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Abstract

Let N(t) denote the number of ways of writing ¢ as a binomial coefficient. We show that
N(t) -0 ((logt)(logloglogt)>‘

(loglog t)3

1. Introduction

As in [2], we define N(t) = H(n, m) € Z* : <n =t 7| to be the number of ways of writing
m

an integer ¢ > 1 as a binomial coefficient. N(3003) = 8, and N(¢) > 6 for infinitely many
t, but essentially no other lower bounds on N(t) are known. Singmaster conjectured in [2]
that N(¢) = O(1). Although no one has yet managed to achieve this bound (or even gotten
particularly close), there has been some work on bounding the size of N(t) (see [1, 2, 3]). The

record was that N(t) = O (W) proved by the author in [1]. Using a refinement

of this argument we improve this bound by a factor of loglogt.

2. Overview of Our Technique

We recall the basics of the argument from [1]. First we note that it suffices to consider only
solutions of the form ¢ = () where n > 2m, since for any other solution (n,m) with n < 2m,
we have the solution (n,n —m) with n > 2m (there is at most one solution with n = 2m).

()

Next we consider the implicitly defined function f(z) given by ( = t. By inter-
T

polating the binomial coefficient using the I'-function, we make f(z) smooth. We now are
trying to bound that number of solutions to f(m) = n, or in other words the number of
lattice points on the graph of the smooth function f.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A53 2

We will use the fact that f has derivatives (of appropriate order) that are small but
non-zero to bound the number of integral points on its graph.

3. Review of Previous Results

With f(x) defined as above, we have from [1] that f can be extended to a complex analytic

function, so that
logt +T 1 -1 2
f(z):exp(og +Z<Z+ ))+22 +O(Jf<2)) (1)

uniformly where |f(z)| > |2z|, which holds as long as

logt + T 1
exp(Og i Chs >>'>|6z].

z

We define the function «a(z) = %, so f(z) = x*@). Using Equation 1 and Sterling’s
formula, we obtain that as long as & > 1 4 € (for some constant € > 0) that
logt
~ 1 2
@)~ gz T (2)

uniformly as t — oo.

Also in [1] it is shown that for ¢ sufficiently large, and k and integer more than 1, if

x?a/4—2 > 3k+1k! (3)
then
0< la—kf(.av) < 22" Fe?*(log 2)* (4)
k! Dk &)

Note that for k large, this will imply that the &*® derivative of f is small but non-zero.

In order to relate derivatives of f to integer points on its graph, we use the following
lemma from [1]:

Lemma 1. If F(z) : R — R is an infinitely differentiable function and if F(x) = 0 for
T =Ty, T, ..., Tnpy (Where 11 < 29 < ... < Tppy), then F™(y) = 0 for some y € (11, Tpy1).

Proof. We proceed by induction on n. The case of n = 1 is Rolle’s Theorem. Given the
statement of Lemma 2.1 for n — 1, if there exists such an F with n + 1 zeroes, 1 < 15 <
... < Tpy1, then by Rolle’s theorem, there exist points y; € (z;, ;1) (1 < i < n) so that
F'(y;) = 0. Then since F’ has at least n roots, by the induction hypothesis there exists a y
with 21 < 1 <y < Y < Tpy1, and FP(y) = (F)"D(y) = 0. O
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Suppose now that f has k + 1 integer points on its graph, f(m;) =n;, for 1 <i < k+ 1.
We let

k+1 B

Z n, H (x mj

i=1 j;ﬁz
be the polynomial of degree k that interpolates f at these points. By letting F(z) =
f(z) — g(x) and applying Lemma 1 we get that for some y between the largest and smallest
of the m;, that

1 0 1 o — A
Roe! @ = 159 = =) = Bl ) ®)

for some integer A and B(my,...,mg+1) = LCM; <H#i(mi - mj)> Our strategy will be

to show that B is small and thus that the k' derivative of f is either 0 or a multiple of B
(which is large), leading to a contradiction.

4. The New Bound

Here we prove the new result that will give us the improvement over [1].

Proposition 2. If m; are integers where the largest and smallest differ by at most .S,

log(B(my,...,my)) = O (Smax(l,log (kZ 1;g5>)) .

Proof. We first show that log(B(my,...,my)) = O(Slog(k)), thus proving our bound for
k > S%3. We note that B is at most

k—1
LCM H r;
=1

where the LCM is over all sequences of k£ — 1 distinct non-zero numbers of absolute value at
most S. We compute this by counting the number of multiples of each prime p. Each power

of a prime, p", can divide at most max(k — 1,2 L)—S;LJ) of the r; (k — 1 being the number of

r; and 2 z% the number of non-zero terms of absolute value at most S divisible by p").

Therefore we have that

1
log(B <Zmax —IZMSJ)logp< Z k—1)logp+2 Z Sng.

pn<S/k S>pn>S/k p"

Using integration by parts we find that this is at most

- (3) +2s ;k tad , v 25M)

k S S/k
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where 1 (z) is Chebyshev’s function an <, log p, the sum being over powers of primes, p”
that are less than x. Using the prime number theorem, this is at most

O <(k:—1)%+25 (/: d—x+§>> =0(S+1+ Slogk) =0O(Slogk).

[k T

We now assume that k < S2/3. We note that since B does not decrease when we add
more m;’s, that it suffices to show that

log(B(my,...,mz)) = O(S(1 + log(k*log S/5)))

when k > 2,/1025.

Consider first the contribution to log(B) from powers of primes less than % There are

s (%) such primes. The power of such a prime dividing any (m;—m;) is at most S. Therefore,

the power of such a prime dividing B is at most S*. Hence the contribution to log(B) from

such primes is at most
1
7 <§) klog(S) = O SLE;
k log (E)

by the prime number theorem. This in turn is O(S) if k& < S?/3 and hence is O(S(1 +
log(k?log S/S))).

Next consider the contribution from primes larger than 2% For each such prime,

k2log S
p, we note that in any term, []; ,(m; — m;), since the (m; — m;) are distinct, non-zero
integers of absolute value at most S, p divides at most O(S/p) of them. Furthermore, since
k < S?/3 mnone are divisible by p?. Therefore, B is divisible by O(S/p) powers of p. Hence

the contribution to log(B) of these primes is (using integration by parts)

O (Z%logp) =0 Z %logp

D S2/(k2log S)<pn<S

—0 (s ( /S jW - 1/}22@03:16 + MSS))) :

Using the prime number theorem, this is

O (S (/SS de + %)) =0 (S(1+log(k*log S/5))) .

2/(k2logS) L

Lastly, we consider the contribution to B from primes between S/k and %. The
contribution to log B from each such prime, p is at most log S times the maximum (over 7)
of the number of terms m; — m; divisible by p. Note that since each such p is bigger than

S8 no m; — m; is divisible by more than 2 of them. Let [ be the number of such primes.
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Let dy,ds,...,d; be defined by letting d, be the maximum number of m; — m; (for some
i fixed) divisible by the a'" of these primes. Therefore the contribution to log B by these
primes is O(log S >_ d;). Next note that there are d, + 1 m’s congruent modulo the a' of
these primes. Hence d,(d, + 1)/2 > d2/2 of the m; — m; are divisible by this prime. Hence
since there are at most k?/2 pairs, each divisible by at most two primes, Y d? < 2k?. Hence
by Cauchy-Schwartz,

> d, < (Zc@) (21) < V2k2 = O(kV1)

Now since [ is clearly at most 7 (

2

_k2i)g s > 9 1/3_the prime number theorem

52 .
W) and since

implies that [ = O (%) Therefore, the contribution to log B from these primes is

O(log SkV1) = O(S).
This completes the proof. O

5. Cases

D(t) = H(n,m) VAR <n) =t,n>2m,n < m2411§§1?§123t}‘ :
m

n loglogt
E(t) = ‘{(n7 m) e Z2 . ( > = t’n > m2410gglogglogt’n < m(logIOgt)3}‘ ,
m

F(t) = H(n,m) cZ?: <:@) —t,n> mﬂoglogﬂ‘*}' .

Recalling that we can restrict our attention to solutions where n > 2m, we find that

N(t) =O0(D(t) + E(t) + F(t)). (6)

6. The Easy Cases

From [1] we know that

D(t) = 0 (Ui) | 7)

loglogt)

Furthermore, if o« > (loglogt)?, then by Equation 2, we have that m = O (IC?Tgt) =0 ((1ogl(i<g)gtt)3> .

Since each solution has a distinct value of m, this implies that

F(t) = 0 <(17gt) | (5)

loglogt)
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7. The Bound on E(t)

Let ag = %. Let E;(t) be the number of solutions with 2cy < a < 2agy. Let
k; = 272qq. Suppose that we have k; + 1 integer points on the graph of f, in the range
where 2'cy < o < 2y (a < (loglogt)?). Suppose that these points are separated by a
total distance of S. Notice that by Equation 2 that in this range, logx = ©(loglogt). In

this range, Equation 3 holds since
log (z7/4°72) = log z((7/4)a — 2) > k;(loglogt) > k;log k; > log (3" 1k;1).
Therefore, Equation 4 holds and

L

0< f(z)] < 2e**2* Fi(log2)¥ = exp (—Q (k;(loglogt))) .

On the other hand, if we have solutions with integer points (n;, m;) for 1 <1i < k; + 1 in this
range, where the m; have maximum separation S, then this derivative is at least
1

Bl )~ O O(S max(l,log(k (log 5)/5))))

by Proposition 2. Let D = ki Comparing these two bounds on the size of the k" derivative

of f, we have that
k;log k;
D max (l,log( ;))g )) > ('loglogt

where C' is some positive constant. So either D > C'loglogt, or (substituting the value of

ki)a
loglogt\ ;o
D log T 2! > C log IOg t.

The latter implies that D = Q((loglogt)/(i + 1)). Hence

logl
D—Q og ogt ‘
(1+1)
Note that by Equation 2 that for 2'cy < o (assuming that i = O(logloglogt)) that

x:O< log t ):O(@ym%by%w)

2iag loglogt 2i(loglog t)?

By the above, any k; + 1 solutions must be separated by a total distance of at least Dk;.

Therefore, since the total range of all solutions is O ( Uestloeloelost) ) o 1ave that
2¢(log log t)

o |52 o (M)

Therefore,

-0 (3B 1) o (15) ().
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Summing the above over all ¢ from 0 to logloglogt yields that
(logt)(logloglogt)
E(t)=0 . 9
®) ( (loglogt)3 )
Now by combining Equations 6,7,8,9 we get our result that

B (logt)(logloglogt)
¥ =0 (M)

8. Further Work

It should be noted that the bound we obtained can not be improved by much more using this
technique. This is because if we have k% = Q(S), then B can be as large as exp(€(S)). This
comes from the fact that if we pick k elements of {1,2,..., S} randomly and independently,
there is a constant probability that any prime p < S/2 will divide a difference of some two
elements. Since the product of these primes is exp(€2(.S)) by the prime number theorem, the
expected size of log B is Q(95).

Consider the region where o > loglogt. The k*® derivative of f over k! has log of size
about (logx)(a — k). Therefore, to get any useful information we need to set k& > a. We
then obtain a bound looking something like log(B) > k(loglogt). By the above, this can be

satisfied with S as small as O(k(loglogt)). Therefore, we can only prove that the inverse
density of solutions is O(loglogt) (but no better). Therefore, since there are © (Ungf; t)2>
values of m in this range, we cannot by this technique alone exclude the possibility of as

(log t)
(loglogt)?

many as O ( > solutions.

It would be interesting to improve this gap some. This leads to the problem of finding
the correct bounds on log(B) for given values of k¥ and S. The known upper bounds are

@) <Smax(1,log (%))) (Prop 2) and O(k*log(S)) (by B < [,z (mi —m;)). The
randomized construction gives the lower bound of Q(k*(1 + log(S/k?))) if S > k? and Q(S)
otherwise. It should be noted that the upper and lower bounds agree if k < S%/27¢,
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