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Abstract

Let N(t) denote the number of ways of writing t as a binomial coefficient. We show that

N(t) = O
(

(log t)(log log log t)
(log log t)3

)
.

1. Introduction

As in [2], we define N(t) =

∣∣∣∣

{
(n,m) ∈ Z2 :

(
n

m

)
= t

}∣∣∣∣ to be the number of ways of writing

an integer t > 1 as a binomial coefficient. N(3003) = 8, and N(t) ≥ 6 for infinitely many
t, but essentially no other lower bounds on N(t) are known. Singmaster conjectured in [2]
that N(t) = O(1). Although no one has yet managed to achieve this bound (or even gotten
particularly close), there has been some work on bounding the size of N(t) (see [1, 2, 3]). The

record was that N(t) = O
(

(log t)(log log log t)
(log log t)2

)
proved by the author in [1]. Using a refinement

of this argument we improve this bound by a factor of log log t.

2. Overview of Our Technique

We recall the basics of the argument from [1]. First we note that it suffices to consider only
solutions of the form t =

(
n
m

)
where n > 2m, since for any other solution (n,m) with n < 2m,

we have the solution (n, n−m) with n > 2m (there is at most one solution with n = 2m).

Next we consider the implicitly defined function f(x) given by

(
f(x)

x

)
= t. By inter-

polating the binomial coefficient using the Γ-function, we make f(x) smooth. We now are
trying to bound that number of solutions to f(m) = n, or in other words the number of
lattice points on the graph of the smooth function f .
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We will use the fact that f has derivatives (of appropriate order) that are small but
non-zero to bound the number of integral points on its graph.

3. Review of Previous Results

With f(x) defined as above, we have from [1] that f can be extended to a complex analytic
function, so that

f(z) = exp

(
log t + Γ(z + 1)

z

)
+

z − 1

2
+ O

(
z2

f(z)

)
(1)

uniformly where |f(z)| > |2z|, which holds as long as
∣∣∣∣exp

(
log t + Γ(z + 1)

z

)∣∣∣∣ > |6z|.

We define the function α(x) = log f(x)
log x , so f(x) = xα(x). Using Equation 1 and Sterling’s

formula, we obtain that as long as α > 1 + ε (for some constant ε > 0) that

α(x) ∼ log t

x log x
+ 1 (2)

uniformly as t→∞.

Also in [1] it is shown that for t sufficiently large, and k and integer more than 1, if

x7α/4−2 > 3k+1k! (3)

then

0 <

∣∣∣∣
1

k!

∂k

∂xk
f(x)

∣∣∣∣ < 2xα−ke2α(log x)k. (4)

Note that for k large, this will imply that the kth derivative of f is small but non-zero.

In order to relate derivatives of f to integer points on its graph, we use the following
lemma from [1]:

Lemma 1. If F (x) : R → R is an infinitely differentiable function and if F (x) = 0 for
x = x1, x2, ..., xn+1 (where x1 < x2 < ... < xn+1), then F (n)(y) = 0 for some y ∈ (x1, xn+1).

Proof. We proceed by induction on n. The case of n = 1 is Rolle’s Theorem. Given the
statement of Lemma 2.1 for n − 1, if there exists such an F with n + 1 zeroes, x1 < x2 <
... < xn+1, then by Rolle’s theorem, there exist points yi ∈ (xi, xi+1) (1 ≤ i ≤ n) so that
F ′(yi) = 0. Then since F ′ has at least n roots, by the induction hypothesis there exists a y
with x1 < y1 < y < yn < xn+1, and F (n)(y) = (F ′)(n−1)(y) = 0.
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Suppose now that f has k + 1 integer points on its graph, f(mi) = ni, for 1 ≤ i ≤ k + 1.
We let

g(x) =
k+1∑

i=1

ni

∏

j #=i

(x−mj)

(mi −mj)

be the polynomial of degree k that interpolates f at these points. By letting F (x) =
f(x)− g(x) and applying Lemma 1 we get that for some y between the largest and smallest
of the mi, that

1

k!

∂k

∂xk
f(y) =

1

k!

∂k

∂xk
g(y) =

k+1∑

i=1

ni∏
j #=i(mi −mj)

=
A

B(m1, . . . ,mk+1)
(5)

for some integer A and B(m1, . . . ,mk+1) = LCMi

(∏
j #=i(mi −mj)

)
. Our strategy will be

to show that B is small and thus that the kth derivative of f is either 0 or a multiple of B
(which is large), leading to a contradiction.

4. The New Bound

Here we prove the new result that will give us the improvement over [1].

Proposition 2. If mi are integers where the largest and smallest differ by at most S,

log(B(m1, . . . ,mk)) = O

(
S max(1, log

(
k2 log S

S

)
)

)
.

Proof. We first show that log(B(m1, . . . ,mk)) = O(S log(k)), thus proving our bound for
k > S2/3. We note that B is at most

LCM
k−1∏

i=1

ri

where the LCM is over all sequences of k− 1 distinct non-zero numbers of absolute value at
most S. We compute this by counting the number of multiples of each prime p. Each power

of a prime, pn, can divide at most max(k − 1, 2
⌊

S
pn

⌋
) of the ri (k − 1 being the number of

ri and 2
⌊

S
pn

⌋
the number of non-zero terms of absolute value at most S divisible by pn).

Therefore we have that

log(B) ≤
∑

pn

max(k − 1, 2

⌊
S

pn

⌋
) log p ≤

∑

pn<S/k

(k − 1) log p + 2
∑

S≥pn≥S/k

S
log p

pn
.

Using integration by parts we find that this is at most

(k − 1)ψ

(
S

k

)
+ 2S

(∫ S

S/k

ψ(x)dx

x2
+

ψ(S)

S
− ψ(S/k)

S/k

)
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where ψ(x) is Chebyshev’s function
∑

pn<x log p, the sum being over powers of primes, pn

that are less than x. Using the prime number theorem, this is at most

O

(
(k − 1)

S

k
+ 2S

(∫ S

S/k

dx

x
+

S

S

))
= O(S + 1 + S log k) = O(S log k).

We now assume that k < S2/3. We note that since B does not decrease when we add
more mi’s, that it suffices to show that

log(B(m1, . . . ,mk)) = O(S(1 + log(k2 log S/S)))

when k > 2
√

S
log S .

Consider first the contribution to log(B) from powers of primes less than S
k . There are

π
(

S
k

)
such primes. The power of such a prime dividing any (mi−mj) is at most S. Therefore,

the power of such a prime dividing B is at most Sk. Hence the contribution to log(B) from
such primes is at most

π

(
S

k

)
k log(S) = O

(
S

log S

log
(

S
k

)
)

by the prime number theorem. This in turn is O(S) if k < S2/3 and hence is O(S(1 +
log(k2 log S/S))).

Next consider the contribution from primes larger than S2

k2 log S . For each such prime,
p, we note that in any term,

∏
j #=i(mi − mj), since the (mi − mj) are distinct, non-zero

integers of absolute value at most S, p divides at most O(S/p) of them. Furthermore, since
k < S2/3, none are divisible by p3. Therefore, B is divisible by O(S/p) powers of p. Hence
the contribution to log(B) of these primes is (using integration by parts)

O

(
∑

p

S

p
log p

)
=O




∑

S2/(k2 log S)<pn<S

S

pn
log p





=O

(
S

(∫ S

S2/(k2 log S)

ψ(x)

x2
dx +

ψ(S)

S

))
,

Using the prime number theorem, this is

O

(
S

(∫ S

S2/(k2 log S)

dx

x
+

S

S

))
= O

(
S(1 + log(k2 log S/S))

)
.

Lastly, we consider the contribution to B from primes between S/k and S2

k2 log S . The
contribution to log B from each such prime, p is at most log S times the maximum (over i)
of the number of terms mi −mj divisible by p. Note that since each such p is bigger than
S1/3, no mi −mj is divisible by more than 2 of them. Let l be the number of such primes.
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Let d1, d2, . . . , dl be defined by letting da be the maximum number of mi − mj (for some
i fixed) divisible by the ath of these primes. Therefore the contribution to log B by these
primes is O(log S

∑
di). Next note that there are da + 1 m′s congruent modulo the ath of

these primes. Hence da(da + 1)/2 > d2
a/2 of the mi −mj are divisible by this prime. Hence

since there are at most k2/2 pairs, each divisible by at most two primes,
∑

d2
a < 2k2. Hence

by Cauchy-Schwartz,

∑

a

da ≤

√√√√
(

∑

a

d2
a

)(
∑

a

1

)
≤
√

2k2l = O(k
√

l)

Now since l is clearly at most π
(

S2

k2 log S

)
and since S2

k2 log S > S1/3, the prime number theorem

implies that l = O
(

S2

k2 log2 S

)
. Therefore, the contribution to log B from these primes is

O(log Sk
√

l) = O(S).

This completes the proof.

5. Cases

Let

D(t) =

∣∣∣∣

{
(n,m) ∈ Z2 :

(
n

m

)
= t, n > 2m,n < m

log log t
24 log log log t

}∣∣∣∣ ,

E(t) =

∣∣∣∣

{
(n,m) ∈ Z2 :

(
n

m

)
= t, n > m

log log t
24 log log log t , n < m(log log t)3

}∣∣∣∣ ,

F (t) =

∣∣∣∣

{
(n,m) ∈ Z2 :

(
n

m

)
= t, n > m(log log t)3

}∣∣∣∣ .

Recalling that we can restrict our attention to solutions where n > 2m, we find that

N(t) = O(D(t) + E(t) + F (t)). (6)

6. The Easy Cases

From [1] we know that

D(t) = O

(
log t

(log log t)3

)
. (7)

Furthermore, if α > (log log t)3, then by Equation 2, we have that m = O
(

log t
α

)
= O

(
log t

(log log t)3

)
.

Since each solution has a distinct value of m, this implies that

F (t) = O

(
log t

(log log t)3

)
. (8)
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7. The Bound on E(t)

Let α0 = log log t
24 log log log t . Let Ei(t) be the number of solutions with 2iα0 ≤ α ≤ 2i+1α0. Let

ki = 2i+2α0. Suppose that we have ki + 1 integer points on the graph of f , in the range
where 2iα0 ≤ α ≤ 2i+1α0 (α < (log log t)3). Suppose that these points are separated by a
total distance of S. Notice that by Equation 2 that in this range, log x = Θ(log log t). In
this range, Equation 3 holds since

log
(
x7/4α−2

)
= log x((7/4)α− 2)) ki(log log t) > ki log ki ) log(3ki+1ki!).

Therefore, Equation 4 holds and

0 <

∣∣∣∣
1

ki!

∂ki

∂xki
f(x)

∣∣∣∣ < 2e2αxα−ki(log x)ki = exp (−Ω (ki(log log t))) .

On the other hand, if we have solutions with integer points (ni,mi) for 1 ≤ i ≤ ki +1 in this
range, where the mi have maximum separation S, then this derivative is at least

1

B(m1, . . . ,mki+1)
= exp(−O(S max(1, log(k2

i (log S)/S))))

by Proposition 2. Let D = S
ki

. Comparing these two bounds on the size of the kth derivative
of f , we have that

D max

(
1, log

(
ki log ki

D

))
> C log log t

where C is some positive constant. So either D > C log log t, or (substituting the value of
ki),

D log

((
log log t

D

)
2i+2

)
> C log log t.

The latter implies that D = Ω((log log t)/(i + 1)). Hence

D = Ω

(
log log t

(i + 1)

)
.

Note that by Equation 2 that for 2iα0 ≤ α (assuming that i = O(log log log t)) that

x = O

(
log t

2iα0 log log t

)
= O

(
(log t)(log log log t)

2i(log log t)2

)
.

By the above, any ki + 1 solutions must be separated by a total distance of at least Dki.

Therefore, since the total range of all solutions is O
(

(log t)(log log log t)
2i(log log t)2

)
, we have that

Dki

⌊
Ei(t)

ki

⌋
= O

(
(log t)(log log log t)

2i(log log t)2

)
.

Therefore,

Ei(t) = O

(
1

D

(log t)(log log log t)

2i(log log t)2
+ ki

)
= O

((
i + 1

2i

)(
(log t)(log log log t)

(log log t)3

))
.
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Summing the above over all i from 0 to log log log t yields that

E(t) = O

(
(log t)(log log log t)

(log log t)3

)
. (9)

Now by combining Equations 6,7,8,9 we get our result that

N(t) = O

(
(log t)(log log log t)

(log log t)3

)
.

8. Further Work

It should be noted that the bound we obtained can not be improved by much more using this
technique. This is because if we have k2 = Ω(S), then B can be as large as exp(Ω(S)). This
comes from the fact that if we pick k elements of {1, 2, . . . , S} randomly and independently,
there is a constant probability that any prime p < S/2 will divide a difference of some two
elements. Since the product of these primes is exp(Ω(S)) by the prime number theorem, the
expected size of log B is Ω(S).

Consider the region where α > log log t. The kth derivative of f over k! has log of size
about (log x)(α − k). Therefore, to get any useful information we need to set k > α. We
then obtain a bound looking something like log(B) > k(log log t). By the above, this can be
satisfied with S as small as O(k(log log t)). Therefore, we can only prove that the inverse

density of solutions is O(log log t) (but no better). Therefore, since there are Θ
(

log t
(log log t)2

)

values of m in this range, we cannot by this technique alone exclude the possibility of as

many as O
(

(log t)
(log log t)3

)
solutions.

It would be interesting to improve this gap some. This leads to the problem of finding
the correct bounds on log(B) for given values of k and S. The known upper bounds are

O
(
S max(1, log

(
k2 log S

S

)
)
)

(Prop 2) and O(k2 log(S)) (by B <
∏

i,j,i#=j(mi − mj)). The

randomized construction gives the lower bound of Ω(k2(1 + log(S/k2))) if S > k2 and Ω(S)
otherwise. It should be noted that the upper and lower bounds agree if k < S1/2−ε.
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