log S \sum d_{i}\right)$. Next note that there are $d_{a}+1 \mathrm{~m}^{\prime} s$ congruent modulo the $a^{\text {th }}$ of these primes. Hence $d_{a}\left(d_{a}+1\right) / 2>d_{a}^{2} / 2$ of the $m_{i}-m_{j}$ are divisible by this prime. Hence since there are at most $k^{2} / 2$ pairs, each divisible by at most two primes, $\sum d_{a}^{2}<2 k^{2}$. Hence by Cauchy-Schwartz,

$$
\sum_{a} d_{a} \leq \sqrt{\left(\sum_{a} d_{a}^{2}\right)\left(\sum_{a} 1\right)} \leq \sqrt{2 k^{2} l}=O(k \sqrt{l})
$$

Now since l is clearly at most $\pi\left(\frac{S^{2}}{k^{2} \log S}\right)$ and since $\frac{S^{2}}{k^{2} \log S}>S^{1 / 3}$, the prime number theorem implies that $l=O\left(\frac{S^{2}}{k^{2} \log ^{2} S}\right)$. Therefore, the contribution to $\log B$ from these primes is

$$
O(\log S k \sqrt{l})=O(S)
$$

This completes the proof.

5. Cases

Let

$$
\begin{gathered}
D(t)=\left|\left\{(n, m) \in \mathbb{Z}^{2}:\binom{n}{m}=t, n>2 m, n<m^{\frac{\log \log t}{24 \log \log \log t}}\right\}\right|, \\
E(t)=\left|\left\{(n, m) \in \mathbb{Z}^{2}:\binom{n}{m}=t, n>m^{\frac{\log \log t}{24 \log \log \log t}}, n<m^{(\log \log t)^{3}}\right\}\right|, \\
F(t)=\left|\left\{(n, m) \in \mathbb{Z}^{2}:\binom{n}{m}=t, n>m^{(\log \log t)^{3}}\right\}\right| .
\end{gathered}
$$

Recalling that we can restrict our attention to solutions where $n>2 m$, we find that

$$
\begin{equation*}
N(t)=O(D(t)+E(t)+F(t)) \tag{6}
\end{equation*}
$$

6. The Easy Cases

From [1] we know that

$$
\begin{equation*}
D(t)=O\left(\frac{\log t}{(\log \log t)^{3}}\right) \tag{7}
\end{equation*}
$$

Furthermore, if $\alpha>(\log \log t)^{3}$, then by Equation 2, we have that $m=O\left(\frac{\log t}{\alpha}\right)=O\left(\frac{\log t}{(\log \log t)^{3}}\right)$. Since each solution has a distinct value of m, this implies that

$$
\begin{equation*}
F(t)=O\left(\frac{\log t}{(\log \log t)^{3}}\right) \tag{8}
\end{equation*}
$$

7. The Bound on $E(t)$

Let $\alpha_{0}=\frac{\log \log t}{24 \log \log \log t}$. Let $E_{i}(t)$ be the number of solutions with $2^{i} \alpha_{0} \leq \alpha \leq 2^{i+1} \alpha_{0}$. Let $k_{i}=2^{i+2} \alpha_{0}$. Suppose that we have $k_{i}+1$ integer points on the graph of f, in the range where $2^{i} \alpha_{0} \leq \alpha \leq 2^{i+1} \alpha_{0}\left(\alpha<(\log \log t)^{3}\right)$. Suppose that these points are separated by a total distance of S. Notice that by Equation 2 that in this range, $\log x=\Theta(\log \log t)$. In this range, Equation 3 holds since

$$
\log \left(x^{7 / 4 \alpha-2}\right)=\log x((7 / 4) \alpha-2) \gg k_{i}(\log \log t)>k_{i} \log k_{i} \gg \log \left(3^{k_{i}+1} k_{i}!\right)
$$

Therefore, Equation 4 holds and

$$
0<\left|\frac{1}{k_{i}!} \frac{\partial^{k_{i}}}{\partial x^{k_{i}}} f(x)\right|<2 e^{2 \alpha} x^{\alpha-k_{i}}(\log x)^{k_{i}}=\exp \left(-\Omega\left(k_{i}(\log \log t)\right)\right)
$$

On the other hand, if we have solutions with integer points $\left(n_{i}, m_{i}\right)$ for $1 \leq i \leq k_{i}+1$ in this range, where the m_{i} have maximum separation S, then this derivative is at least

$$
\frac{1}{B\left(m_{1}, \ldots, m_{k_{i}+1}\right)}=\exp \left(-O\left(S \max \left(1, \log \left(k_{i}^{2}(\log S) / S\right)\right)\right)\right)
$$

by Proposition 2. Let $D=\frac{S}{k_{i}}$. Comparing these two bounds on the size of the $k^{\text {th }}$ derivative of f, we have that

$$
D \max \left(1, \log \left(\frac{k_{i} \log k_{i}}{D}\right)\right)>C \log \log t
$$

where C is some positive constant. So either $D>C \log \log t$, or (substituting the value of k_{i}),

$$
D \log \left(\left(\frac{\log \log t}{D}\right) 2^{i+2}\right)>C \log \log t
$$

The latter implies that $D=\Omega((\log \log t) /(i+1))$. Hence

$$
D=\Omega\left(\frac{\log \log t}{(i+1)}\right)
$$

Note that by Equation 2 that for $2^{i} \alpha_{0} \leq \alpha$ (assuming that $\left.i=O(\log \log \log t)\right)$ that

$$
x=O\left(\frac{\log t}{2^{i} \alpha_{0} \log \log t}\right)=O\left(\frac{(\log t)(\log \log \log t)}{2^{i}(\log \log t)^{2}}\right) .
$$

By the above, any $k_{i}+1$ solutions must be separated by a total distance of at least $D k_{i}$. Therefore, since the total range of all solutions is $O\left(\frac{(\log t)(\log \log \log t)}{2^{i}(\log \log t)^{2}}\right)$, we have that

$$
D k_{i}\left\lfloor\frac{E_{i}(t)}{k_{i}}\right\rfloor=O\left(\frac{(\log t)(\log \log \log t)}{2^{i}(\log \log t)^{2}}\right) .
$$

Therefore,

$$
E_{i}(t)=O\left(\frac{1}{D} \frac{(\log t)(\log \log \log t)}{2^{i}(\log \log t)^{2}}+k_{i}\right)=O\left(\left(\frac{i+1}{2^{i}}\right)\left(\frac{(\log t)(\log \log \log t)}{(\log \log t)^{3}}\right)\right) .
$$

Summing the above over all i from 0 to $\log \log \log t$ yields that

$$
\begin{equation*}
E(t)=O\left(\frac{(\log t)(\log \log \log t)}{(\log \log t)^{3}}\right) \tag{9}
\end{equation*}
$$

Now by combining Equations $6,7,8,9$ we get our result that

$$
N(t)=O\left(\frac{(\log t)(\log \log \log t)}{(\log \log t)^{3}}\right) .
$$

8. Further Work

It should be noted that the bound we obtained can not be improved by much more using this technique. This is because if we have $k^{2}=\Omega(S)$, then B can be as large as $\exp (\Omega(S))$. This comes from the fact that if we pick k elements of $\{1,2, \ldots, S\}$ randomly and independently, there is a constant probability that any prime $p<S / 2$ will divide a difference of some two elements. Since the product of these primes is $\exp (\Omega(S))$ by the prime number theorem, the expected size of $\log B$ is $\Omega(S)$.

Consider the region where $\alpha>\log \log t$. The $k^{\text {th }}$ derivative of f over k ! has \log of size about $(\log x)(\alpha-k)$. Therefore, to get any useful information we need to set $k>\alpha$. We then obtain a bound looking something like $\log (B)>k(\log \log t)$. By the above, this can be satisfied with S as small as $O(k(\log \log t))$. Therefore, we can only prove that the inverse density of solutions is $O(\log \log t)$ (but no better). Therefore, since there are $\Theta\left(\frac{\log t}{(\log \log t)^{2}}\right)$ values of m in this range, we cannot by this technique alone exclude the possibility of as many as $O\left(\frac{(\log t)}{(\log \log t)^{3}}\right)$ solutions.

It would be interesting to improve this gap some. This leads to the problem of finding the correct bounds on $\log (B)$ for given values of k and S. The known upper bounds are $O\left(S \max \left(1, \log \left(\frac{k^{2} \log S}{S}\right)\right)\right)(\operatorname{Prop} 2)$ and $O\left(k^{2} \log (S)\right)\left(\right.$ by $\left.B<\prod_{i, j, i \neq j}\left(m_{i}-m_{j}\right)\right)$. The randomized construction gives the lower bound of $\Omega\left(k^{2}\left(1+\log \left(S / k^{2}\right)\right)\right.$) if $S>k^{2}$ and $\Omega(S)$ otherwise. It should be noted that the upper and lower bounds agree if $k<S^{1 / 2-\epsilon}$.

References

[1] D. Kane, On the Number of Representations of t as a Binomial Coefficient, Integers: Electronic Journal of Combinatorial Number Theory, 4, (2004), \#A07, pp. 1-10.
[2] D. Singmaster, How often Does an Integer Occur as a Binomial Coefficient?, American Mathematical Monthly, 78, (1971) 385-386
[3] H. L. Abbott, P. Erdös and D. Hanson, On the number of times an integer occurs as a binomial coefficient, American Mathematical Monthly, 81, (1974) 256-261.

