ASYMPTOTIC ESTIMATES FOR PHI FUNCTIONS FOR SUBSETS OF $\{M+1, M+2, \ldots, N\}$

Melvyn B. Nathanson ${ }^{1}$
Department of Mathematics, Lehman College (CUNY), Bronx, New York 10468, USA, and School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540
melvyn.nathanson@lehman.cuny.edu, melvyn@ias.edu
Brooke Orosz
Department of Mathematics, CUNY Graduate Center, New York, New York 10036
borosz@gc.cuny.edu

Received: 9/15/07, Accepted: 11/12/07, Published: 12/5/07

Abstract

Let $f(m, n)$ denote the number of relatively prime subsets of $\{m+1, m+2, \ldots, n\}$, and let $\Phi(m, n)$ denote the number of subsets A of $\{m+1, m+2, \ldots, n\}$ such that $\operatorname{gcd}(A)$ is relatively prime to n. Let $f_{k}(m, n)$ and $\Phi_{k}(m, n)$ be the analogous counting functions restricted to sets of cardinality k. Simple explicit formulas and asymptotic estimates are obtained for these four functions.

A nonempty set A of integers is called relatively prime if $\operatorname{gcd}(A)=1$. Let $f(n)$ denote the number of nonempty relatively prime subsets of $\{1,2, \ldots, n\}$ and, for $k \geq 1$, let $f_{k}(n)$ denote the number of relatively prime subsets of $\{1,2, \ldots, n\}$ of cardinality k.

Euler's phi function $\varphi(n)$ counts the number of positive integers a in the set $\{1,2, \ldots, n\}$ such that a is relatively prime to n. The Phi function $\Phi(n)$ counts the number of nonempty subsets A of the set $\{1, \ldots, n\}$ such that $\operatorname{gcd}(A)$ is relatively prime to n or, equivalently, such that $A \cup\{n\}$ is relatively prime. For every positive integer k, the function $\Phi_{k}(n)$ counts the number of sets $A \subseteq\{1, \ldots, n\}$ such that $\operatorname{card}(A)=k$ and $\operatorname{gcd}(A)$ is relatively prime to n.

Nathanson [2] introduced these four functions for subsets of $\{1,2, \ldots, n\}$, and El Bachraoui [1] generalized them to subsets of the set $\{m+1, m+2, \ldots, n\}$ for arbitrary nonnegative integers $m<n .{ }^{2}$ We shall obtain simple explicit formulas and asymptotic estimates for the four functions.

[^0]For every real number x, we denote by $[x]$ the greatest integer not exceeding x. We often use the elementary inequality $[x]-[y] \leq[x-y]+1$ for all $x, y \in \mathbf{R}$.

Theorem 1. For nonnegative integers $m<n$, let $f(m, n)$ denote the number of relatively prime subsets of $\{m+1, m+2, \ldots, n\}$. Then

$$
f(m, n)=\sum_{d=1}^{n} \mu(d)\left(2^{[n / d]-[m / d]}-1\right)
$$

and $0 \leq 2^{n-m}-2^{[n / 2]-[m / 2]}-f(m, n) \leq 2 n 2^{[(n-m) / 3]}$.

Proof. El Bachraoui [1] proved that

$$
f(m, n)=\sum_{d=1}^{n} \mu(d)\left(2^{[n / d]}-1\right)-\sum_{i=1}^{m} \sum_{d \mid i} \mu(d) 2^{[n / d]-i / d} .
$$

Rearranging this identity, we obtain

$$
\begin{aligned}
f(m, n) & =\sum_{d=1}^{n} \mu(d)\left(2^{[n / d]}-1\right)-\sum_{d=1}^{m} \mu(d) 2^{[n / d]} \sum_{\substack{i=1 \\
d \mid i}}^{m} 2^{-i / d} \\
& =\sum_{d=1}^{n} \mu(d)\left(2^{[n / d]}-1\right)-\sum_{d=1}^{m} \mu(d) 2^{[n / d]} \sum_{j=1}^{[m / d]} 2^{-j} \\
& =\sum_{d=1}^{n} \mu(d) 2^{[n / d]}\left(1-\sum_{j=1}^{[m / d]} 2^{-j}\right)-\sum_{d=1}^{n} \mu(d) \\
& =\sum_{d=1}^{n} \mu(d)\left(2^{[n / d]-[m / d]}-1\right) .
\end{aligned}
$$

Let $d \in\{1,2, \ldots, n\}$. Then $m+1 \leq a \leq n$ and d divides a if and only if $[m / d]+1 \leq a / d \leq$ $[n / d]$. It follows that $A \subseteq\{m+1, \ldots, n\}$ and $\operatorname{gcd}(A)=d$ if and only if $A^{\prime}=(1 / d) * A \subseteq$ $\{[m / d]+1, \ldots,[n / d]\}$ and $\operatorname{gcd}\left(A^{\prime}\right)=1$. Therefore,

$$
\begin{aligned}
2^{n-m}-1 & =\sum_{d=1}^{n} f([m / d],[n / d]) \\
& \leq f(m, n)+2^{[n / 2]-[m / 2]}-1+\sum_{d=3}^{n} 2^{[n / d]-[m / d]}
\end{aligned}
$$

and we obtain the lower bound $f(m, n) \geq 2^{n-m}-2^{[n / 2]-[m / 2]}-2 n 2^{[(n-m) / 3]}$. For the upper bound, we observe that the number of subsets of even integers contained in $\{m+1, \ldots, n\}$ is exactly $2^{[n / 2]-[m / 2]}$ and so $f(m, n) \leq 2^{n-m}-2^{[n / 2]-[m / 2]}$. This completes the proof.

Theorem 2. For nonnegative integers $m<n$ and for $k \geq 1$, let $f_{k}(m, n)$ denote the number of relatively prime subsets of $\{m+1, m+2, \ldots, n\}$ of cardinality k. Then

$$
f_{k}(m, n)=\sum_{d=1}^{n} \mu(d)\binom{[n / d]-[m / d]}{k}
$$

and

$$
0 \leq\binom{ n-m}{k}-\binom{[n / 2]-[m / 2]}{k}-f_{k}(m, n) \leq n\binom{[(n-m) / 3]+2}{k}
$$

Proof. El Bachraoui [1] proved that

$$
f_{k}(m, n)=\sum_{d=1}^{n} \mu(d)\binom{[n / d]}{k}-\sum_{i=1}^{m} \sum_{d \mid i} \mu(d)\binom{[n / d]-i / d}{k-1} .
$$

We recall the combinatorial fact that for $k \geq 1$ and $0 \leq M \leq N$, we have

$$
\binom{N}{k}-\sum_{j=1}^{M}\binom{N-j}{k-1}=\binom{N-M}{k} .
$$

Then

$$
\begin{aligned}
f_{k}(m, n) & =\sum_{d=1}^{n} \mu(d)\binom{[n / d]}{k}-\sum_{d=1}^{m} \mu(d) \sum_{\substack{i=1 \\
d \mid i}}^{m}\binom{[n / d]-i / d}{k-1} \\
& =\sum_{d=1}^{m} \mu(d)\left(\binom{[n / d]}{k}-\sum_{j=1}^{[m / d]}\binom{[n / d]-j}{k-1}\right)+\sum_{d=m+1}^{n} \mu(d)\binom{[n / d]}{k} \\
& =\sum_{d=1}^{m} \mu(d)\binom{[n / d]-[m / d]}{k}+\sum_{d=m+1}^{n} \mu(d)\binom{[n / d]}{k} \\
& =\sum_{d=1}^{n} \mu(d)\binom{[n / d]-[m / d]}{k} .
\end{aligned}
$$

We obtain an upper bound for $f_{k}(m, n)$ by deleting k-element sets of even integers:

$$
f_{k}(m, n) \leq\binom{ n-m}{k}-\binom{[n / 2]-[m / 2]}{k}
$$

and we obtain a lower bound from the identity

$$
\begin{aligned}
\binom{n-m}{k} & =\sum_{d=1}^{n} f_{k}([m / d],[n / d]) \\
& \leq f_{k}(m, n)+\binom{[n / 2]-[m / 2]}{k}+\sum_{d=3}^{n}\binom{[n / d]-[m / d]}{k} \\
& \leq f_{k}(m, n)+\binom{[n / 2]-[m / 2]}{k}+n\binom{[(n-m) / 3]}{k} .
\end{aligned}
$$

Theorem 3. For nonnegative integers $m<n$, let $\Phi(m, n)$ denote the number of subsets of $[m+1, n]$ such that $\operatorname{gcd}(A)$ is relatively prime to n. Then

$$
\Phi(m, n)=\sum_{d \mid n} \mu(d) 2^{(n / d)-[m / d]}
$$

If p^{*} is the smallest prime divisor of n, then

$$
0 \leq 2^{n-m}-2^{\left(n / p^{*}\right)-\left[m / p^{*}\right]}-\Phi(m, n) \leq 2 n 2^{\left[(n-m) /\left(p^{*}+1\right)\right]}
$$

Proof. El Bachraoui [1] proved that

$$
\Phi(m, n)=\sum_{d \mid n} \mu(d) 2^{n / d}-\sum_{i=1}^{m} \sum_{d \mid(i, n)} \mu(d) 2^{(n-i) / d}
$$

Rearranging this identity, we obtain

$$
\begin{aligned}
\Phi(m, n) & =\sum_{d \mid n} \mu(d) 2^{n / d}-\sum_{d \mid n} \mu(d) \sum_{\substack{i=1 \\
d \mid i}}^{m} 2^{(n-i) / d} \\
& =\sum_{d \mid n} \mu(d) 2^{n / d}-\sum_{d \mid n} \mu(d) \sum_{j=1}^{[m / d]} 2^{(n-j d) / d} \\
& =\sum_{d \mid n} \mu(d) 2^{n / d}\left[1-\sum_{j=1}^{[m / d]} 2^{-j}\right] \\
& =\sum_{d \mid n} \mu(d) 2^{(n / d)-[m / d]}
\end{aligned}
$$

Let p^{*} be the smallest prime divisor of n. Deleting all subsets of $\{m+1, \ldots, n\}$ whose elements are all multiplies of p^{*}, we obtain the upper bound

$$
\Phi(m, n) \leq 2^{n-m}-2^{\left(n / p^{*}\right)-\left[m / p^{*}\right]}
$$

For the lower bound, we have

$$
\begin{aligned}
\Phi(m, n) & -\left(2^{n-m}-2^{\left(n / p^{*}\right)-\left[m / p^{*}\right]}\right)=\sum_{\substack{d \mid n \\
d>p^{*}}} \mu(d) 2^{(n / d)-[m / d]} \\
& \leq 2 \sum_{\substack{d \mid n \\
d>p^{*}}} 2^{[(n-m) / d]} \leq 2 n 2^{\left[(n-m) /\left(p^{*}+1\right)\right]}
\end{aligned}
$$

This completes the proof.
Theorem 4. For nonnegative integers $m<n$, let $\Phi_{k}(m, n)$ denote the number of subsets of cardinality k contained in the interval of integers $\{m+1, m+2, \cdots n\}$ such that $\operatorname{gcd}(A)$ is relatively prime to n. Then

$$
\Phi_{k}(m, n)=\sum_{d \mid n} \mu(d)\binom{n / d-[m / d]}{k}
$$

and

$$
0 \leq\binom{ n-m}{k}-\binom{n / p^{*}-\left[m / p^{*}\right]}{k}-\Phi_{k}(m, n) \leq n\binom{\left[(n-m) /\left(p^{*}+1\right)\right]+1}{k}
$$

Proof. Let p^{*} be the smallest prime divisor of n. El Bachraoui [1] proved that

$$
\Phi_{k}(m, n)=\sum_{d \mid n} \mu(d)\binom{n / d}{k}-\sum_{i=1}^{m} \sum_{d \mid \operatorname{gcd}(i, n)} \mu(d)\binom{(n-i) / d}{k-1} .
$$

Rearranging this identity, we obtain

$$
\begin{aligned}
\Phi_{k}(m, n) & =\sum_{d \mid n} \mu(d)\binom{n / d}{k}-\sum_{d \mid n} \mu(d) \sum_{\substack{i=1 \\
d \mid i}}^{m}\binom{(n-i) / d}{k-1} \\
& =\sum_{d \mid n} \mu(d)\left(\binom{n / d}{k}-\sum_{j=1}^{[m / d]}\binom{n / d-j}{k-1}\right) \\
& =\sum_{d \mid n} \mu(d)\binom{n / d-[m / d]}{k} \\
& \geq\binom{ n-m}{k}-\binom{n / p^{*}-\left[m / p^{*}\right]}{k}-\sum_{\substack{d \mid n \\
d>p^{*}}}\binom{n / d-[m / d]}{k} \\
& \geq\binom{ n-m}{k}-\binom{n / p^{*}-\left[m / p^{*}\right]}{k}-\sum_{\substack{d \mid n \\
d>p^{*}}}\binom{[n-m) / d]+1}{k} \\
& \geq\binom{ n-m}{k}-\binom{n / p^{*}-\left[m / p^{*}\right]}{k}-n\binom{\left[(n-m) /\left(p^{*}+1\right)\right]+1}{k} .
\end{aligned}
$$

Deleting k-element subsets of $\{m+1, \ldots, n\}$ whose elements are multiples of p^{*}, we get the upper bound

$$
\Phi_{k}(m, n) \leq\binom{ n-m}{k}-\binom{\left[n / p^{*}\right]-\left[m / p^{*}\right]}{k} .
$$

This completes the proof.

References

[1] M. El Bachraoui, The number of relatively prime subsets and phi functions for $\{m, m+1, \ldots, n\}$, Integers 7 (2007), A43, 8 pp. (electronic).
[2] M. B. Nathanson, Affine invariants, relatively prime sets, and a phi function for subsets of $\{1,2, \ldots, n\}$, Integers 7 (2007), A1, 7 pp. (electronic).

[^0]: ${ }^{1}$ The work of M.B.N. was supported in part by grants from the NSA Mathematical Sciences Program and the PSC-CUNY Research Award Program.
 ${ }^{2}$ Actually, our function $f(m, n)$ is El Bachraoui's function $f(m+1, n)$, and similarly for the other three functions. This small change yields formulas that are more symmetric and pleasing esthetically.

