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Abstract

We study the classical game of peg solitaire when diagonal jumps are allowed. We prove
that on many boards, one can begin from a full board with one peg missing, and finish with
one peg anywhere on the board. We then consider the problem of finding solutions that
minimize the number of moves (where a move is one or more jumps by the same peg), and
find the shortest solution to the “central game”, which begins and ends at the center. In
some cases we can prove analytically that our solutions are the shortest possible, in other
cases we apply A* or bidirectional search heuristics.

1. Introduction

Peg solitaire is a puzzle that has been popular for over 300 years; it is most commonly played
on the 33-hole or 37-hole boards of Figure 1. We refer to a board location as a hole, because
on an actual board there is a hole or depression in which the peg (or marble) sits. The game
begins with pegs in all the holes except one (Figure 1a). The player jumps one peg over
another into an empty hole, removing the jumped peg from the board. The goal is to select
a sequence of jumps that finish with one peg.

In the standard version of the game, only horizontal and vertical jumps are allowed (along
rows and columns), and there can be at most four different jumps into any hole. Following
Beasley [1], we will refer to this game as 4-move solitaire. In this paper, we’ll explore the
version of the game where diagonal jumps in both directions are also allowed—there can then
be up to eight jumps into a hole and this will be called 8-move solitaire. An intermediate
version, in which diagonal jumps are allowed in only one direction, is called 6-move solitaire,
and is equivalent to solitaire played on a triangular grid [1, p. 233].

In this paper, we will consider 8-move solitaire on five square symmetric boards: the

1http://www.geocities.com/gibell.geo/pegsolitaire/
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Figure 1: (a) The standard 33-hole board. (b) The 37-hole board, with hole coordinates.

“standard” 33-hole board (Figure 1a), the 37-hole board (Figure 1b), plus three diamond-
shaped boards of various sizes (Figure 2). The board Diamond(n) has n holes on a side,
and a total of n2 + (n − 1)2 holes. The central game is the problem which begins with
a full-board with one peg missing at the center, and finishes with one peg in the center.
In 4-move solitaire, the central game is not solvable on any of these boards except for the
standard 33-hole board. However, as we shall see, in 8-move solitaire the central game is
solvable on all five boards.

Figure 2: Diamond boards 3, 4, and 5 holes on a side with 13, 25, and 41 holes.

To identify the holes on the board, we use a notation where the rows are labeled, top
to bottom, 1,2,3, . . . , and the columns are labeled left to right, a,b,c, . . . , as in Figure 1b.
Note that in this notation the coordinate of the board center is not always the same, the
center is d4 for Diamond(4) and the boards of Figure 1, but is c3 for Diamond(3) and e5
for Diamond(5).

A solitaire jump is denoted by the starting and ending coordinates for the jump, separated
by a dash, i.e., d4-f4 for the rightward jump from the center in Figure 2b. If the same peg
makes one or more jumps, we will call this a move. To denote this we add the intermediate
coordinates of the jumps, for example d4-f4-d6-d4 for the triple-jump move from the center
in Figure 2b.
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A board position B will be denoted by a capital letter, and by B′ we mean the comple-
ment of this board position, where every peg is replaced by a hole, and vice versa. We will
also refer to the board position with only the hole d4 filled as d4; the central game on the
33-hole board is thus the problem of playing from d4′ to d4. If S is any subset of holes, and
B is a board position, then #BS is the number of holes in S that are occupied by pegs.

A common type of peg solitaire problem begins with one peg missing and finishes with one
peg. Beasley [1] refers to such problems as single vacancy to single survivor problems,
or SVSS problems. A complement problem is the special problem where the starting
vacancy and finishing hole are the same, because the starting and ending board positions
are complements of one another. Complement problems are particularly attractive because
of this symmetry, and the central game is perhaps the most attractive of all because the
starting and ending board positions are square symmetric.

The solution to any SVSS problem on the standard 33-hole board has exactly 31 jumps,
because we begin with 32 pegs and finish with one, and one peg is lost per jump. However
we can also consider the number of moves in a solution, which has a natural interpretation
as the number of pegs that must be touched during the solution (not counting those removed
from the board). A solution’s length will always be measured in moves. A classical problem
in the history of 4-move solitaire is to determine the shortest solution to all SVSS problems
on the standard 33-hole board. In 1912, Ernest Bergholt [3] found a solution to the central
game in 18 moves. In 1964, John Beasley proved that the central game can’t be solved
in under 18 moves [1, 2], so Bergholt’s solution is the shortest possible. Subsequently,
shortest solutions to all SVSS problems on the 33-hole board have been found [1, 2] using
computational search.

2. Single vacancy to single survivor (SVSS) problems

2.1 Reversibility, categories and position classes

8-move and 4-move solitaire are similar in one very important way, in regard to the re-
versibility of the game. In 4-move solitaire, if a sequence of jumps takes one from board
position A to B, then these jumps executed in the same direction, but in reverse order will
take one from B′ to A′. This stems from the fact that the basic solitaire jump itself takes the
complement of three consecutive board locations. As stated in Winning Ways [2], “Back-
wards solitaire is just forward solitaire with the notions “empty” and “full” interchanged.”
This property is not lost in 6-move or 8-move solitaire, and these games also have the re-
versibility property. One consequence of this is that any solution to a complement problem,
when played in reverse, is a different solution to the same complement problem.

We can separate the pegs into four categories (0-3) by their ability to jump into the
center, jump horizontally over the center, jump vertically over the center, or jump diagonally



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #G01 4

over the center (Figure 3a). Any peg is in exactly one category, and remains in this category
for the entire game. A peg cannot remove another peg of the same category, and in 4-
move solitaire a peg can remove pegs only in two of the three other categories. In 6-move
and 8-move solitaire, a peg can remove any peg in the other three categories (ignoring any
limitation due to the edge of the board). This suggests that in general, the same SVSS
problem can be solved in fewer moves in 6- and 8-move solitaire.
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Figure 3: (a) Four categories of pegs (b) The diagonal labeling for position classes

Allowing diagonal jumps adds more potential jumps, but also changes the game in a
more fundamental way. In 4-move solitaire, suppose we label the diagonals alternately
0, 1, 2, 0, 1, ... as in Figure 3b, and let ni be the number of pegs in the holes labeled i. The
key observation is that every (non-diagonal) jump involves exactly one hole of each of the
three labels. After a jump is executed, two of the three ni decrease by 1, while the other
increases by 1. Therefore, if we add any pair among {n0, n1, n2}, the parity (even or odd)
of this sum cannot change as the game is played. There are six invariant parities—those
associated with the sums n0 + n1, n1 + n2, and n0 + n2, and the analogous sums along
diagonals slanting up and right. The set of all board positions can be partitioned into 16
position classes [1, 4], where all boards in a position class share identical values of the six
parities. During a game of 4-move solitaire, the board position can never leave the starting
position class. The position classes can also be derived using algebraic rules [2].

These position classes constrain the possible finishing holes in a game of 4-move solitaire.
Using Cartesian coordinates, all board positions with a single peg at (x + 3i, y + 3j) are in
the same position class for any integers i and j. This restriction is known as the “Rule of
Three” [2]. In the next section we’ll see that in 8-move solitaire there is no such restriction
on finishing holes.

2.2 SVSS solvability in 8-move solitaire

Theorem 1 Under 8-move solitaire, for all five boards except Diamond(3), any SVSS prob-
lem is solvable. That is, beginning from a full board with one peg missing, it is possible to
finish with one peg at any board location.

Proof: Consider the board position of Figure 4a with only the central 9 board locations
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occupied. We’ll refer to this board position as “C9”. In 4-move solitaire, C9 is in the position
class of the empty board, and it is therefore impossible to reach any single peg finish. In
8-move solitaire, however, it is possible to play from C9 to finish with one peg anywhere on
the board. This is the case not only for the 33-hole board, but also on the 37-hole board
and Diamond(5). Because the board position C9 is square symmetric, we need only list a
few solutions to prove this—these solutions can be found in Appendix A.

Figure 4: The board position (a) C9, and (b) P12

The proof will be complete if it is possible to solve the C9 complement (play from C9′

to C9), for we can then construct a solution to any SVSS problem from a′ to b as follows:
(1) we take a solution from C9 to a, and reverse it to obtain a solution from a′ to C9′, (2)
we then play from C9′ to C9 and finally (3) from C9 to b.

The C9 complement problem is an interesting puzzle in itself, and could be called the
“big central game.” The C9 complement is only solvable for the two largest boards, the
37-hole board and Diamond(5). A solution to the problem on the 37-hole board is shown in
Figure 5, while a solution on Diamond(5) is in Appendix A.

Figure 5: A 13-move solution to the C9 complement on the 37-hole board.

It remains to prove the theorem in the case of the 33-hole board and Diamond(4). In
the first case we just need to work a bit harder. Although the C9 complement is unsolvable
(as will be proved shortly), we can find another board position P12 (Figure 4b) from which
any finishing location can also be reached (see Appendix A). Moreover it is easy to play from
P12′ to C9, even without diagonal jumps. Therefore our solution from a′ to b goes from a′

to P12′ to C9 to b.

For Diamond(4), Theorem 1 does not fall to such elegant arguments, and we have only
demonstrated the result using an exhaustive search. Fortunately, an exhaustive search goes
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fairly quickly since the board has only 25 holes.

For Diamond(3)2, we can easily prove that not all SVSS problems are solvable using the
resource count or pagoda function in Figure 6b. A resource count is a weighting function
on the board, carefully devised so that no jump increases its total. To calculate the value of
the resource count for a particular board position we simply sum the numbers where a peg
is present. If we begin a SVSS problem with a vacancy at one of the holes marked “1” in
Figure 6b, then the resource count starts at -1, and it is therefore impossible to finish with
one peg at any board location with a weight greater than -1.

!"

%& !& #&

() %) !) #) $)

%+ !+ #+

!,

!"

/ " /

!" " / " !"

/ " /

!"

!" / !"

/ " " " /

!" " / " / " !"

/ " " / " " /

!" " / " / " !"

/ " " " /

!" / !"

Figure 6: (a) Diamond(3) coordinates, (b) resource count and (c) a resource count on the
33 or 37-hole boards.

These restrictions are only necessary conditions, however, and there are SVSS problems
on Diamond(3) feasible by the resource count that are not solvable. An exhaustive search
demonstrates, for example, that if we start with a vacancy at c2, we can finish only at c1 or
c5, not at a3 or e3.

The reader is cautioned that the majority of resource counts for 4-move solitaire are not
valid in 8-move solitaire. Careful checking of all jumps, regular and diagonal, is required to
ensure that a particular weighting is a valid resource count.

The “cross count” of Figure 6c is a valid resource count for 8-move solitaire on the 33 or
37-hole boards. For the C9 complement, the value of the resource begins at 4 and ends at
4, so a solution cannot include any jump that reduces this resource count. One such jump
is a vertical or horizontal jump into the center; this jump loses 2 and is the only way on the
33-hole to fill the central hole, hence the C9 complement is unsolvable on this board. On
the 37-hole board, we see that the central hole must be filled by a diagonal jump.

In fact a similar argument using the resource count of Figure 6c proves that on the 33-
hole board there is no 90◦ rotationally symmetric board position A that satisfies both: (1)
any finishing hole can be reached from A and (2) It is possible to play from A′ to A.

2The Diamond(3) board can be purchased under the name “Hoppers,” marketed by ThinkFunTM.
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3. Short solutions

John Beasley [1, p. 232] gives a 16-move solution to the central game on the 33-hole board
under 8-move solitaire. His comment “but I suspect that this can be improved” was the
impetus for this paper. What is the shortest solution to the central game in 8-move solitaire?
In this section we will answer this question for all five board types. In fact we will also answer
a more general question: what is the shortest solution to any SVSS problem on this board?

3.1 Computational search techniques

On a board with n holes, the total number of possible board positions is 2n; this is an upper
bound on the size of the state space for the game3. For 8-move solitaire on Diamond(4),
the upper bound is 225 ≈ 3.4 × 107. From d4′, the number of board positions that can be
reached can be calculated as 2.7× 107, about 80% of this upper bound. For larger boards in
8-move solitaire, it is a reasonable estimate that 70-90% of the upper bound can be reached
from any single vacancy start, which for the 37-hole board gives an estimated state space of
1.1× 1011 nodes. Of course, the problem starting with d4 missing has 8-fold symmetry, and
this can be used to reduce all these estimates by nearly a factor of 8.

The computational technique used to find short solutions in this paper is called a search
by levels [1, p. 249]. It is a breadth-first search by moves. Each level set Li is a set of
board positions, L0 is the set containing only the initial board position. To calculate Li

from Li−1, we take all board positions in Li−1, and execute all possible single moves. After
removing duplicates and board positions seen at previous levels, we obtain Li, the set of
board positions reachable from the starting position in exactly i moves. If the target board
position appears in some Lm, then this problem can be solved in a minimum of m moves.
Moreover, by tracing the target board position back through the level sets, we can find all
solutions of length m.

The reason a breadth-first rather than a depth-first search is used to find short solutions
in peg solitaire is the amount of repetition encountered while searching. For example, if one
can play from board position A to B in 8 moves, it is common to have millions of possible
move sequences that can take one from A to B. To effectively apply a depth-first search,
it is necessary to store board positions encountered previously, and this can fill memory for
the largest boards. This memory limitation is also present in a breadth-first search, but we
have the option to store only board positions at the current level, rather than all previously
seen. A breadth-first search in peg solitaire can also be easily split into smaller pieces to be
worked on separately, and we can also eliminate searches over boards that are equivalent by
symmetry.

One search technique that has been successfully applied to find short solutions in peg

3In 4-move solitaire, this upper bound can be reduced to the size of the starting position class, which is
16 times smaller, or 2n−4.
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solitaire is a bidirectional search [6]. Here a search by levels is run forward from the initial
board state, then backwards from the final board state, with a solution identified in the
intersection of the two searches. While useful, we’ll see that this search technique has a
fundamental limitation when applied to larger peg solitaire boards, particularly in 8-move
solitaire.

A second technique, the A* search [7], uses an estimate h(B) of the number of moves
from the current board position B to the desired goal (usually a one peg finish). A* search
techniques have been successfully applied to other puzzles, such as the Fifteen Puzzle [8, 9].
To apply an A* search in our search by levels, at each level i, we accept only board positions
satisfying the constraint

i + h(B) ≤ m, (1)

where m is the length of the longest solution we will accept. This is not a traditional A*
search, in which the node selected for expansion is the one with the smallest value of i+h(B).

To find the shortest solution to a problem starting from board position S, we set m = h(S)
and run a search by levels with constraint (1). If this finishes with no solution found, we set
m = h(S) + 1 and repeat the search from the start, and continue this process, increasing
m by one each time, until a solution is found. This technique is very similar to “iterative
deepening A*” [8], the main difference being that it is based on a breadth-first rather than
a depth-first search. Although we haven’t tried a depth-first search, it seems likely that
this technique will find a solution more quickly than a breadth-first search by levels. One
advantage of our technique is that we can find all solutions, rather than just the first one.

If h(B) is admissible, meaning that it never overestimates the actual number of moves
remaining, then an A* search is guaranteed to find the shortest solution, if one exists [7]. For
this reason we will always select h(B) that are admissible. One requirement of admissibility
is that if T is a target board position, h(T ) = 0.

3.2 Corner constrained boards

We call a board location a corner if there is no jump that can capture a peg at this board
location. Note that whether a board location is a corner depends upon the particular type of
solitaire—for example in 8-move solitaire Diamond(n) has 4 corners, but in 4-move solitaire
every hole at the edge of the board is a corner. A corner peg is defined as any peg that is
in the same category as some corner peg, or equivalently the peg can jump into some corner.
Finally, a corner move is any move that begins from a corner.

Let us now consider Diamond(3). This board has four corners (c1, a3, e3, and c5), and
the corner pegs are those in the corners, plus the center c3. A peg which begins in a corner
cannot be removed in its original location, but must be first moved to the center. Notice
that no move can remove more than one corner peg, the central peg. Thus the process of
removing each peg that begins in a corner involves at least two moves: moving it to the
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center and then jumping over it.

If we consider the central game on Diamond(3), we must move three of the corner pegs
to the center and then jump them, one at a time, and on the final move bring the fourth
corner peg to the center. Therefore, no solution to the central game can have fewer than
7 moves. Since a solution can be found in 7 moves (Appendix A), we have proved that it is
of minimum length.

Similar arguments work on any board that has the following (qualitative) properties:

1. All corner pegs are in the same category (which implies that no corner move can remove
a corner peg).

2. There is a limit to the number of corner pegs that can be removed by one move. Strictly
speaking, of course, there is always some limit to the number of pegs removed by one
move, but this property is reserved for boards for which this limit is small enough to
constrain the length of solutions.

A board with the above two properties is called corner constrained, because the length of
the shortest solution is limited primarily by the removal of corner pegs. Of the five boards
we consider, the corner constrained boards are Diamond(3), the 33-hole board and the 37-
hole board. The other two boards are called edge constrained and finding short solutions
requires a different technique.

Let us consider now the 37-hole board, because much can be proved about this board,
without resorting to a computational search.

Theorem 2 Under 8-move solitaire on the 37-hole board:

1. The central game cannot be solved in less than 13 moves.

2. No SVSS problem can be solved in less than 12 moves.

3. The C9 complement cannot be solved in less than 13 moves, and all the moves of a
13-move solution must start outside and end inside the central 9 holes.

Proof: This board has 8 corners and the central game begins with 12 corner pegs and
finishes with zero. In addition, no move can remove more than four corner pegs (those at c3,
e3, c5 and e5). Therefore we will need 8 corner moves, plus at least 3 more moves to remove
the 12 corner pegs, for a total of 11 moves. However, the first move can only be d2-d4 or
b2-d4 (or symmetric equivalents), which remove at most one corner peg, so we need at least
12 moves.

But it is not hard to see that even 12 moves is impossible. For this requires that after
the first move, every move either (1) is a corner move that does not finish at a corner, or (2)
removes at least 3 corner pegs. If the first move is d2-d4, then there is no second move of
either kind. If the first move is b2-d4, then we can play c1-c3 or e1-c3, but then we can no
longer make a move of either kind.
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For the second part of Theorem 2 we use a similar argument. For a general SVSS problem,
we begin with at least 11 corner pegs and finish with one or zero, so we must remove at
least 10. In addition there must be at least one move beginning from every corner. This is
clear if the corners are all filled at the start, and even if the starting vacancy is at a corner,
it is filled by the first move, and therefore there must still be a move out of it. This gives
a total of 11 moves, but 11 moves cannot be attained. If we begin anywhere but a corner,
then every move must either be a corner move that does not finish at a corner, or remove
two corner pegs, but there is no way that the first two moves can be like this. If we begin
at a corner, then the first move is arbitrary but there is no way the second and third moves
can be like this.

For the third part of Theorem 2, the C9 complement, we must again have eight corner
moves. These eight moves can at best leave pegs at the four holes c3, e3, c5 and e5, which
leaves five holes in the center that must be filled by at least five more moves, for a total of 13
moves. Note that the solution in Figure 5 has minimum length. For any 13-move solution,
nine of the moves must supply a peg to the central region, and the other four moves remove
a corner peg and cannot reduce the number of pegs in the central region (otherwise we will
need more than 13 moves). Therefore all the moves must start outside and end inside this
region.

The ideas of the above proof can also be incorporated into numerical schemes to find a
13-move solution to the central game, a 12-move solution to the c1 or c3 complements, and
a 13-move solution to the C9 complement. For any board position B we come up with a
lower bound h1(B) on the number of moves to any single peg finish. Let c(B) be the number
of corners occupied by pegs, and p(B) be the number of corner pegs. In our notation,
c(B) = #B{c1, e1, a3, g3, a5, g5, c7, e7} and p(B) = c(B) + #B{c3, e3, c5, e5}. We must have
a move starting from each occupied corner, and separately remove the corner pegs at most
4 per move. So the number of moves from B to a single peg finish is at least

h1(B) = c(B) + %(p(B) − f)/4&, (2)

where the ceiling operator specifies rounding up to the nearest integer, and f is set to either
0 or 1 depending on which finishing locations we allow. Setting f = 0 will allow any single
peg finish except for a corner peg. If we want to find solutions that finish with one peg
anywhere, we use f = 1, and if B has exactly one peg, we override (2) and set h1(B) = 0.
Note that the heuristic (2) is valid only for the 33- and 37-hole boards.

Using the heuristic (2) in an A* search (1) we can find all 13-move solutions to the central
game in a matter of minutes (Figure 7). Our search algorithm also takes advantage of the
8-fold symmetry of the problem, and expands a total of 2.9 × 106 nodes, a reduction by a
factor of 4700 over an unconstrained search (using the previous estimate of 1.1 × 1011/8 for
the total number of nodes).

Note that after the third move in Figure 7, constraint (1) is satisfied with an equality, and
this is the case for nearly all nodes in the search. Normally in a search by levels, one needs to
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Figure 7: A minimum length, 13-move solution to the central game on the 37-hole board.

eliminate boards at the current level that have appeared in previous levels. However when
most nodes satisfy the A* constraint (1) with an equality, this check is no longer necessary.
We can save memory because we need only to keep boards at the current level.

One subtlety of this search is that it takes place first by individual moves and second by
extending the current move. It is important that the constraint (1) be applied only after the
search over the current move is finished. For example, if we examine any board position of
Figure 7 in the middle of a multi-jump move, the constraint (1) is violated.

The heuristic (2) is based on finding solutions with single peg finishes, so a different h(B)
is needed for the C9 complement problem. We still need one move per corner peg, and these
moves can only fill four of the nine vacancies in the central region. So we can add at least
one move for each of the remaining 5 vacancies. If we let v(B) = 5 − #B{d3, c4, d4, e4, d5},
then we use the heuristic

h2(B) = c(B) + v(B), (3)

which finds all 13-move solutions in less than 1 minute after expanding 2.0×105 nodes. Our
algorithm finds that all 13-move solutions to the C9 complement contain exactly 7 diagonal
jumps.

Figure 8: A minimum length, 15-move solution to the central game on the 33-hole board.

The arguments of Theorem 2 can be applied to the standard 33-hole board to prove that
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there is no solution to the central game with less than 14 moves. However, an A* search (1)
finds that the shortest solution has 15 moves (Figure 8), after expanding 1.3 × 107 nodes,
a speed increase of a factor of 70 over an unconstrained search. The solution in Figure 8 is
identical to the 16-move solution given by Beasley [1, p. 241] up until the 9th move. Using
an A* search, we can also find 13-move solutions to the c1 and c3 complements (Appendix
A), and that no SVSS problem on this board is solvable in less than 13 moves.

3.3 Edge constrained boards

The corner pegs on Diamond(4) are not all in the same category, and on Diamond(5) a
single move can remove 9 corner pegs, so the techniques of the previous section do not apply.
However, using a different argument we can see that the presence of the edge of the board
(including the corners) significantly constrains the solution length.
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Figure 9: Diamond(4) and Diamond(5) divided into “Merson regions,” A,B,C,. . . .

Consider Diamond(4), and divide the board into eight “Merson regions4” A-H as in
Figure 9a. The shape of a region is chosen such that when it is entirely filled with pegs,
there is no way to remove a peg in the region without a move that originates inside the
region.

Theorem 3 Under 8-move solitaire on Diamond(4):

1. The central game cannot be solved in less than 10 moves.

2. No SVSS problem can be solved in less than 8 moves.

Proof: At the start of the central game, we have 8 regions full, and neither the first nor
the last move can start from these regions, so we need at least 10 moves. Solutions with 10
moves can be found (Appendix A), so they have minimum length.

4Named after Robin Merson who first used this concept in 1962 on the 6x6 square board [1, p. 203].
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By the same argument, if we begin anywhere in the interior of the board, any SVSS
problem requires at least 8 moves. If we begin at a corner, this region is filled by the first
move, and we will still need at least 7 more moves. The only remaining possibility for a 7
move SVSS solution is to start along an edge, say c2. Every jump must come from the 7
filled regions (A-G), and we cannot jump into a corner or refill any edge region. This forces
the jumps: a4-c2, d1-b3, e2-c2, g4-e2, which leaves us in a board position where there is no
move meeting these constraints. So no SVSS problem is solvable in 7 moves. Yet 8 move
solutions exist (see Appendix A).

These ideas can be used in an A* search to find short solutions on Diamond(5). From
each board position B, we again obtain a lower bound on the number of moves remaining
to any single peg finish. Referring to Figure 9b for Diamond(5), we define

h3(B) = the number of filled regions. (4)

This heuristic can be improved by “sliding” the edge or interior regions to any configuration
where they do not overlap. For the best bound, we initialize h3 to zero, then add +1 for every
occupied corner, and for every edge which has two consecutive holes filled (not including the
corners). We then add +1 if region “I” is completely filled by pegs, either in the configuration
in Figure 9b, or by translating region “I” one hole to the right, down, or both. Again, if B
has only one peg then we override (4) and set h3(B) = 0.

Another algorithm improvement comes from the following idea: if, for some board posi-
tion B at level i, we have i + h3(B) = m, then all remaining moves must begin from filled
regions. For example, the interior region “I” is unlikely to be filled after the first few moves.
For any board position B with “I” unfilled and i + h3(B) = m, all remaining moves must
start from the edge of the board (including corners).

Table 1 shows a result of a search for the shortest solution to the central game on
Diamond(5) with and without the A* constraint i +h3(B) ≤ m. Here we have included the
8-fold symmetry of the problem (there are only 2 different first moves). The second column
shows the size of the level sets when the search is unconstrained. Note that to store the level
set L8 requires over 1.8 gigabytes of disk space, using 6 bytes per board position, and this
search cannot be run to completion due to excessive time and disk space requirements. In
the third column, we use constraint (1) with m = 10, which shows that no solution of length
10 exists (ending at the center or any other board location). To find an 11-move solution,
we can begin from L8 in the m = 10 column, but relax the constraint to m = 11. To find
all 11-move solutions, however, we must start over from scratch with m = 11 as shown in
the final column.

In the final two columns of table 1, note that |Li| decreases at i = m− 1. The reason for
this is an improvement in the h3(B) constraint when i = m− 1. For this level only, let r be
the number of filled regions as in (4), and

s =






0 if there is only one peg remaining,
1 if there is exactly one peg in at least one category,
2 otherwise.
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Size of level set, |Li|
Level # (i) unconstrained m = 10 m = 11

0 1 1 1
1 2 2 2
2 12 10 12
3 152 66 139
4 2,347 216 1,381
5 43,763 630 9,134
6 890,355 2,002 54,798
7 18,085,322 6,007 372,122
8 325,165,209 17,497 2,739,963
9 not calculated 2,637 20,776,877
10 not calculated 0 15,467,734
11 not calculated 0 8

Total nodes expanded est 2.2 × 1011 2.9 × 104 3.9 × 107

Total run time 0.8 min 10 hrs

Table 1: Results from a search by levels for the central game on Diamond(5).

Then we use h3(B) = max(r, s). This is valid because before the final move, the finishing
peg must be the only peg in its category.

In the final column, L11 = 8 indicates that there are 8 possible finishing locations.
Because of the symmetry of the problem, these 8 locations cover most of the board, and
this calculation shows that, beginning from e5′, there exists an 11-move solution finishing
anywhere except the 4 corners. See Appendix A for an 11-move solution to the central game.

Can we find an 11-move solution to the central game more quickly using a bidirectional
search? Interestingly, a bidirectional search performs poorly on this problem. To compute
one level backwards from the final board position, the algorithm must calculate all board
positions that can finish in one move to e5. There are over half a million such board positions,
even counting symmetrical board positions as the same. The fact that the search tree grows
so rapidly is not the only problem, because most of these final moves are long sequences of
nested loops up to 24 jumps long (for example see the final move in Figure 11). A move with
p loops can be executed at least 2p ways (each loop can be traversed in either direction), so
the number of ways to traverse each move grows exponentially with p. Our program takes
almost 9 hours to go back one level, and in 24 hours has completed less than 1% of the
calculation back two levels.

Finding the shortest solution to the C9 complement on Diamond(5) is difficult. The
resource count of Figure 10a is useful for this computation, because for the C9 comple-
ment it starts at 12 and ends at 9, so we can afford to lose only 3. We can apply this
in our search by adding the constraint that this resource count must be at least nine.
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Figure 10: Resource counts on Diamond(5) useful for finding short solutions to (a) the
C9 complement in 8-move solitaire and (b) SVSS problems in 4-move solitaire.

We can also use the A* search heuristic (3) with c(B) = #B{e1, a5, i5, e9} and v(B) =
8 − #B{d4, e4, f4, d5, f5, d6, e6, f6}. However, even with both these constraints, an A*
search to level 16 or 17 is time consuming. A bidirectional search is the fastest technique
for this problem, since the last move cannot be a long sequence of loops. We ran forward 9
levels and backward 7, and found the intersection between these level sets was empty, so the
C9 complement cannot be solved in 16 moves. A 17-move solution can be found in Appendix
A.

3.4 Back to 4-move solitaire

The A* heuristic (1) has proved so useful in 8-move solitaire, why not use it to find short
solutions in 4-move solitaire? On the standard 33-hole board, we can indeed do so, and the
heuristic (2) finds Bergholt’s 18-move solution to the central game in under a minute, after
expanding 4.6×105 nodes5. This is a reduction by about a factor of 50 over an unconstrained
search, for which the total number of reachable board positions is 2.3 × 107.

The 37-hole and Diamond(n) boards have additional corners in 4-move solitaire, and
although the heuristics (2) or (4) are still valid they hardly speed up the search at all. On
the 37-hole board under 4-move solitaire, there are only 10 solvable SVSS problems, and an
exhaustive search has found that all require a minimum of 20 or 21 moves [5]. The resource
count in Figure 10b is valid on this board, and can speed up the search by a factor of two or
so. On the 37-hole board, it actually takes less time to find short solutions to SVSS problems
under 8-move solitaire than 4-move solitaire.

On Diamond(5) under 4-move solitaire, there are only four SVSS problems solvable, all
in a minimum of 26 moves [6]. The resource count in Figure 10b is very useful in speeding

5The most efficient way to do this is to notice that any 18-move solution from d4′ to d4 generates a
17-move solution from d4′ to d1 (and vice versa). Thus, in (1) we set m = 17, and in (2) f = 0.
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up this search, but again finding minimum length solutions to SVSS problems is comparable
or easier under 8-move solitaire.

4. Conclusions

We have found that 8-move solitaire is similar to 4-move solitaire, except for the major
difference that, in general, any SVSS problem is solvable. Table 2 summarizes our results on
short solutions to SVSS problems for the five boards. Table 2 shows that as boards become
larger, rather counter-intuitively the length of the shortest solution may decrease! In going
from the 33-hole board to the 37-hole board to Diamond(5), 4 holes are added each time,
yet the length of the shortest solution to the central game decreases from 15 to 11.

Holes / shortest solution in moves to
Board Corners Type the central game any SVSS problem

Diamond(3) 13 / 4 corner constrained 7† 7†
Diamond(4) 25 / 4 edge constrained 10† 8†
Standard 33-hole 33 / 8 corner constrained 15 13
37-hole 37 / 8 corner constrained 13† 12†
Diamond(5) 41 / 4 edge constrained 11 11

Table 2: Shortest solutions in 8-move solitaire († - proved analytically).

We have discussed a number of techniques that can speed up the search for the shortest
solution, sometimes by several orders of magnitude:

1. A modified A* search (1) using an estimate of the number of remaining moves, given
by (2), (3) or (4).

2. A bidirectional search.

3. A constraint from a resource count or pagoda function.

There is no single technique which works well for all peg solitaire boards and all types
of peg solitaire. The A* search heuristic seems best suited in 8-move solitaire, where it can
speed searches up by a factor of 5000. A bidirectional search works best in 4-move solitaire,
but fails on large boards where the final move can be a long sequence of loops. A constraint
from a resource count often helps, but its usefulness varies with the board and problem. A
resource count constraint can be applied at any time during a solution, and is often effective
in combination with one of the other two techniques.

For many peg solitaire problems, the constraint on filled Merson regions (4) is the most
generally useful. We have applied this technique successfully on triangular boards in 6-move
solitaire to find the shortest solution to SVSS problems on boards with up to 55 holes.
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The game of 8-move solitaire probably will never be popular because very complicated
moves are possible. Finding short solutions by hand seems virtually impossible. One puzzle
that is interesting to solve by hand is the C9 complement or “big central game” on the
37-hole board or Diamond(5) (without minimizing moves). This puzzle looks easy but is
harder than it appears.

Given enough computational power, it is possible to find minimum length solutions on
all of these boards by exhaustive search. However, in this paper we have tried to avoid a
brute-force approach, always looking for clever search heuristics to find solutions quickly.
Using an A* search, it can be faster to find minimum length solutions on the same board
under 8-move solitaire than under 4-move solitaire. This is somewhat surprising since the
number of board positions reachable is about 16 times larger.
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Appendix A. Solutions

A.1 Solutions from C9 to any finishing hole

Because the 33-hole board and the board position C9 are square symmetric, it suffices to
list solutions to a single peg finish at d1, d2, d3, d4, c1, c2 and c3. On the 37-hole board, we
also need to show that b2 can be reached, and on Diamond(5), the corner e1.

To d1: d4-b4-d6-f4-d2, c3-e3, d5-f3-d3-d1; to d2: d4-f4-d6, c5-e5, d6-f4-d2-b4-d4-d2; to
d3: d4-d2-f4-d6-b4-d4, e4-c4, d5-b3-d3; to d4: d4-b4-d6-f4-d2, c3-e3, d5-f3-d3, d2-d4; to c1:
d4-f4-d6, c4-c6-e6-c4-c2, e3-c3-c1; to c2: d4-b4-d6, e4-e6-c6-e4-e2-c4-c2; to c3: d4-b4-d2,
e4-e2-c2-e4-e6-c4, c5-c3.

To b2 (37-hole board): e4-c2, d5-b3, d4-b2-d2-f4-d6-b4-b2.

To e1 (41 hole board): d5-d3, f4-d4-d2, f5-f7-d5, d6-d4, e5-c3-e1 (note the coordinate
change).

A.2 Solutions from P12 to any finishing hole

In this case we consider only the 33-hole board. The board position P12 is rotationally
symmetric. First we show how to reach the holes d1, d2, d3, d4 or any symmetric equivalent.
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To d1: a3-c5, g5-e3, d3-f3, c7-e5-e3, c4-c6-e4-e2, e1-e3, f3-d3-d1; to d2: c7-e5, a3-c5,
e1-c3-e3, d5-f5, g5-e5, f4-d6-b4-d4-f4-d2; to d3: e1-c3, a3-c5-e5, d3-b3-d5-f5, c7-e5, g5-e3,
f5-d5-f3-d3; to d4: a3-c5, g5-e3, d3-f3, c7-e5-e3, c4-c6-e4-e2, e1-e3, f3-d3, d2-d4.

To get to any other finishing hole, we play e1-c3, a3-c5, c7-e5, g5-e3; then to c1: e4-e6,
c4-c6-e4, e3-e5, e6-e4-c2, c3-c1; to c2: c4-e6, d3-f3-d5, e6-e4-c6-c4-c2; to c3: c4-e2, d5-f5-d3,
e2-e4-c2-c4, c5-c3.

A.3 Minimum length solutions

These solutions were found using a C++ program running on a PC of modest speed (1GHz
clock speed with 512MB of RAM). Diagrams of most of these solutions can be found at
http://www.geocities.com/gibell.geo/pegsolitaire/diagonal

Diamond(3) solution
Central game in 7 moves6: c1-c3, c4-c2, a3-c3, d3-b3, c5-a3-c1-c3, d2-b4, e3-c5-a3-c3.

Diamond(4) solutions
Central game in 10 moves: d2-d4, b5-d3, e2-c4, g4-e2, d1-f3, e6-g4-e2, b3-d1-f3-f5-d3-b5-b3-
d3, d7-b5, a4-c6-e6-c4, d4-b4-d6-f4-d2-d4. f3 complement in 8 moves: d1-f3, g4-e2, d3-d1-f3,
e6-g4-e2, b5-d3-f5, d7-b5, a4-c6-e6-e4-g4-e6-c4-e4, b3-d3-f3-d1-b3-b5-d5-f3.

33-hole board solutions
Central game in 15 moves (Figure 8): d2-d4, b4-d2, a3-c3, f3-d3-b3, e1-c3, g5-e3, d6-b4-d2-f4-
d6, c1-e1-e3, g3-g5-e5, a5-a3-c3, d7-f5-d3-b3, c7-c5-c3, e7-c5, c2-a4-c6-c4, d4-d6-f4-d2-b4-d4.
c3 complement in 13 moves: a3-c3, d3-b3, f3-d3, e1-c3-e3, d1-f3-d3, g5-e3, a5-c3, d6-b4-d2-
f4-d6, c1-c3-e3, c7-c5-c3, e7-c5, d4-f4-d2-b4-d6, g3-g5-e5-e7-c7-e5-c5-a5-a3-c3.

37-hole board solutions
Central game in 13 moves (Figure 7): b2-d4, e1-c3, f4-d2, c1-e3, d6-f4-d2, g5-e5, g3-e1-
c1-e3, b4-d6-f4-d2-b4, c7-c5, e7-e5, a5-c3, a3-a5-c7-e7-g5-g3-e3, d4-f2-d2-b2-b4-b6-d4-f4-d6-
d4-d2-b4-d4. c3 complement in 12 moves: e1-c3, f4-d2, c1-e3, d6-f4-d2, a3-c1-e3, g5-e5,
b4-d2-f4-d6-b4, c7-c5, e7-e5, g3-e3, b4-d6-f4-d2, a5-c7-e7-g5-g3-e1-e3-e5-c5-c3-e3-c5-a5-a3-
c3-c1-e1-c3. C9 complement in 13 moves (Figure 5): c7-c5, g5-e5, e1-e3, a3-c3, e6-e4, b5-d5,
c2-c4, d1-d3, e7-c5, f2-d4, a5-c3, g3-e5, c1-a3-a5-c7-e7-g5-g3-e3.

Diamond(5) solutions
Central game in 11 moves (Figure 11): g7-e5, d4-f6, i5-g7-e5, e9-g7, b6-d4-f6-h6-f8-f6, g3-e5-
g7, d8-f6, a5-c5, d2-f4-h6-f8-d8-b6-d4, b4-d2, e1-g3-i5-g5-e7-c7-c5-c3-e1-e3-g3-g5-e5-e7-c5-
e5-c3-e3-e5. C9 complement in 17 moves: d2-f4, f8-d6, h4-f6, b6-d4, c3-e3-c5, g7-e5, e1-e3,
h6-f6, b5-d5, e9-e7, i5-g5, a5-c3-c5, f7-f5, g4-e2-e4, c6-e8-e6, d8-b6-d4, f2-h4-f6.

Diamond(6) solution (found using the techniques of Section 3.3)

6This is the same solution given by Beasley [1, p. 241].
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g6-complement in 15 moves (it is not known if this is the shortest possible): i8-g6, f5-h7,
i4-g6, k6-i4, h3-j5, g10-i8-k6-i4, f1-h3-j5, f7-h5-j7, d3-f5-h3, d9-f7, c6-e4-g2-i4-k6-i8-g6-e8-c6,
b5-d3-f1-f3-h3-h5-j5-j7-h7-h9-f7-h7-h5-f5-f3-d3-d5-b5-d7-f7-f5, b7-d9-d7-d5-f7, f11-d9, a6-c6-
c8-e10-g10-g8-e10-e8-g8-e6-e4-g6.

Figure 11: A minimum length, 11-move solution to the central game on Diamond(5). This
solution also contains the longest possible finishing move (18 jumps) for an 11-move solution
to the central game.

References

[1] J. Beasley, The Ins and Outs of Peg Solitaire, Oxford Univ. Press, paperback edition, 1992.

[2] E. Berlekamp, J. Conway, and R. Guy, Winning Ways for your Mathematical Plays, AK Peters,
Volume 2: 695-734 (1982 edition) or Volume 4: 803–841 (2004 edition).

[3] E. Bergholt, The Queen, 131: 666-667 (April 20) and 807 (May 11), 1912.

[4] G. Bell, A fresh look at peg solitaire, Mathematics Magazine, 80:16–28, 2007.

[5] J. Beasley (editor), The Games and Puzzles Journal, Issue 28, September 2003
http://www.gpj.connectfree.co.uk/gpjj.htm

[6] G. Bell and J. Beasley, New problems on old solitaire boards,
http://arxiv.org/abs/math.CO/0611091, to appear in Board Game Studies, Issue 8,
http://www.boardgamesstudies.org/

[7] P.E. Hart, N.J. Nilsson, and B. Raphael, A formal basis for heuristic determination of minimum
path costs, IEEE Transactions on Systems Science and Cybernetics, 4:100–107, 1968.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #G01 20

[8] R. E. Korf, Depth-first iterative-deepening: An optimal admissible tree search, Artificial Intelli-
gence, 27(1):97–109, 1985.

[9] R. E. Korf and L. A. Taylor, Finding optimal solutions to the twenty-four puzzle, in Proc. of the
Int. Conf. on Artificial Intelligence (AAAI 96), 1202–1207, Portland, OR, 1996.


