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Abstract

The periodicity of the genus sequences of the heaps of finite quaternary games are examined.
While the truncated genus sequence of the heaps of finite quaternary games becomes periodic,
this is not true for the genus sequence in general. This contrasts with the known result that
the genus sequence of the heaps of all finite subtraction games, a subset of finite quaternary
games, becomes periodic.

1. Introduction

This paper assumes that the reader is familiar with the basics of combinatorial games, as
presented in [5] and [7]; in particular, impartial games, outcome classes, and disjunctive
sums.

How does a player win a combinatorial game? A player wins when she has played a
winning move. In combinatorial games, it is often assumed that the winning move is to leave
the other player with no moves available. However, this need not be the case. Combinatorial
games can be played under two disjoint conventions, normal and misère, which differ in the
choice of winning move.

Definition 1 A game is played under the normal play convention if the last player to
move wins. A game is played under the misère play convention if the last player to move
loses.

Almost all combinatorial game research has been in games played under the normal play
convention due to an important result which is lacking for misère play: the Sprague-Grundy
Theory for impartial normal play games ([9], [12]), which says that every impartial game
played under the normal play convention is equivalent to a Nim heap. Unfortunately, there
are misère games which do not behave like misère Nim, so no comparable theorem is possible.
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Notation 1 We will denote a Nim heap with n tokens by n. We let ⊕ denote the binary
operation of Nim sum.

For those unfamiliar with misère play, it may seem that a simple reversal of outcome classes
is enough to form a complete theory of impartial misère games, however this is not true. The
reader can check that the game 2 + 2 is a previous player win regardless of play convention.

Every impartial misère game has a sequence of numbers associated to it, called the
Genus. Genus is the tool traditionally used for impartial misère play analysis (for example,
see [2], [3], [6], or [8]). Recently, a newer method has been developed by Plambeck and
Siegel to analyse impartial misère games: the misère quotient ([10], [11]). While the misère
quotient is an exciting new development in the theory, there are still questions regarding
impartial misère games relevant to genus.

1.1 Quaternary Games

Much of the work done on impartial misère games has concerned itself with games in which
players remove tokens from heaps based on certain rules ([2], [3], [10]). We continue with
this tradition by investigating quaternary games:

Definition 2 An quaternary game is an octal game 0.d1d2 · · · , where di ∈ {0, 1, 2, 3} for
each i ∈ N.

We are often only concerned with quaternary games in which there is a limit to the number
of tokens we can remove from a heap. This corresponds to a quaternary game 0.d1d2d3 · · ·
such that there exists a smallest N ∈ N such that for all n > N , dn = 0. Quaternary games
with this property are called finite with length N .

Definition 3 A subtraction game is a quaternary game such that for all di, di = 0 or 3.

Under the misère play convention, there are major differences between non-subtraction qua-
ternary games and subtraction games. Every subtraction game behaves like misère Nim ([6],
p.442), but not every quaternary game does (see [4], Appendix A). Moreover, we will show
that finite subtraction games played under the misère play convention exhibit a periodicity
result which finite quaternary games do not exhibit in general. The periodicity result be-
comes evident with the use of Genus. We quickly reproduce here the definitions and basic
facts regarding genus. Full proofs of all results can be found in [4].

1.2 Genus

• The genus of an impartial game G, denoted by Γ (G), is a sequence of numbers written
as gg0g1g2g3··· where

g = G+(G), g0 = G−(G), and for n ∈ N, gn = G−

(
G +

n∑

i=1

2

)
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where

G+(G) =

{
0 if G has no options
mex{G+(G′) | G′ is an option of G} else,

and

G−(G) =

{
1 if G has no options
mex{G−(G′) | G′ is an option of G} else.

Those familiar with impartial games will notice that G+(G) is the Nim heap to which
G is equivalent.

• ([6], p.430) Suppose G is an impartial game with options Ga, Gb, Gc,· · · such that

Γ (Ga) = aa0a1a2a3···, Γ (Gb) = bb0b1b2b3···, Γ (Gc) = cc0c1c2c3···, · · ·

Then Γ (G) = gg0g1g2g3··· is calculated as follows:

g = mex{a, b, c, · · · },
g0 = mex{a0, b0, c0, · · · }, and

gn = mex{gn−1, gn−1 ⊕ 1, an, bn, cn, · · · } for n ∈ N.

• The M-truncated genus of an impartial game G, denoted by ΓM(G), is the numbers
in the genus up to and including gM .

• For a game G, we say that the genus of G, gg0g1g2g3···, stabilises if there exists an
N ∈ Z≥0 such that for all n ≥ N ,

gn+1 = gn ⊕ 2.

• ([6], p.422) The genus of G always stabilises and we write Γ (G) = gg0g1g2g3··· as
gg0g1···gN (gN⊕2) where N is the smallest non-negative integer such that for all u ≥ N ,
gu+1 = gu ⊕ 2.

• ([6], p. 422) Given a Nim heap m,

Γ (m) =






0120 if m = 0
1031 if m = 1
mm(m⊕2) else.

• ([7], p. 137) Suppose G is a disjunctive sum of Nim heaps. Then Γ (G) = 0120, 1031 or
nn(n⊕2) for n ∈ Z≥0.
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• Given an impartial misère game G, G is tame if Γ (G) = 0120, 1031 or nn(n⊕2) for
n ∈ Z≥0 and every option of G is also tame. An impartial misère game is wild if it is
not tame.

Unfortunately, the definition of tame is far from standardised; [6], [7], and [11] all
use varying definitions. The definition of tame used in this paper corresponds to that
appearing in [7].

If a game is tame, we say that under the misère play convention, this game behaves
like misère Nim. Otherwise, if it is wild, the game does not behave like misère Nim.

For heap based games, such as quaternary games, it is often beneficial to think of the
genera of the heaps as entries in a table, which we call the Γ table.

Γ (h0) = e e0 e1 e2 e3 e4 · · ·
Γ (h1) = a a0 a1 a2 a3 a4 · · ·
Γ (h2) = b b0 b1 b2 b3 b4 · · · .

...

Restricting ourselves to the first M + 2 columns gives us ΓM . This is called the ΓM table.

ΓM(h0) = e e0 e1 e2 · · · eM−1 eM

ΓM(h1) = a a0 a1 a2 · · · aM−1 aM

ΓM(h2) = b b0 b1 b2 · · · bM−1 bM .
...

Definition 4 For a heap based game, the genus sequence of the heaps is the sequence
of genus values Γ (h0), Γ (h1), Γ (h2), · · · . Similarly, the M-truncated genus sequence
of the heaps is the sequence of M-truncated genus values ΓM(h0), ΓM(h1), ΓM(h2), · · · .

There are two possibilities for a periodicity results - along the rows and along the columns.
Since the genus always stabilises, every row eventually becomes periodic.

Definition 5 For a heap based game, we say that the genus sequence of the heaps is
periodic if there exist N, p ∈ N such that for all n ≥ N , Γ (hn) = Γ (hn+p). Similarly,
we say the that M-truncated genus sequence of the heaps is periodic if there exist
T, u ∈ N such that for all t ≥ T , ΓM(ht) = ΓM(ht+u).

This paper is concerned with the behaviour of the columns of the Γ table as well as the non
periodicity/periodicity of the genus sequence of the heaps of arbitrary quaternary games.

2. The Genera of Quaternary Games

We now have all the tools necessary to begin our examination of quaternary games. We
start by examining subtraction games.
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Theorem 6 For any finite subtraction game, the genus sequence of the heaps is periodic.

Proof. Let S be a subtraction game and hn a heap of size n. Then hn is tame and Γ (hn) =
0120, 1031, or nn(n⊕2) for n ∈ Z≥2 ([6], p. 442). Thus Γ (hn) depends only on G+(hn). we know
that the G+ sequence of a finite subtraction game becomes periodic ([1], p.148). Thus the
genus sequence of the heaps of a finite subtraction game is periodic. !

Even though all subtraction games are tame and have periodic genus sequence, neither
of these results is true for general quaternary games. Wild quaternary games are fairly
common. For example, while there are no wild quaternary games of length two or less, there
is one wild quaternary game of length three, twenty-one wild quaternary games of length
four, 154 wild quaternary games of length five, and 739 wild quaternary games of length six.
Appendix A of [4] lists all wild finite quaternary games of length six or less.

2.1 Periodicity

We begin with the following periodicity result.

Proposition 7 Given a finite quaternary game, there exists N , p ∈ N such that for all
n ≥ N , G+(hn) = G+(hn+p). Similarly, for each v ∈ Z≥0, there exists Nv, pv ∈ N such that
for all m ≥ Nv, G− (hm +

∑v
i=1 2) = G− (hm+pv +

∑v
i=1 2). In other words, the values in

each column in the Γ table of a finite quaternary game becomes periodic.

Proof. Consider the finite subtraction octal game 0.d1d2 · · · dk and n ≥ k+1. From hn, there
are at most k legal moves.

We begin by examining the first column in the Γ table. That is, the G+(hn) values.
Suppose n ≥ k + 1. Then G+(hn) = mex{G+(hn−i) | di = 2 or 3}. Thus, G+(hn) ≤ k, since
|{G+(hn−i) | di = 2 or 3}| ≤ k + 1, as there are at most k legal moves from any given heap,
That is, G+(hn) = u for u ∈ {0, 1, · · · , k}.

Let m = max{i | di = 2 or 3}. That is, m is the largest number of tokens which can be
taken from a heap of size n. The sequence of G+ values from G+(hn) onwards depends only
on the previous m values, G+(hn−m), G+(hn−m+1), . . . , G+(hn−1). Not all of these values will
be in the mex set which determines G+(hn); the number m is an overestimation assuming
that for all i ≤ m, di = 3.

Consider the subsequences of length m of the G+ values. Eventually there will be a
subsequence which repeats itself since there are only a finite number of permutations of
length m with k + 1 elements. That is, there exists p, l ∈ Z≥0 such that G+(hn) = G+(hn+p)
for all n such that l ≤ n ≤ l + m.

We claim that G+(hn+p) = G+(hn) for all n ≥ l. To prove this, we proceed by induction
on n. We have the base case from the preceding paragraph. Fix t ∈ Z≥0 and suppose that
for all u < t, G+(h(n+u)+p) = G+(hn+u).
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Consider

G+(hn+t+p) = mex{G+(h(n+t+p)−i) | di = 2 or 3}
= mex{G+(h(n+t−i)+p) | di = 2 or 3}
= mex{G+(hn+t−i) | di = 2 or 3} by inductive assumption

= mex{G+(h(n+t)−i) | di = 2 or 3}
= G+(hn+t).

which completes the induction. Therefore the first column of the Γ table becomes periodic.

The argument used to show that the G−(hn) and G−(hn +
∑v

i=1 2) sequences become
periodic is virtually identical to that of G+(hn). !

Examining truncated genera, we obtain the following periodicity result.

Theorem 8 Let G be a finite quaternary game with heaps denoted by hn. Then the M-
truncated genus sequence of the heaps is periodic.

Proof. Consider the ΓM table:

ΓM(h0) = 0 1 2 0 · · · 2 0
ΓM(h1) = a a0 a1 a2 · · · aM−1 aM

ΓM(h2) = b b0 b1 b2 · · · bM−1 bM .
...

By Proposition 7, each column becomes periodic. Let µi denote the pre-period length
of column i. Let ρi denote the period length of column i. Then, for all n > maxM

i=1{µi},
ΓM(hn) = ΓM(hn+p) for p =

∏M
i=0 ρi. !

Corollary 9 If there exists M ∈ N such that for all hn, m ≥ M ,

G−

(
hn +

m∑

i=1

2

)
= G−

(
hn +

m+2∑

i=1

2

)
,

then the genus sequence of the heaps is periodic.

Proof. The given requirement means that, thinking of the genera of the heaps as columns of
a table, the M th column equals the (M +2n)th column, and the (M +1)th column equals the
(M+2n+1)th column, for n ∈ N. That is, each Γ (hn) has stabilised by the (M+1)th column,
so ΓM+1(hn) completely encodes all the information given in Γ (hn), and so for N, p ∈ N such
that ΓM+1(hn) = ΓM+1(hn+p) for all n ≥ N , we also obtain Γ (hn) = Γ (hn+p) for n ≥ N . !

Once we no longer truncate the genera of the heaps, we are no longer guaranteed peri-
odicity, as will be shown with 0.122 213.
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2.2 The Quaternary Game 0.122 213: A Counterexample

The counterexample presented for the claim that the genus sequence of the heaps is periodic
for every finite quaternary game is the game 0.122 213.

We begin with some notation.

Notation 2 Let {a1a2 · · · an}m denote the string a1a2 · · · an repeated m times. For example,
{a1a2a3}6 = a1a2a3 a1a2a3 a1a2a3 a1a2a3 a1a2a3 a1a2a3.

Proposition 10 Let G = 0.122 213. For n ∈ Z≥0, let hn denote a heap of size n. Then

heap genus heap genus
h24+40n 2{{43131}2{42020}2}n43131 431 h44+40n 3{{43131}2{42020}2}n{43131}242020 420

h25+40n 2131{43131{42020}243131}n431 h45+40n 113143 131{{42020}2{43131}2}n42020 420

h26+40n 00{43131{42020}243131}n43131 420 h46+40n 104313 1{{42020}2{43131}2}n{42020}2431

h27+40n 03131{{42020}2{43131}2}n420 h47+40n 43131{{42020}2{43131}2}n{42020}2431

h28+40n 331{{42020}2{43131}2}n420 h48+40n 231{{42020}2{43131}2}n{42020}243131 431

h29+40n 1{{42020}2{43131}2}n42020 420 h49+40n 2{{42020}2{43131}2}n{42020}243131 431

h30+40n 1120{42020{43131}242020}n42020 431 h50+40n 012042 020{{43131}2{42020}2}n{43131}2420

h31+40n 40{42020{43131}242020}n42020 431 h51+40n 004202 0{{43131}2{42020}2}n{43131}2420

h32+40n 22020{{43131}2{42020}2}n43131 431 h52+40n 32020{{43131}2{42020}2}n{43131}242020 420

h33+40n 220{{43131}2{42020}2}n43131 431 h53+40n 120{{43131}2{42020}2}n{43131}242020 420

h34+40n 0{{43131}2{42020}2}n{43131}2420 h54+40n 1{{43131}2{42020}2}n+1431

h35+40n 013143 131{{42020}2{43131}2}n420 h55+40n 4131{{43131}2{42020}2}n{42020}2431

h36+40n 304313 1{{42020}2{43131}2}n42020 420 h56+40n 20{43131{42020}243131}n+1431

h37+40n 13131{{42020}2{43131}2}n42020 420 h57+40n 23131{{42020}2{43131}2}n{42020}243131 431

h38+40n 131{{42020}2{43131}2}n{42020}2431 h58+40n 031{{42020}2{43131}2}n+1420

h39+40n 4{{42020}2{43131}2}n{42020}2431 h59+40n 0{{42020}2{43131}2}n+1420

h40+40n 212042 020{{43131}2{42020}2}n43131 431 h60+40n 3120{42020{43131}242020}n+1420

h41+40n 204202 0{{43131}2{42020}2}n43131 431 h61+40n 10{42020{43131}242020}n+1420

h42+40n 02020{{43131}2{42020}2}n{43131}2420 h62+40n 12020{{43131}2{42020}2}n+1431

h43+40n 020{{43131}{42020}}n{43131}2420 h63+40n 420{{43131}2{42020}2}n+1431

Proof. We proceed by induction on n. For n = 0, calculations give us

heap genus heap genus
h24 243131 431 h44 343131 43131 42020 420

h25 213143 1 h45 113143 13142 02042 0

h26 004313 1420 h46 104313 14202 04202 0431

h27 031314 20 h47 431314 20204 20204 31

continued on next page
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Continued from previous page
heap genus heap genus
h28 331420 20420 h48 231420 20420 20431 31431

h29 142020 420 h49 242020 42020 43131 431

h30 112042 02043 1 h50 012042 02043 13143 13142 0

h31 404202 0431 h51 004202 04313 14313 1420

h32 220204 31314 31 h52 320204 31314 31314 20204 20

h33 220431 31431 h53 120431 31431 31420 20420

h34 043131 43131 420 h54 143131 43131 42020 42020 431

h35 013143 13142 0 h55 413143 13142 02042 02043 1

h36 304313 14202 0420 h56 204313 14202 04202 04313 1431

h37 131314 20204 20 h57 231314 20204 20204 31314 31

h38 131420 20420 20431 h58 031420 20420 20431 31431 31420

h39 442020 42020 431 h59 042020 42020 43131 43131 420

h40 212042 02043 13143 1 h60 312042 02043 13143 13142 02042 0

h41 204202 04313 1431 h61 104202 04313 14313 14202 0420

h42 020204 31314 31314 20 h62 120204 31314 31314 20204 20204 31

h43 020431 31431 31420 h63 420431 31431 31420 20420 20431

which shows the base case.

Suppose that for all n < k, the genus of a heap of size hi+40n, for i ∈ {24, 25, · · · , 63},
equals the genus given in the chart in the statement of the theorem. Call this (IH1). Consider
n = k. We will only show the result for h24+40k, as the method of proof is similar for all 39
other cases.

The moves available from h24+40k are

h24+40k
−2−→ h24+40k−2 = h62+40(k−1)

−3−→ h24+40k−3 = h61+40(k−1)

−4−→ h24+40k−4 = h60+40(k−1)

−6−→ h24+40k−6 = h58+40(k−1),

where each of the options falls under the induction hypothesis (IH1). That is,

Γ
(
h61+40(k−1)

)
= 12020{{43131}2{42020}2}k431,

Γ
(
h61+40(k−1)

)
= 10{42020{43131}242020}k420,

Γ
(
h60+40(k−1)

)
= 3120{42020{43131}242020}k420,

Γ
(
h58+40(k−1)

)
= 031{{42020}2{43131}2}k420.

We want

Γ (h24+40k) = 2{{43131}2{42020}2}k43131 431. (1)
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We begin with G+(h24+40k) and G−(h24+40k):

G+(h24+40k) = mex{1, 1, 3, 0} = 2,

G−(h24+40k) = mex{2, 0, 1, 3} = 4.

Therefore the base and the first superscript equal the desired result.

Consider G−

(
h24+40k +

m∑

i=1

2

)
for m ∈ N. We claim that this equals the (m + 1)th digit

in the superscript of the genus on the RHS of Equation (1). We proceed by induction on m.
Suppose m = 1. Then

G−(h24+40k + 2) = mex{G−(h24+40k),G−(h24+40k) ⊕ 1,G−(h62+40(k−1) + 2),

G−(h61+40(k−1) + 2),G−(h60+40(k−1) + 2),G−(h58+40(k−1) + 2)}
= mex{4, 5,G−(h24+40k) ⊕ 1,G−(h62+40(k−1) + 2),

G−(h61+40(k−1) + 2),G−(h60+40(k−1) + 2),G−(h58+40(k−1) + 2)}
= mex{4, 5, 0, 4, 2, 1} by (IH1)

= 3.

Now suppose the result holds for all m < 10k + 6, i.e.,

Γ (h24+40k) = 2{{43131}2{42020}2}n43131 4 g10k+6 g10k+7 g10k+8··· (2)

with g10k+i ∈ Z≥0, i ∈ {6, 7, · · · }.

Examining g10k+6, we have:

g10k+6 = G−

(
h24+40k +

10k+6∑

i=1

2

)

= mex

{
G−

(
h24+40k +

10k+5∑

i=1

2

)
,G−

(
h24+40k +

10k+5∑

i=1

2

)
⊕ 1,

G−

(
h62+40(k−1) +

10k+6∑

i=1

2

)
,G−

(
h61+40(k−1) +

10k+6∑

i=1

2

)
,

G−

(
h60+40(k−1) +

10k+6∑

i=1

2

)
,G−

(
h58+40(k−1) +

10k+6∑

i=1

2

)}

= mex

{
4, 5,G−

(
h62+40(k−1) +

10k+6∑

i=1

2

)
,G−

(
h61+40(k−1) +

10k+6∑

i=1

2

)
,

G−

(
h60+40(k−1) +

10k+6∑

i=1

2

)
,G−

(
h58+40(k−1) +

10k+6∑

i=1

2

)}

by Equation (2)
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= mex{4, 5, 1, 2, 2, 0} by (IH1)

= 3,

as required. Similarly, g10k+7 = 1 and g10k+8 = 3.

By (IH1), the genus of each of the options has stabilised by this index and the genus of

h24+40k has exhibited stabilising behaviour. Thus, h24+40k = 2{{43131}2{42020}2}n
43131 431. !

Theorem 11 Let G = 0.122 213. Then the genus sequence of the heaps is not periodic.

Proof. Consider heaps h24+40n for n ∈ Z≥0. By Proposition 10,

Γ (h24+40n) = 2{{43131}2{42020}2}n
43131 431,

and for heaps of size twenty-four or greater, the only heaps whose genera have 243 as their
starting digits are heaps of the form h24+40k for some k ∈ Z≥0. Thus, if the genus sequence
of the heaps is periodic, there exists N ∈ Z≥0, such that for all n, m ≥ N , Γ (h24+40n) =
Γ (h24+40m).

We claim that for n ∈ Z≥0, there does not exist m ∈ Z≥0 with m '= n such that
Γ (h24+40n) = Γ (h24+40m). Fix n, m ∈ Z≥0 with n '= m, and suppose, without loss of
generality, that n < m. By Proposition 10,

G−

(
h24+40m +

10m+5∑

i=1

2

)
= 4,

while

G−

(
h24+40n +

10m+5∑

i=1

2

)
= 1.

Therefore the genera of h24+40m and h24+40n cannot be the same if n does not equal m as
there exists digits genera of h24+40m and h24+40n which are not equal. Hence, the genus
sequence of the heaps is not periodic for 0.122 213. !

We see now that there can be no comparable periodicity result to Theorem 6 for quater-
nary games in general.

3. Conclusion

We conclude with an open question regarding the periodicity of the genus sequence of the
heaps for finite quaternary games: Is there a method of classification to determine which
finite quaternary games have their genus sequence of the heaps periodic versus those which do
not other than through manual calculations similar to those given in the proof of Proposition
10? Perhaps an analysis of quaternary games under the misère quotient ([10], [11]) will yield
the answer.
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