ON RESTRICTED SUMSETS IN ABELIAN GROUPS OF ODD ORDER

Guoqing Wang

Institute of Mathematics, Dalian University of Technology, Dalian, 116024, P.R. China gqwang1979@yahoo.com.cn

Received: 12/28/07, Revised: 1/17/08, Accepted: 4/8/08, Published: 4/17/08

Abstract

Let G be an abelian group of odd order, and let \mathcal{A} be a subset of G. For any integer h such that $2 \leq h \leq |\mathcal{A}| - 2$, we prove that $|h^{\wedge}\mathcal{A}| \geq |\mathcal{A}|$ and equality holds if and only if \mathcal{A} is a coset of some subgroup of G, where $h^{\wedge}\mathcal{A}$ is the set of all sums of h distinct elements of \mathcal{A} .

1. Introduction

Let \mathcal{A} be a subset of an abelian group. For any integer $h \in \mathbb{N}_0$, we denote by $h^{\wedge}\mathcal{A}$ the set consisting of all sums of h distinct elements of \mathcal{A} , that is, all sums of the form $a_1 + \cdots + a_h$, where $a_1, \ldots, a_h \in \mathcal{A}$ and $a_i \neq a_j$ for $i \neq j$. Throughout this paper, let \mathbb{Z}_n be the cyclic group of n elements, and let p be a prime number.

Over 40 years ago, Erdős and Heilbronn conjectured that $|2^{\wedge}\mathcal{A}| \geq \min\{p, 2|\mathcal{A}| - 3\}$, where \mathcal{A} is a subset of the group \mathbb{Z}_p . Dias da Silva and Hamidoune [4] proved the generalization of this Erdős-Heilbronn conjecture for h-fold sums: $|h^{\wedge}\mathcal{A}| \geq \min\{p, h|\mathcal{A}| - h^2 + 1\}$.

Another proof was given by Alon, Nathanson and Ruzsa [1, 2] by using the polynomial method. L. Gallardo, G. Grekos, L. Habsieger, et al [5] made a study of $2^{\wedge}\mathcal{A}$ and $3^{\wedge}\mathcal{A}$, where \mathcal{A} is a subset of the group \mathbb{Z}_n . They obtained that $|2^{\wedge}\mathcal{A}| \geq n-2$ in the case when $|\mathcal{A}| \geq \lfloor n/2 \rfloor + 1$. They also proved that $|3^{\wedge}\mathcal{A}| = n$ in the case when $|\mathcal{A}| \geq \lfloor n/2 \rfloor + 1$ and $n \geq 16$. Hamidoune, Lladó and Serra [6] investigated restricted sumsets for general finite abelian groups. They proved that, for an abelian group G of odd order (respectively, cyclic group), $|2^{\wedge}\mathcal{A}| \geq \min\{|G|, 3|\mathcal{A}|/2\}$ holds when \mathcal{A} is a generating set of G, $0 \in \mathcal{A}$ and $|\mathcal{A}| \geq 21$ (respectively, $|\mathcal{A}| \geq 33$). The structure of a set for which equality holds was also determined.

For general finite abelian groups and an arbitrary positive integer h, very little is known about $|h^{\wedge}A|$.

Our main result in this paper is the following.

Theorem 1.1 Let G be an abelian group of odd order, and let A be a subset of G with $0 \in A$. Let $2 \le h \le |A| - 2$. Then $|h^{\wedge}A| \ge |A|$. Moreover, equality holds if and only if A is a subgroup of G.

2. Proof of Theorem 1.1

We begin by introducing some notation.

Let G be an abelian group. Let $S = g_1 \cdot \ldots \cdot g_l$ be a sequence of elements in G. We call |S| = l the length of S; $\sigma(S) = \sum_{i=1}^{l} g_i$ the sum of S; $supp(S) = \{g : g \text{ is contained in } S\}$ the support of S; and $\sum_{h}(S) = \{\sum_{i \in I} g_i : I \subseteq [1, l] \text{ with } |I| = h\}$ the set of h-term subsums of S. Also, for T a subsequence of S, we let $S \cdot T^{-1}$ denote the sequence after removing the elements of T from S.

Let \mathcal{A} be a subset of the group G with $|\mathcal{A}| = l$. If h > l, then $h^{\wedge} \mathcal{A} = \emptyset$. We define $0^{\wedge} \mathcal{A} = \{0\}$. Note that $|h^{\wedge} \mathcal{A}| = |(l - h)^{\wedge} \mathcal{A}|$ for h = 0, 1, ..., l. In particular, $|(l - 1)^{\wedge} \mathcal{A}| = |1^{\wedge} \mathcal{A}| = |\mathcal{A}|$. Moreover, we have $h^{\wedge}(\mathcal{A} + g) = h^{\wedge} \mathcal{A} + hg$ for any $g \in G$. This means that the function $|h^{\wedge} \mathcal{A}|$ is invariant under the translation of the set \mathcal{A} .

For groups G and H, we use $H \leq G$ to mean that H is a subgroup of G.

Lemma 2.1 [3] Let A_1, A_2, \ldots, A_h be nonempty subsets of the group \mathbb{Z}_p . Then

$$|\mathcal{A}_1 + \mathcal{A}_2 + \ldots + \mathcal{A}_h| \ge \min \{p, \sum_{i=1}^h |\mathcal{A}_i| - h + 1\}.$$

Lemma 2.2 [4] Let A be a nonempty subset of the group \mathbb{Z}_p , and let $1 \leq h \leq |A|$. Then

$$|h^{\wedge} \mathcal{A}| \ge \min\{p, h(|\mathcal{A}| - h) + 1\}.$$

Lemma 2.3 Let $h \geq 2$, and let \mathcal{A} be a subset of the group \mathbb{Z}_p such that $|\mathcal{A}| \geq 2h$. Then $|h^{\wedge}\mathcal{A}| \geq |\mathcal{A}|$. Moreover, equality holds if and only if $\mathcal{A} = \mathbb{Z}_p$.

Proof. It follows from Lemma 2.2 that $|h^{\wedge}A| \geq \min\{p, h(|A| - h) + 1\} \geq |A|$. Since h(|A| - h) + 1 > |A|, it follows that if $|h^{\wedge}A| = |A|$ then |A| = p.

Lemma 2.4 Let G be a finite abelian group, and let X and Y be two subsets of G such that $|X| = |Y| \ge 2$. Then $|X + Y| \ge |X|$. Moreover, equality holds if and only if there exists a subgroup H of G such that, $X = H + g_x$ and $Y = H + g_y$ where $g_x \in X$ and $g_y \in Y$.

Proof. $|X+Y| \ge |X|$ holds trivially. Now suppose |X+Y| = |X| = |Y|. Choose $g_x \in X$ and $g_y \in Y$. Put $X' = X - g_x$ and $Y' = Y - g_y$. Since $0 \in X' \cap Y'$, we have $X' \cup Y' \subseteq X' + Y'$. Also, we see that |X'| = |X|, |Y'| = |Y| and |X' + Y'| = |X + Y|. It follows that |X' + Y'| = |X'| = |Y'|, and so X' = Y' = X' + Y' = X' + X'. Therefore, X' is a subgroup of G and we are done.

Lemma 2.5 Let G, G' be finite abelian groups and φ a homomorphism of G to G'. Let \mathcal{A} be a subset of G of cardinality l, and let $1 \leq h \leq l$. Then $\varphi(h^{\wedge}\mathcal{A}) = \sum_{h}(S)$, where $S = \prod_{g \in \mathcal{A}} \varphi(g)$ is a sequence of elements in G'.

Proof. The conclusion follows from the definition of a group homomorphism. \Box

Lemma 2.6 Let $h \ge 1$, and let S be a sequence of elements in the group \mathbb{Z}_p with $|S| \ge h+1$. Then $|\sum_{h}(S)| \ge |supp(S)|$.

Proof. Let k = |supp(S)|. The lemma is trivial if h = 1 or k = 1. Therefore, we may assume that $h \ge 2$ and $k \ge 2$. Let $S = S_0 \cdot S_1$, where $S_0 = supp(S)$ and $S_1 = S \cdot S_0^{-1}$. Let $h_0 = \min\{k-1,h\}$ and $h_1 = h - h_0$. Then $1 \le h_0 \le k - 1 = |S_0| - 1$ and $0 \le h_1 \le |S_1|$. It follows that $\sum_{h_0} (S_0) + \sum_{h_1} (S_1) \subseteq \sum_{h} (S)$. By Lemma 2.2, we have $|\sum_{h_0} (S_0)| \ge \min\{p, h_0(k-h_0) + 1\} \ge k$. It follows from Lemma 2.1 that $|\sum_{h} (S)| \ge |\sum_{h_0} (S_0) + \sum_{h_1} (S_1)| \ge \min\{p, k\} = k$. □

Lemma 2.7 Let $h \geq 2$, and let $S = g_1^{\alpha_1} g_2^{\alpha_2} \cdot \ldots \cdot g_r^{\alpha_r}$ be a sequence of elements in the group \mathbb{Z}_p with $|S| \geq h+2$, where $r \geq 2$ and $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_r \geq 1$. If $\alpha_2 \geq 2$ or $r \geq 4$ then $|\sum_h (S)| \geq \min\{p, r+1\}$.

Proof. Let $S = S_0 \cdot S_1$, where $S_0 = supp(S) = \{g_1, g_2, \dots, g_r\}$ and $S_1 = S \cdot S_0^{-1}$. If $\alpha_2 \ge 2$, let $h_0 = \min\{r-1, h-1\}$ and $h_1 = h-h_0$. Then $1 \le h_0 \le r-1$ and $1 \le h_1 \le |S_1|-1$. By Lemma 2.6, we have $|\sum_{h_0}(S_0)| \ge |supp(S_0)| = r$ and $|\sum_{h_1}(S_1)| \ge |supp(S_1)| \ge 2$. Note that $\sum_{h_0}(S_0) + \sum_{h_1}(S_1) \subseteq \sum_{h_0}(S)$. It follows from Lemma 2.1 that $|\sum_{h}(S)| \ge |\sum_{h_0}(S_0) + \sum_{h_1}(S_1)| \ge \min\{p, |\sum_{h_0}(S_0)| + |\sum_{h_1}(S_1)| - 1\} \ge \min\{p, r+1\}$.

Now assume that $r \geq 4$. Let $h_0 = \min\{r-2, h\}$ and $h_1 = h-h_0$. Then $2 \leq h_0 \leq r-2$ and $0 \leq h_1 \leq |S_1|$. By Lemma 2.2, we have $|\sum_{h_0} (S_0)| \geq \min\{p, h_0(r-h_0)+1\} \geq \min\{p, r+1\}$. Note that $\sum_{h_0} (S_0) + \sum_{h_1} (S_1) \subseteq \sum_{h} (S)$. It follows from Lemma 2.1 that $|\sum_{h} (S)| \geq |\sum_{h_0} (S_0) + \sum_{h} (S_1)| \geq \min\{p, |\sum_{h} (S_0)| + |\sum_{h} (S_1)| \geq \min\{p, r+1\}$.

Proof of Theorem 1.1. Let $\mathcal{A} = \{a_0, a_1, \dots, a_{l-1}\}$, where $a_0 = 0$. Since $|h^{\wedge}\mathcal{A}| = |(l-h)^{\wedge}\mathcal{A}|$, we need only to consider the case that $h \leq \lfloor |\mathcal{A}|/2 \rfloor$.

Let m be the number of prime factors of |G| (counted with multiplicity). We proceed by induction on m. If m=1, the theorem follows from Lemma 2.3. Now assume |G| is composite. Let p be the smallest prime factor of |G|, and let H be a subgroup of G of index p. Let ϕ_H be the canonical epimorphism of G onto G/H. Then $\bar{S} = \prod_{i=0}^{l-1} \phi_H(a_i)$ is a sequence of elements in G/H. Let $G/H = \{H, H+g, \ldots, H+(p-1)g\}$. For convenience, we also let G/H denote $\{\bar{g}, 2\bar{g}, \ldots, p\bar{g}\}$. Define $\mathcal{A}_i = \mathcal{A} \bigcap (H+ig)$ for $i=0,1,\ldots,p-1$. Then $\mathcal{A} = \bigcup_{i=0}^{p-1} \mathcal{A}_i$. Let $M = \max\{|\mathcal{A}_i| : 0 \le i \le p-1\}$. Since $|h^{\wedge}\mathcal{A}|$ is invariant under the translation of A, we can assume without loss of generality that $M = |\mathcal{A}_0|$. Note that, if $|\mathcal{A}| = 4$, then h = 2, and so $|2^{\wedge}\mathcal{A}| > |\mathcal{A}|$ follows by straightforward calculations. So, we may assume that $|\mathcal{A}| \ge 5$.

If M=1, then \bar{S} is squarefree, that is, \bar{S} is a subset of G/H with $|\bar{S}|=|\mathcal{A}|$. By Lemma 2.3, we have $|\sum_h(\bar{S})| \geq |\bar{S}|$. It follows from Lemma 2.5 that $|\phi_H(h^{\wedge}\mathcal{A})| = |\sum_h(\bar{S})|$, and so $|h^{\wedge}\mathcal{A}| \geq |\phi_H(h^{\wedge}\mathcal{A})| = |\sum_h(\bar{S})| \geq |\bar{S}| = |\mathcal{A}|$. Now suppose $|h^{\wedge}\mathcal{A}| = |\mathcal{A}|$. Then $|\sum_h(\bar{S})| = |\bar{S}|$. It follows from Lemma 2.3 that $\bar{S} = G/H$, and so $\mathcal{A} = \{a_0, a_1, \dots, a_{p-1}\}$, where $\phi_H(a_i) = i\bar{g}$ for each $i \in [0, p-1]$. Moreover, since $\phi_H(h^{\wedge}\mathcal{A}) = \sum_h(\bar{S}) = G/H$, we conclude that $h^{\wedge}\mathcal{A} = \{c_0, c_1, \dots, c_{p-1}\}$, where $\phi_H(c_j) = j\bar{g}$ for each $j \in [0, p-1]$.

We denote by |i| the least nonnegative residue of i modulo p. Let $d_i = a_{|i+1|} - a_{|i|}$ for $i=0,1,\ldots,p-1$. We shall prove that $d_i = d_0$ for $i=0,1,\ldots,p-1$. Let i be an arbitrary integer of [0,p-1]. Choose a subset U of \mathcal{A} of cardinality h such that $\{a_{|i|},a_{|i+1|}\}\subseteq U$ and $\{a_{|i-1|},a_{|i+2|}\}\bigcap U=\emptyset$. Let $U'=(U\setminus\{a_{|i|},a_{|i+1|}\})\bigcup\{a_{|i-1|},a_{|i+2|}\}$. It follows that $\phi_H(\sigma(U))=\sigma(\phi_H(U))=\sigma(\phi_H(U'))=\phi_H(\sigma(U'))=x\bar{g}$ for some $x\in[0,p-1]$, and so $\sigma(U)=c_x=\sigma(U')$. It follows that $d_{|i+1|}=(a_{|i+2|}-a_{|i+1|})=(a_{|i|}-a_{|i-1|})=d_{|i-1|}$. Since $\gcd(2,p)=1$, it follows that $d_i=d_0$ for $i=0,1,\ldots,p-1$. Therefore, we have $\mathcal{A}=\{a_0,a_0+d_0,a_0+2d_0,\ldots,a_0+(p-1)d_0\}=< d_0>\leq G$, and we are done.

Now we assume $M \geq 2$. We split the proof into two steps.

Step 1. We shall show $|h^{\wedge}A| \geq |A|$, and find some necessary conditions for $|h^{\wedge}A| = |A|$.

Let $\bar{T} = \prod_{a_i \in A \setminus A_0} \phi_H(a_i)$. Then \bar{T} is a subsequence of \bar{S} .

Case 1. $|supp(\bar{S})| = 1$. This implies that $A \subseteq H$. It follows from the induction hypothesis that $|h^{\wedge}A| \geq |A|$.

Case 2. $|supp(\bar{S})| = 2$. This implies that $\mathcal{A} = \mathcal{A}_0 \bigcup \mathcal{A}_{i_1}$, where $i_1 \in [1, p-1]$.

Subcase 2.1 $|A_{i_1}| = 1$. We have $|A_0| = |A| - 1 \ge 2h - 1 \ge h + 1$. Let $W_0 = 1$

 $h^{\wedge}\mathcal{A}_0$ and $W_1 = (h-1)^{\wedge}\mathcal{A}_0 + \mathcal{A}_{i_1}$. Observe $W_0 \bigcup W_1 \subseteq h^{\wedge}\mathcal{A}$. Since $\phi_H(W_0) = \bar{0}$ and $\phi_H(W_1) = i_1\bar{g}$, we have $W_0 \cap W_1 = \emptyset$. By the induction hypothesis, we have $|h^{\wedge}\mathcal{A}_0| \geq |\mathcal{A}_0|$ and $|(h-1)^{\wedge}\mathcal{A}_0| \geq |\mathcal{A}_0|$. Thus, $|W_j| \geq |\mathcal{A}_0|$ for both j = 0 and j = 1. Therefore, it follows that $|h^{\wedge}\mathcal{A}| \geq |W_0 \bigcup W_1| = |W_0| + |W_1| \geq 2|\mathcal{A}_0| > |\mathcal{A}|$.

Subcase 2.2 $|\mathcal{A}_{i_1}| \geq 2$. Since $|\mathcal{A}| \geq \max\{2h, 5\}$ and $|\mathcal{A}_0| \geq |\mathcal{A}|/2$, we have $|\mathcal{A}_0| \geq \max\{h, 3\}$. Let $h_0 = \min\{|\mathcal{A}_0| - 1, h\}$ and $h_1 = h - h_0$. Then $1 \leq h_0 \leq |\mathcal{A}_0| - 1$, and $1 \leq h_0 \leq |\mathcal{A}_0| \leq h_0 \leq |\mathcal{A}_0|$. Moreover, we have $1 \leq h_0 \leq |\mathcal{A}_{i_1}|$, since if $1 \leq h_0 \leq h_0$

Let $W_0 = h_0^{\wedge} \mathcal{A}_0 + h_1^{\wedge} \mathcal{A}_{i_1}$, $W_1 = (h_0 - 1)^{\wedge} \mathcal{A}_0 + (h_1 + 1)^{\wedge} \mathcal{A}_{i_1}$ and $W_2 = (h_0 - 2)^{\wedge} \mathcal{A}_0 + (h_1 + 2)^{\wedge} \mathcal{A}_{i_1}$. Note that W_0, W_1, W_2 are pairwise disjoint nonempty subsets of $h^{\wedge} \mathcal{A}$. By the induction hypothesis, we have that $|W_0| \geq |h_0^{\wedge} \mathcal{A}_0| \geq |\mathcal{A}_0|$ and $|W_1| \geq |(h_0 - 1)^{\wedge} \mathcal{A}_0| \geq |\mathcal{A}_0|$. Therefore, $|h^{\wedge} \mathcal{A}| \geq |W_0| + |W_1| + |W_2| \geq 2|\mathcal{A}_0| + 1 > |\mathcal{A}|$.

Case 3. $|supp(\bar{S})| = r \geq 3$. We rewrite $\mathcal{A} = \bigcup_{j=0}^{r-1} \mathcal{A}_{i_j}$, where $i_0 = 0, \{i_1, \dots, i_{r-1}\} \subseteq [1, p-1]$, and $|\mathcal{A}_0| \geq |\mathcal{A}_{i_1}| \geq \dots \geq |\mathcal{A}_{i_{r-1}}| > 0$.

If h=2, let $W_j=\mathcal{A}_0+\mathcal{A}_{i_j}$ for $j=1,\ldots,r-1$. It follows that $\phi_H(W_j)=i_j\bar{g}$. Since $r\geq 3$, it follows from Lemma 2.2 that $|2^{\wedge}supp(\bar{S})|\geq \min\{p,2(r-2)+1\}\geq r$, and so there exists a 2-subset $\{x,y\}\subseteq [1,r-1]$ such that $i_x\bar{g}+i_y\bar{g}\notin\{i_1\bar{g},i_2\bar{g},\ldots,i_{r-1}\bar{g}\}$. Let $W_0=\mathcal{A}_{i_x}+\mathcal{A}_{i_y}$. Since $\phi_H(W_0)=i_x\bar{g}+i_y\bar{g}$, it follows that W_0,W_1,\ldots,W_{r-1} are pairwise disjoint. It is easy to see that $|W_0|\geq \max\{|\mathcal{A}_{i_x}|,|\mathcal{A}_{i_y}|\}\geq |\mathcal{A}_{i_{r-2}}|$ and $|W_j|\geq |\mathcal{A}_0|$ for $j=1,\ldots,r-1$. Therefore, $|2^{\wedge}\mathcal{A}|\geq \sum_{i=0}^{r-1}|W_j|\geq |\mathcal{A}_{i_{r-2}}|+(r-1)|\mathcal{A}_0|\geq |\mathcal{A}_0|+|\mathcal{A}_{i_1}|+\cdots+|\mathcal{A}_{i_{r-1}}|=|\mathcal{A}|$.

Moreover, if $|2^{\wedge} \mathcal{A}| = |\mathcal{A}|$, then,

$$2^{\wedge} \mathcal{A} = \bigcup_{j=0}^{r-1} W_j$$
, and $|W_j| = |\mathcal{A}_{i_j}| = |\mathcal{A}_0|$ for $j = 0, 1, \dots, r-1$. (2.1)

Now we suppose $h \geq 3$ and distinguish several subcases.

Subcase 3.1 $|supp(\bar{S})| = 3$. This implies that $\mathcal{A} = \mathcal{A}_0 \bigcup \mathcal{A}_{i_1} \bigcup \mathcal{A}_{i_2}$, where $\{i_1, i_2\} \subseteq [1, p-1]$ and $|\mathcal{A}_0| \ge |\mathcal{A}_{i_1}| \ge |\mathcal{A}_{i_2}| > 0$.

Subsubcase 3.1.1 $|\mathcal{A}_0| \geq h$. Let $W_0 = (h-1)^{\wedge} \mathcal{A}_0 + \mathcal{A}_{i_1}$, $W_1 = (h-1)^{\wedge} \mathcal{A}_0 + \mathcal{A}_{i_2}$ and $W_2 = (h-2)^{\wedge} \mathcal{A}_0 + \mathcal{A}_{i_1} + \mathcal{A}_{i_2}$. Note that W_0 , W_1 , W_2 are pairwise disjoint subsets of $h^{\wedge} \mathcal{A}$. By the induction hypothesis, we have that $|(h-1)^{\wedge} \mathcal{A}_0| \geq |\mathcal{A}_0|$ and $|(h-2)^{\wedge} \mathcal{A}_0| \geq |\mathcal{A}_0|$. Thus, $|W_j| \geq |\mathcal{A}_0|$ for j = 0, 1, 2. It follows that $|h^{\wedge} \mathcal{A}| \geq |W_0| + |W_1| + |W_2| \geq 3|\mathcal{A}_0| \geq |\mathcal{A}|$.

Moreover, if $|h^{\wedge} \mathcal{A}| = |\mathcal{A}|$, then

$$h^{\wedge} \mathcal{A} = \bigcup_{j=0}^{2} W_j \text{ and } |W_j| = |\mathcal{A}_{i_j}| = |\mathcal{A}_0| \text{ for } j = 0, 1, 2.$$
 (2.2)

Subsubcase 3.1.2 $|\mathcal{A}_0| < h$. Note that since $h \leq \lfloor |\mathcal{A}|/2 \rfloor$ we have $|\mathcal{A}_{i_j}| \geq 2$ for both j = 1 and j = 2. Let $h_0 = |\mathcal{A}_0| - 1$ and $h_1 = h - h_0$. Then $h_0 \geq 1$, and $2 \leq h_1 \leq |\mathcal{A} \setminus \mathcal{A}_0| - 2$, since $|\mathcal{A}_0| - 1 \leq h - 2$ and $|\mathcal{A} \setminus \mathcal{A}_0| - h_1 + |\mathcal{A}_0| - h_0 = |\mathcal{A}| - h \geq h \geq 3$.

By Lemma 2.5 and Lemma 2.7, we have $|\phi_H(h_1^{\wedge}(\mathcal{A}\setminus\mathcal{A}_0))| = |\sum_{h_1}(\bar{T})| \ge \min\{p, |supp(\bar{T})| + 1\} = 3$, and so there exists a 3-subset $\{c_0, c_1, c_2\} \subseteq h_1^{\wedge}(\mathcal{A}\setminus\mathcal{A}_0)$ such that $\phi_H(c_0)$, $\phi_H(c_1)$ and $\phi_H(c_2)$ are pairwise distinct.

Let $W_j = h_0^{\wedge} A_0 + c_j$ for j = 0, 1, 2. Similar to Subsubcase 3.1.1, we have $|h^{\wedge} A| \ge |W_0| + |W_1| + |W_2| \ge 3|A_0| \ge |A|$.

Moreover, if $|h^{\wedge} \mathcal{A}| = |\mathcal{A}|$, then

$$h^{\wedge} \mathcal{A} = \bigcup_{j=0}^{2} W_j \text{ and } |W_j| = |\mathcal{A}_{i_j}| = |\mathcal{A}_0| \text{ for } j = 0, 1, 2.$$
 (2.3)

Subcase 3.2 $|supp(\bar{S})| = 4$. This implies that $\mathcal{A} = \mathcal{A}_0 \bigcup \mathcal{A}_{i_1} \bigcup \mathcal{A}_{i_2} \bigcup \mathcal{A}_{i_3}$, where $\{i_1, i_2, i_3\} \subseteq [1, p-1] \text{ and } |\mathcal{A}_0| \ge |\mathcal{A}_{i_1}| \ge |\mathcal{A}_{i_2}| \ge |\mathcal{A}_{i_3}| > 0$. Let $h_0 = \min\{|\mathcal{A}_0| - 1, h - 2\}$ and $h_1 = h - h_0$. Note that $1 \le h_0 \le |\mathcal{A}_0| - 1$ and $2 \le h_1 \le |\mathcal{A} \setminus \mathcal{A}_0| - 1$.

Subsubcase 3.2.1 $|\mathcal{A}_{i_2}| = 1$. By Lemma 2.5 and Lemma 2.6, we have $|\phi_H(h_1^{\wedge}(\mathcal{A} \setminus \mathcal{A}_0))| = |\sum_{h_1} (\bar{T})| \geq |supp(\bar{T})| = 3$, and so there exists a 3-subset $\{c_0, c_1, c_2\} \subseteq h_1^{\wedge}(\mathcal{A} \setminus \mathcal{A}_0)$ such that $\phi_H(c_0)$, $\phi_H(c_1)$ and $\phi_H(c_2)$ are pairwise distinct.

Let $W_j = h_0^{\wedge} \mathcal{A}_0 + c_j$ for j = 0, 1, 2. Note that W_0 , W_1 and W_2 are pairwise disjoint subsets of $h^{\wedge} \mathcal{A}$. By the induction hypothesis, we have $|W_j| = |h_0^{\wedge} \mathcal{A}_0| \ge |\mathcal{A}_0|$ for j = 0, 1, 2. By Lemma 2.5 and Lemma 2.7, we have $|\phi_H(h^{\wedge} \mathcal{A})| = |\sum_h (\bar{S})| \ge \min\{p, |supp(\bar{S})| + 1\} = 5$, and so there exist at least two distinct elements c_3 , c_4 of $(h^{\wedge} \mathcal{A}) \setminus (W_0 \bigcup W_1 \bigcup W_2)$. Therefore, $|h^{\wedge} \mathcal{A}| \ge |W_0| + |W_1| + |W_2| + |\{c_3, c_4\}| \ge 3|\mathcal{A}_0| + 2 > |\mathcal{A}|$.

Subsubcase 3.2.2 $|\mathcal{A}_{i_2}| \geq 2$. We have $h_1 \leq |\mathcal{A} \setminus \mathcal{A}_0| - 2$, since it is trivial if $h_0 = h - 2 \leq |\mathcal{A}_0| - 1$, and since $|\mathcal{A}_0| - h_0 + |\mathcal{A} \setminus \mathcal{A}_0| - h_1 = |\mathcal{A}| - h \geq h \geq 3$ if $h_0 = |\mathcal{A}_0| - 1 \leq h - 2$.

By Lemma 2.5 and Lemma 2.7, we have $|\phi_H(h_1^{\wedge}(\mathcal{A}\setminus\mathcal{A}_0))| = |\sum_{h_1}(\bar{T})| \ge \min\{p, |supp(\bar{T})| + 1\} = 4$, and so there exists a 4-subset $\{c_0, c_1, c_2, c_3\} \subseteq h_1^{\wedge}(\mathcal{A}\setminus\mathcal{A}_0)$ such that $\phi_H(c_0), \phi_H(c_1), \phi_H(c_2)$ and $\phi_H(c_3)$ are pairwise distinct.

Let $W_j = h_0^{\wedge} \mathcal{A}_0 + c_j$ for j = 0, 1, 2, 3. Note that W_0 , W_1 , W_2 and W_3 are pairwise disjoint subsets of $h^{\wedge} \mathcal{A}$. By Lemma 2.7, we have $|\sum_{h} (\bar{S})| \geq 5$, and so there exists an element $c_4 \in (h^{\wedge} \mathcal{A}) \setminus (W_0 \bigcup W_1 \bigcup W_2 \bigcup W_3)$. Therefore, $|h^{\wedge} \mathcal{A}| \geq |W_0| + |W_1| + |W_2| + |W_3| + 1 \geq 4|\mathcal{A}_0| + 1 > |\mathcal{A}|$.

Subcase 3.3 $|supp(\bar{S})| = r \ge 5$. Let $h_0 = \min\{|A_0| - 1, h - 2\}$ and $h_1 = h - h_0$.

Similar to Subsubcase 3.1.2, we have $1 \le h_0 \le |\mathcal{A}_0| - 1$ and $2 \le h_1 \le |\mathcal{A} \setminus \mathcal{A}_0| - 2$.

By Lemma 2.5 and Lemma 2.7, we have $|\phi_H(h_1^{\wedge}(\mathcal{A}\setminus\mathcal{A}_0))| = |\sum_{h_1}(\bar{T})| \ge \min\{p, |supp(\bar{T})| + 1\} = |supp(\bar{T})| + 1 = r$, and so there exists an r-subset $\{c_0, c_1, \ldots, c_{r-1}\} \subseteq h_1^{\wedge}(\mathcal{A}\setminus\mathcal{A}_0)$ such that $\phi_H(c_0), \phi_H(c_1), \ldots, \phi_H(c_{r-1})$ are pairwise distinct.

Let $W_j = h_0^{\wedge} \mathcal{A}_0 + c_j$ for $j = 0, 1, \dots, r - 1$. Note that W_0, W_1, \dots, W_{r-1} are pairwise disjoint subsets of $h^{\wedge} \mathcal{A}$. By the induction hypothesis, we have $|W_j| = |h_0^{\wedge} \mathcal{A}_0| \geq |\mathcal{A}_0|$ for $j = 0, 1, \dots, r - 1$. Therefore, we conclude that $|h^{\wedge} \mathcal{A}| \geq |\bigcup_{j=0}^{r-1} W_j| = \sum_{j=0}^{r-1} |W_j| \geq r|\mathcal{A}_0| \geq \sum_{j=0}^{r-1} |\mathcal{A}_{i_j}| = |\mathcal{A}|$, and moreover, $|h^{\wedge} \mathcal{A}| = |\mathcal{A}|$ holds if, and only if, $h^{\wedge} \mathcal{A} = \bigcup_{j=0}^{r-1} W_j$, $|W_j| = |\mathcal{A}_{i_j}| = |\mathcal{A}_0|$ for $j = 0, 1, \dots, r - 1$. (2.4)

Step 2. Suppose $|h^{\wedge}A| = |A|$. We shall prove $A \leq G$.

If $|supp(\bar{S})| = 1$, by the induction hypothesis, we have $A \leq G$. Recall that if $|supp(\bar{S})| = 2$, then $|h^{\wedge}A| > |A|$. So it suffices to consider the case when $|supp(\bar{S})| = r \geq 3$.

From Equations (2.1), (2.2), (2.3) and (2.4), we conclude that $\mathcal{A} = \bigcup_{j=0}^{r-1} \mathcal{A}_{i_j}$, where $i_0 = 0$, $\{i_1, \ldots, i_{r-1}\} \subseteq [1, p-1]$, and $|\mathcal{A}_{i_j}| = |\mathcal{A}_0|$ for $j = 1, \ldots, r-1$; and that $h^{\wedge} \mathcal{A} = \bigcup_{j=0}^{r-1} W_j$, where $|W_0| = |W_1| = \cdots = |W_{r-1}| = |\mathcal{A}_0|$, and there exist r elements $c_0, c_1, \ldots, c_{r-1}$ of $h^{\wedge} \mathcal{A}$ such that $\phi_H(W_j) = \phi_H(c_j)$ are pairwise distinct for $j = 0, 1, \ldots, r-1$.

Claim. There exists a subgroup K of H such that $A_{i_j} = K + b_j$, where $b_j \in A_{i_j}$, for j = 0, 1, ..., r - 1.

Proof. Choose an arbitrary integer j in $\{1, \ldots, r-1\}$. Let $h_0 = \min\{h-1, |\mathcal{A}_0|-1\}$, and let $h_1 = h - h_0 - 1$. Then $1 \le h_0 \le |\mathcal{A}_0| - 1$, and $0 \le h_1 \le |\mathcal{A}| - 2|\mathcal{A}_0| = |\mathcal{A} \setminus (\mathcal{A}_0 \bigcup \mathcal{A}_{i_j})|$ since $|\mathcal{A}| \ge 3|\mathcal{A}_0|$ and $h \le |\mathcal{A}|/2$. Fix a subset B of $\mathcal{A} \setminus (\mathcal{A}_0 \bigcup \mathcal{A}_{i_j})$ with $|B| = h_1$. Then $h_0^{\wedge} \mathcal{A}_{i_j} + \mathcal{A}_0 + \sigma(B) \subseteq h^{\wedge} \mathcal{A} \cap H + g_x$ for some $g_x \in G$, and so $h_0^{\wedge} \mathcal{A}_{i_j} + \mathcal{A}_0 + \sigma(B) \subseteq W_t$ for some $t \in [0, r-1]$. It follows that $|h_0^{\wedge} \mathcal{A}_{i_j} + \mathcal{A}_0| \le |W_t| = |\mathcal{A}_0|$. By the induction hypothesis, we have $|h_0^{\wedge} \mathcal{A}_{i_j}| \ge |\mathcal{A}_{i_j}|$. It follows from Lemma 2.4 that there exists a subgroup K of G, such that $\mathcal{A}_0 = K$. Since $\mathcal{A}_0 \subseteq H$, then K is a subgroup of H. Similarly, by considering $h_0^{\wedge} \mathcal{A}_0 + \mathcal{A}_{i_j} + \sigma(B)$, since $h_0^{\wedge} \mathcal{A}_0 = K$, we obtain $\mathcal{A}_{i_j} = K + b_j$, where $b_j \in \mathcal{A}_{i_j}$. This proves the claim.

Let φ_K be the canonical epimorphism of G onto G/K. Let |K|=k. By the claim above, we see that $\mathcal{A}=\bigcup_{j=0}^{r-1}\mathcal{A}_{i_j}=\bigcup_{j=0}^{r-1}(K+b_j)$. Note that by the definitions of W_0,W_1,\ldots,W_{r-1} , then $h^{\wedge}\mathcal{A}=\bigcup_{j=0}^{r-1}W_j=\bigcup_{j=0}^{r-1}(K+c_j)$, where $\varphi_K(c_0),\varphi_K(c_1),\ldots,\varphi_K(c_{r-1})$ are pairwise distinct, since $\phi_H(c_0),\phi_H(c_1),\ldots,\phi_H(c_{r-1})$ are pairwise distinct and $K\leq H$. Hence, $|\varphi_K(h^{\wedge}\mathcal{A})|=r$.

Let $U = \prod_{i=0}^{l-1} \varphi_K(a_i)$. It follows that $U = \bar{0}^k \bar{b}_1^k \cdot \ldots \cdot \bar{b}_{r-1}^k$. If r = 3, we write $U = U_0 \cdot U_1$ where $U_0 = \bar{0}^{k-2} \bar{b}_1^{k-2} \bar{b}_2^{k-2}$ and $U_1 = \bar{0}^2 \bar{b}_1^2 \bar{b}_2^2$. Let $h_0 = h - 2$. Since $k \geq 3$, we have $h_0 = h - 2 \leq |U|/2 - 2 \leq |U| - 6 = |U_0|$. Fix a subsequence V of U_0 with $|V| = h_0$. We have $\sum_2 (U_1) + \sigma(V) \subseteq \sum_k (U)$ and $\sum_2 (U_1) = supp(U) + supp(U)$. It follows from Lemma 2.5 that $|\varphi_K(h^{\wedge} \mathcal{A})| = |\sum_k (U)| \geq |\sum_2 (U_1)| = |supp(U) + supp(U)| \geq |supp(U)| = r$, and so |supp(U) + supp(U)| = |supp(U)|. It follows from Lemma 2.4 that $supp(U) \leq G/K$.

If $r \geq 4$, we write $U = U_0 \cdot U_1$ where $U_0 = \bar{0}^{k-1}\bar{b}_1^{k-1} \cdot \ldots \cdot \bar{b}_{r-1}^{k-1}$ and $U_1 = supp(U) = \{\bar{0}, \bar{b}_1, \ldots, \bar{b}_{r-1}\}$. Let $h_0 = h-2$. Then $h_0 \leq |U|/2-2 < |U_0|$. Fix a subsequence V of U_0 with $|V| = h_0$. We have $2^{\wedge}U_1 + \sigma(V) \subseteq \sum_h (U)$. It follows from Lemma 2.5 and the induction hypothesis that $|\varphi_K(h^{\wedge}A)| = |\sum_h (U)| \geq |2^{\wedge}U_1| \geq |U_1| = r$, and so $|2^{\wedge}U_1| = |U_1|$, which implies $supp(U) = U_1 \leq G/K$.

Therefore, by the group homomorphism theorem, we have $A \leq G$.

Acknowledgement The author is indebted to Professor W.D. Gao and Professor Y.O. Hamidoune for their helpful suggestions.

References

- [1] Noga Alon, Melvyn B. Nathanson and Imre Ruzsa, Adding distinct congruence classes modulo a prime, Am. Math. Monthly, 102 (1995) 250-255.
- [2] Noga Alon, Melvyn B. Nathanson and Imre Ruzsa, The polynomial method and restricted sums of congruence classes, Journal of Number Theory, 56 (1996) 404-417.
- [3] H. Davenport, On the addition of residue classes, J. London Math. Soc, 10 (1935) 30-32.
- [4] J.A. Dias da Silva and Y.O. Hamidoune, Cyclic spaces for Grassmann derivatives and additive theory, Bull. London Math. Soc, 26 (1994) 140-146.
- [5] L. Gallardo, G. Grekos, L. Habsieger, F. Hennecart, B. Landreau and A. Plagne, Restricted addition in $\mathbb{Z}/n\mathbb{Z}$ and an application to the Erdős-Ginzburg-Ziv problem, J. London Math. Soc (2) 65 (2002) 513-523.
- [6] Y.O. Hamidoune, A.S. Lladó and O. Serra, On restricted sums, Combinatorics. Probability and Computing, 9 (2000) 513-518.
- [7] Melvyn B. Nathanson, Additive number theory: Inverse problems and the geometry of sumsets, Vol. 165 of Graduate Texts in Mathematics, Springer, New York.