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Abstract

We prove that there is no geometric progression that contains four (distinct) triangular
numbers.

1. Introduction

The integers of the form Tn = n(n + 1)/2, n ∈ N, are called triangular numbers. Sierpinski
asked whether there exist four(distinct) triangular numbers in geometric progression (see [1,
D23]). Bennett [2] claimed that there are no four(distinct) triangular numbers in geometric
progression. In fact, Bennett’s proof is under the assumption that the geometric progression
has an integral common ratio. Chen and Fang [6] removed the assumption “integral common
ratio” and solved Sierpinski’s problem.

By employing the theory of Pell’s equations and a result of Y. Bilu, G. Hanrot and P.
M. Voutier on primitive divisors of Lucas and Lehmer numbers [3], Yang and He [4] claimed
that there is no geometric progression which contains four (distinct) triangular numbers. In
their paper, they misunderstood the phrase “in geometric progression,” and claimed that
Bennett’s proof is not complete and that they solved Sierpinski’s problem completely. In
fact, their proof is also under the assumption that the geometric progression has an integral
common ratio.

In this paper, “integral common ratio” is removed. We use only the Störmer theorem on
Pell’s equation to prove the following result.

Theorem. No geometric progression contains four (distinct) triangular numbers.
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2. Proof of Theorem

In this paper, we use the following lemma.

Lemma (Störmer theorem[5]) If Pell’s equation x2−Dy2 = ±1(D > 0) has a positive integral
solution (x1, y1), and every prime divisor of y1 divides D, then (x1, y1) is the fundamental
solution.

Proof of the theorem. Suppose that there is a geometric progression which contains four
(distinct) triangular numbers Tx, Ty, Tu, Tv. Let the common ratio of the geometric progres-
sion be q = b/a with a ≥ 1 and (a, b) = 1. Obviously, we can consider the question in a
finite geometric progression, thus we may assume 0 < q < 1, so a > b. We can arrange
Tx, Ty, Tu, Tv so that there exist positive integers A, r1, r2, r3(0 < r1 < r2 < r3) satisfying

8Tx = A, 8Ty = Aqr1 , 8Tu = Aqr2 , 8Tv = Aqr3 .

By the form of triangular numbers, we have

A + 1 = m2
1, Aqr1 + 1 = m2

2, Aqr2 + 1 = m2
3, Aqr3 + 1 = m2

4,

where m1,m2,m3,m4 are all positive integers, and m1 > m2 > m3 > m4. Since Aqr3 ∈ N,
we have ar3 | Abr3 . Since (a, b) = 1, we have ar3 | A. Let A = ar3a0. By the above equations,
we have

m2
1 − ar3a0 = 1, m2

2 − ar3−r1br1a0 = 1, (1)

m2
3 − ar3−r2br2a0 = 1, m2

4 − br3a0 = 1. (2)

Case 1. 2 | r3. By (1) and the lemma, (m1, a(r3−2)/2) is the basic solution of the Pell’s
equation, x2−a0a2y2 = 1. If 2 | r1, then r3 ≥ r1+2. By (1) we have m2

2−ar3−r1−2br1a0a2 = 1.
Thus, since a > b, we have

m2 + a
r3−r1−2

2 b
r1
2

√
a0a2 = (m1 + a

r3−2
2

√
a0a2)k

≥ m1 + a
r3−2

2

√
a0a2

> m2 + a
r3−r1−2

2 b
r1
2

√
a0a2,

a contradiction. If 2 | r2, then r3 ≥ r2 + 2. By (2) we have m2
3 − ar3−r2−2br2a0a2 = 1. Thus,

since a > b, we have

m3 + a
r3−r2−2

2 b
r2
2

√
a0a2 = (m1 + a

r3−2
2

√
a0a2)k

≥ m1 + a
r3−2

2

√
a0a2

> m3 + a
r3−r2−2

2 b
r2
2

√
a0a2,

a contradiction.

If 2 ! r1 and 2 ! r2, then by (1) and (2) we have

m2
2 − ar3−r1−1br1−1a0ab = 1,m2

3 − ar3−r2−1br2−1a0ab = 1.
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By the lemma, both (m2, a(r3−r1−1)/2b(r1−1)/2) and (m3, a(r3−r2−1)/2b(r2−1)/2) are the basic
solutions of Pell’s equation x2 − a0aby2 = 1. This is impossible.

Case 2. 2 ! r3. By (1) and the lemma, the basic solution of Pell’s equation x2 − a0ay2 = 1
is (m1, a(r3−1)/2). If 2 | r1, then 2 | r3 − r1 − 1. By (1) we have m2

2 − ar3−r1−1br1a0a = 1. So,
since a > b, we have

m2 + a
r3−r1−1

2 b
r1
2
√

a0a = (m1 + a
r3−1

2
√

a0a)k

≥ m1 + a
r3−1

2
√

a0a

> m2 + a
r3−r1−1

2 b
r1
2
√

a0a,

a contradiction. If 2 | r2, then 2 | r3 − r2 − 1. By (2) we have m2
3 − ar3−r2−1br2a0a = 1. So,

since a > b, we have

m3 + a
r3−r2−1

2 b
r2
2
√

a0a = (m1 + a
r3−1

2
√

a0a)k

≥ m1 + a
r3−1

2
√

a0a

> m3 + a
r3−r2−1

2 b
r2
2
√

a0a,

a contradiction.

If 2 ! r1 and 2 ! r2, then since 2 ! r3 and 0 < r1 < r2 < r3, we have: r3 ≥ r1 + 2, r3 ≥
r2 + 2, 2 | r3 − r1 − 2, 2 | (r3 − r2 − 2), 2 | (r1 − 1), and 2 | (r2 − 1). By (1) and (2),
we have m2

2 − ar3−r1−2br1−1a0a2b = 1 and m2
3 − ar3−r2−2br2−1a0a2b = 1. By the lemma,

both (m2, a(r3−r1−2)/2b(r1−1)/2) and (m3, a(r3−r2−2)/2b(r2−1)/2) are the basic solutions of the
Pell equation x2 − a0a2by2 = 1, which is impossible.
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