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Abstract

We derive an identity for certain linear combinations of polylogarithm functions with neg-
ative exponents, which implies relations for linear combinations of Eulerian numbers. The
coefficients of our linear combinations are related to expanding moments of Satake parame-
ters of holomorphic cuspidal newforms in terms of the moments of the corresponding Fourier
coefficients, which has applications in analyzing lower order terms in the behavior of zeros
of L-functions near the central point.

1. Introduction

The polylogarithm function Lis(x) is

Lis(x) =
∞∑

k=1

k−sxk. (1)

If s is a negative integer, say s = −r, then the polylogarithm function converges for |x| < 1
and equals

Li−r(x) =

∑r
j=0

〈
r
j

〉
xr−j

(1− x)r+1
, (2)

where the
〈

r
j

〉
are the Eulerian numbers. The Eulerian number

〈
r
j

〉
is the number of

permutations of {1, . . . , r} with j permutation ascents. One has

〈
r

j

〉
=

j+1∑

!=0

(−1)!

(
r + 1

!

)
(j − ! + 1)r. (3)

1The author would like to thank Walter Becker and Eduardo Dueñez for useful discussions, and his son
Cam and nephew Eli Krantz for sleeping quietly on his arm while some of the calculations were performed.
Many of the formulas for expressions in this paper were first guessed by using Sloane’s On-Line Encyclopedia
of Integer Sequences [Sl]. The author was partly supported by NSF grant DMS0600848.
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We record Li−r(x) for some r:

Li0(x) =
x

1− x

Li−1(x) =
x

(1− x)2

Li−2(x) =
x2 + x

(1− x)3

Li−3(x) =
x3 + 4x2 + x

(1− x)4

Li−4(x) =
x4 + 11x3 + 11x2 + x

(1− x)5

Li−5(x) =
x5 + 26x4 + 66x3 + 26x2 + x

(1− x)6
. (4)

From (2) we immediately deduce that, when s is a negative integer, Lis(x) is a rational
function whose denominator is (1− x)|s|. Thus an appropriate integer linear combination of
Li0(x) through Li−n(x) should be a simple rational function. In particular, we prove

Theorem 1. Let a!,i be the coefficient of ki in
∏!−1

j=0(k
2 − j2), and let b!,i be the coefficient

of ki in (2k + 1)
∏!−1

j=0(k − j)(k + 1 + j). Then for |x| < 1 and ! ≥ 1 we have

a!,2!Li−2!(x) + · · · + a!,0Li0(x) =
2

(2!)!

x!(1 + x)

(1− x)2!+1

b!,2!+1Li−2!−1(x) + · · · + b!,0Li0(x) =
1

(2! + 1)!

x!(1 + x)

(1− x)2!+2
. (5)

We prove Theorem 1 in Section 2. While Theorem 1 only applies to linear combinations
of polylogarithm functions with s a negative integer, it is interesting to see how certain
special combinations equal a very simple rational function. One application is to use this
result to deduce relations among the Eulerian numbers (possibly by replacing x with 1− x
when expanding); another is of course to write Li−n(x) in terms of Li−n+1(x) through Li0(x).
The coefficients a!,i and b!,i that occur in our linear combinations also arise in expressions
involving the Fourier coefficients of cuspidal newforms. We describe this connection in greater
detail in Section 3; these expansions are related to understanding the lower order terms in
the behavior of zeros of L-functions of cuspidal newforms near the central point (see [Mil3]
for a complete analysis).

2. Proof of Theorem 1

Before proving Theorem 1 we introduce some useful expressions.
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Definition 2. Let

c2! =
!−1∏

j=0

(!2 − j2) = (2!)!/2, c2!+1 = (2! + 1)
!−1∏

j=0

(!− j)(! + 1 + j) = (2! + 1)!. (6)

Define constants cm,r as follows: cm,r = 0 if m #≡ r mod 2, and

1. for r even, c0,0 = 0, c2k,0 = (−1)k2 for k ≥ 1, and for 1 ≤ ! ≤ k set

c2k,2! =
(−1)k+!

c2!

!−1∏

j=0

(k2 − j2) =
(−1)k+!

c2!

k · (k + !− 1)!

(k − !)!
; (7)

2. for r odd and 0 ≤ ! ≤ k set

c2k+1,2!+1 =
(−1)k+!

c2!+1
(2k + 1)

!−1∏

j=0

(k − j)(k + 1 + j) =
(−1)k+!(2k + 1)

c2!+1

(k + !)!

(k − !)!
. (8)

Note cm,r = 0 if m < r. Finally, set Br(x) =
∑∞

m=0 cm,r(−x)m/2 for |x| < 1. Thus for
r = 2! ≥ 2 we have

B2!(x) =
∞∑

m=0

cm,2!(−x)m/2 =
∞∑

k=1

(
(−1)k+!

c2!

!−1∏

j=0

(k2 − j2)

)
(−x)k. (9)

Immediately from the definition of cr we have

c2!−1 =
c2!

!
=

c2!+1

2!(2! + 1)
, (10)

as well as
c2!+2 = (2! + 2)(2! + 1)c2!, c2!+3 = (2! + 3)(2! + 2)c2!+1. (11)

While the definition of the cm,r’s above may seem arbitrary, these expressions arise in a
very natural manner in number theory. See [Mil3] for applications of these coefficients in
understanding the behavior of zeros of GL(2) L-functions; we briefly discuss some of these
relations in Section 3.

Proof of Theorem 1. We first consider the case of r = 2! even. We proceed by induction.
We claim that

B2!(x) =
∞∑

k=1

(
(−1)k+!

c2!

!−1∏

j=0

(k2 − j2)

)
(−x)k = (−1)! x!(1 + x)

(1− x)2!+1
(12)

for all !.
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We consider the basis case, when ! = 1. Thus we must show for |x| < 1 that B2(x) =
−x(1 + x)/(1 − x)3. As r = 2, the only non-zero terms are when m = 2k > 0 is even. As
c2 = 2 and c2k,2 = (−1)k+1k2 for k ≥ 1, we find that

B2(x) =
∞∑

k=1

(−1)k+1k2(−x)2k/2 = −
∞∑

k=1

k2xk = −Li−2(x) = −x(1 + x)

(1− x)3
, (13)

which completes the proof of the basis step. For the inductive step, we assume

∞∑

k=1

(
(−1)k+!

c2!

!−1∏

j=0

(k2 − j2)

)
(−x)k = (−1)! x!(1 + x)

(1− x)2!+1
, (14)

and we must show the above holds with ! replaced by ! + 1. We apply the differential
operator (

x
d

dx

)2

− !2 (15)

to both sides of (14). After canceling the minus signs we obtain

∞∑

k=1

(
c−1
2!

!−1∏

j=0

(k2 − j2)

)
(k2 − !2)xk =

((
x

d

dx

)2

− !2

)(
x!(1 + x)

(1− x)2!+1

)

∞∑

k=1

c−1
2!

(
!∏

j=0

(k2 − j2)

)
xk = (2! + 2)(2! + 1)

x!+1(1 + x)

(1− x)2(!+1)+1

∞∑

k=1

c−1
2(!+1)

(
!+1−1∏

j=0

(k2 − j2)

)
xk =

x!+1(1 + x)

(1− x)2(!+1)+1
, (16)

where the last line follows from (11), which says c2!+2 = (2! + 2)(2! + 1)c2!. Thus (12) is
true for all !.

As we have defined a!,i to be the coefficient of ki in
∏!−1

j=0(k
2 − j2), (12) becomes

∞∑

k=1

2!∑

i=0

a!,i ki xk =
1

c2!

x!(1 + x)

(1− x)2!+1
. (17)

The proof of Theorem 1 for r even is completed by noting that the left hand side above is
just

a!,2!Li−2!(x) + · · · + a!,0Li0(x). (18)

The proof for r = 2! + 1 odd proceeds similarly, the only significant difference is that
now we apply the operator

(
x

d

dx

)2

+

(
x

d

dx

)
− !(! + 1), (19)

which will bring down a factor of (k − !)(k + 1− !). !
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3. Connections with Number Theory

We now describe how our polylogarithm identity can be used to analyze zeros of L-functions
near the central point. Katz and Sarnak [KaSa] conjecture that, in the limit as the conductors
tend to infinity, the behavior of the normalized zeros near the central point agree with the
N → ∞ scaling limit of the normalized eigenvalues near 1 of a subgroup of U(N) (N × N
unitary matrices); see [DM, FI, Gü, HR, HM, ILS, KaSa, Mil1, Ro, Rub, Yo] for many
examples. While the main terms for many families are the same as the conductors tend to
infinity, a more careful analysis of the explicit formula allows us to isolate family dependent
lower order terms.

Our coefficients cm,r are related to writing the moments of Satake parameters of certain
GL(2) L-functions in terms of the moments of their Fourier coefficients, which we briefly
review. Let H"

k(N) be the set of all holomorphic cuspidal newforms of weight k and level N ;
see [Iw2] for more details. Each f ∈ H"

k(N) has a Fourier expansion

f(z) =
∞∑

n=1

af(n)e(nz). (20)

Let λf(n) = af(n)n−(k−1)/2. These coefficients satisfy multiplicative relations, and |λf(p)| ≤
2. The L-function associated to f is

L(s, f) =
∞∑

n=1

λf(n)

ns
=

∏

p

(
1− λf(p)

ps
+

χ0(p)

p2s

)−1

, (21)

where χ0 is the principal character with modulus N . We write

λf(p) = αf(p) + βf(p). (22)

For p |! N , αf(p)βf(p) = 1 and |αf(p)| = 1. If p|N we take αf(p) = λf(p) and βf(p) = 0.
Letting

L∞(s, f) =

(
2k

8π

)1/2
(√

N

π

)s

Γ

(
s

2
+

k − 1

4

)
Γ

(
s

2
+

k + 1

4

)
(23)

denote the local factor at infinity, the completed L-function is

Λ(s, f) = L∞(s)L(s, f) = εfΛ(1− s, f), εf = ±1. (24)

The zeros of L-functions often encode arithmetic information, and their behavior is well-
modeled by random matrix theory [CFKRS, KaSa, KeSn3]. The main tool in analyzing the
behavior of these zeros is through an explicit formula, which relates sums of a test function
at these zeros to sums of the Fourier transform of the test function at the primes, weighted
by factors such as αf(p)m + βf(p)m. For example, if φ is an even Schwartz function, φ̂
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its Fourier transform, and 1
2 + iγf denotes a typical zero of Λ(s, f) for f ∈ H"

k(N) (the
Generalized Riemann Hypothesis asserts each γf ∈ R), then the explicit formula is

1

|H∗
k(N)|

∑

f∈H∗
k(N)

∑

γf

φ

(
γf

log N

2π

)

=
A(φ)

log N
+

1

|H∗
k(N)|

∑

f∈H∗
k(N)

∞∑

m=1

∑

p

αf(p)m + βf(p)m

pm/2

log p

log N
φ̂

(
m

log p

log N

)
;(25)

see [ILS, Mil3] for details and a definition of A(φ). Similar expansions hold for other families
of L-functions. Information about the distribution of zeros in a family of L-functions (the
left hand side above) is obtained by analyzing the prime sums weighted by the moments of
the Satake parameters (on the right hand side). Thus it is important to be able to evaluate
quantities such as

1

|F|
∑

f∈F

(αf(p)
m + βf(p)

m) (26)

for various families of L-functions.

For some problems it is convenient to rewrite αf(p)m + βf(p)m in terms of a polynomial
in λf(p). This replaces moments of the Satake parameters αf(p) and βf(p) with moments
of the Fourier coefficients λf(p), and for many problems the Fourier coefficients are more
tractable; we give two examples.

First, the pth coefficient of the L-function of the elliptic curve y2 = x3 + Ax + B is p−1/2
∑

x mod p

(
x3+Ax+B

p

)
; here

(
x
p

)
is the Legendre symbol, which is 1 if x is a non-zero square

modulo p, 0 if x ≡ 0 mod p, and −1 otherwise. Our sum equals the number of solutions to
y2 ≡ x3 + Ax + B mod p, and thus these sums can be analyzed by using results on sums of
Legendre symbols (see for example [ALM, Mil2]).

Second, the Petersson formula (see Corollary 2.10, Equation (2.58) of [ILS]) yields, for
m,n > 1 relatively prime to the level N ,

1

WR(F)

∑

f∈H∗
k(N)

wR(f)λf(m)λf(n) = δmn + O

(
(mn)1/4 log 2mnN

k5/6N

)
, (27)

where δmn = 1 if m = n and 0 otherwise. Here the wR(f) are the harmonic weights

wR(f) = ζN(2)/Z(1, f) = ζ(2)/L(1, sym2f). (28)

They are mildly varying, with (see [Iw1, HL])

N−1−ε +k ωR(f) +k N−1+ε; (29)

if we allow ineffective constants we can replace N ε with log N for N large.
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We can now see why our polylogarithm identity is useful. Using αf(p) + βf(p) = λp,
αf(p)βf(p) = 1 and |αf(p)| = |βf(p)| = 1, we find that

αf(p) + βf(p) = λf(p)

αf(p)2 + βf(p)2 = λf(p)2 − 2

αf(p)3 + βf(p)3 = λf(p)3 − 3λf(p)

αf(p)4 + βf(p)4 = λf(p)4 − 4λf(p)2 + 2

αf(p)5 + βf(p)5 = λf(p)5 − 5λf(p)3 + 5λf(p)

αf(p)6 + βf(p)6 = λf(p)6 − 6λf(p)4 + 9λf(p)2 − 2

αf(p)7 + βf(p)7 = λf(p)7 − 7λf(p)5 + 14λf(p)3 − 7λf(p)

αf(p)8 + βf(p)8 = λf(p)8 − 8λf(p)6 + 20λf(p)4 − 16λf(p)2 + 2.

(30)

Writing αf(p)m + βf(p)m as a polynomial in λf(p), we find that

αf(p)
m + βf(p)

m =
m∑

r=0
r≡m mod 2

cm,rλf(p)
r, (31)

where the cm,r are our coefficients from Definition 2. A key ingredient in the proof is noting
that

1. c2k,2! = c2k−1,2!−1 − c2k−2,2! if ! ∈ {1, . . . , k − 1} and k ≥ 2;

2. c2k+1,2!+1 = c2k,2! − c2k−1,2!+1 if ! < k.

We briefly describe the application of our identity, ignoring the book-keeping needed to
deal with m ≤ 2. From the explicit formula (25), we see we must understand sums such as

∑

p

∞∑

m=3

1

WR(F)

∑

f∈F

wR(f)
αf(p)m + βf(p)m

pm/2

log p

log R
φ̂

(
log p

log R

)
, (32)

where F is a family of cuspidal newforms and WR(F) =
∑

f∈F wR(f) (a simple Taylor series

shows there is negligible contribution in replacing φ̂(m log p/ log R) with φ̂(log p/ log R)). As
the sums of powers of the Satake parameters are polynomials in λf(p), we may rewrite this
as

∑

p

∞∑

m=3

m∑

r=0
r≡m mod 2

cm,rAr,F(p)

pm/2

log p

log R
φ̂

(
log p

log R

)
, (33)
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where Ar,F(p) is the rth moment of λf(p) in the family F :

Ar,F(p) =
1

WR(F)

∑

f∈F
f∈S(p)

wR(f)λf(p)
r. (34)

We interchange the m and r sums (which is straightforward for p ≥ 11, and follows by Abel
summation for p ≤ 7) and then apply our polylogarithm identity (Theorem 1) to rewrite the
sum as

∑

p

∞∑

r=0

Ar,F(p)pr/2(p− 1) log p

(p + 1)r+1 log R
φ̂

(
log p

log R

)
. (35)

For many families we either know or conjecture a distribution for the (weighted) Fourier
coefficients. If this were the case, then we could replace the Ar,F(p) with the rth moment.
In many applications (for example, using the Petersson formula for families of cuspidal
newforms of fixed weight and square-free level tending to infinity) we know the moments up
to a negligible correction (the distribution is often known or conjectured to be Sato-Tate,
unless we are looking at families of elliptic curves with complex multiplication, where the
distribution is known and slightly more complicated). Simple algebra yields

Lemma 3. Assume for r ≥ 3 that

Ar,F(p) =

{
M! + O

(
1

log2 R

)
if r = 2!

0 otherwise,
(36)

and that there is a nice function gM such that

gM(x) = M2x
2 + M3x

3 + · · · =
∞∑

!=2

M! x!. (37)

Then the contribution from the r ≥ 3 terms in the explicit formula is

−2φ̂(0)

log R

∑

p

gM

(
p

(p + 1)2

)
· (p− 1) log p

p + 1
+ O

(
1

log3 R

)
. (38)

Thus we can use our polylogarithm identity to rewrite the sums arising in the explicit
formula in a very compact way which emphasizes properties of the known or conjectured
distribution of the Fourier coefficients. One application of this is in analyzing the behavior
of the zeros of L-functions near the central point. Many investigations have shown that, for
numerous families, as the conductors tend to infinity the behavior of these zeros is the same
as the N →∞ scaling limit of eigenvalues near 1 of subgroups of U(N).

Most of these studies only examine the main term, showing agreement in the limit with
random matrix theory (the scaling limits of eigenvalues of U(N)). In particular, all one-
parameter families of elliptic curves over Q(T ) with the same rank and same limiting dis-
tribution of signs of functional equation have the same main term for the behavior of their
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zeros. What is unsatisfying about this is that the arithmetic of the families is not seen; this
is remedied, however, by studying the lower order terms in the 1-level density. There we
do break the universality and see arithmetic dependent terms. In particular, our formula
shows that we have different answers for families of elliptic curves with and without complex
multiplication (as these two cases have different densities for the Fourier coefficients).

These lower order differences, which reflect the arithmetic structure of the family, are
quite important. While the behavior of many properties of zeros of L-functions of height T
are well-modeled by the N → ∞ scaling limits of eigenvalues of a classical compact group,
better agreement (taking into account lower order terms) is given by studying matrices of
size N = (log T )/2π (see [KeSn1, KeSn2, KeSn3]). Recently it has been observed that even
better agreement is obtained by replacing N with Neff , where Neff is chosen so that the main
and first lower order terms match (see [BBLM, DHKMS]). Thus one consequence of our
work is in deriving a tractable formula to identify the lower order correction terms, which
results in an improved model for the behavior of the zeros.
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