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Abstract

Let G be an abelian group of odd order, and let A be a subset of G. For any integer h such
that 2 < h < |A| — 2, we prove that |h"A| > |A| and equality holds if and only if A is a
coset of some subgroup of G, where h"" A is the set of all sums of h distinct elements of A.

1. Introduction

Let A be a subset of an abelian group. For any integer h € Ny, we denote by h" A the set
consisting of all sums of h distinct elements of A, that is, all sums of the form a; + - - - + ay,
where ay,...,a, € A and a; # a; for ¢ # j. Throughout this paper, let Z, be the cyclic
group of n elements, and let p be a prime number.

Over 40 years ago, Erdés and Heilbronn conjectured that [2".A| > min{p, 2|.4| —3}, where
A is a subset of the group Z,. Dias da Silva and Hamidoune [4] proved the generalization
of this Erdés-Heilbronn conjecture for h-fold sums: |h"A| > min{p, h|A| — h* + 1}.

Another proof was given by Alon, Nathanson and Ruzsa [1, 2] by using the polynomial
method. L. Gallardo, G. Grekos, L. Habsieger, et al [5] made a study of 2".A and 3" A4,
where A is a subset of the group Z,. They obtained that [2"A| > n — 2 in the case when
|A| > [n/2] + 1. They also proved that [3"A| = n in the case when |A| > [n/2| + 1 and
n > 16. Hamidoune, Llad6 and Serra [6] investigated restricted sumsets for general finite
abelian groups. They proved that, for an abelian group G of odd order (respectively, cyclic
group), |2 A| > min{|G|, 3|.A4|/2} holds when A is a generating set of G, 0 € A and | 4] > 21
(respectively, |A| > 33). The structure of a set for which equality holds was also determined.

For general finite abelian groups and an arbitrary positive integer h, very little is known
about |h"A|.

Our main result in this paper is the following.
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Theorem 1.1 Let G be an abelian group of odd order, and let A be a subset of G with
0€ A Let2 < h <|A|—2. Then |h"A| > |A|. Moreover, equality holds if and only if A is
a subgroup of G.

2. Proof of Theorem 1.1

We begin by introducing some notation.

Let G be an abelian group. Let S = g7 - ... g; be a sequence of elements in G. We call
|S| = [ the length of S; o(S) = igi the sum of S; supp(S) = {g : g is contained in S}
the support of S; and » (S) = {ilgi . I C [1,1] with |I| = h} the set of h-term subsums
of S. Also, for T" a Subse?quence ofl 6Sj, we let S - T~! denote the sequence after removing the
elements of T" from S.

Let A be a subset of the group G with |A| = {. If b > [, then h"A = (). We define
0"A = {0}. Note that |h"A| = |(I — h)"A| for h = 0,1,...,l. In particular, |(l — 1) A| =
|1"A| = | A|]. Moreover, we have h"*(A+ g) = h" A+ hg for any g € G. This means that the
function |h"A| is invariant under the translation of the set A.

For groups G and H, we use H < GG to mean that H is a subgroup of G.

Lemma 2.1 /3] Let Ay, As, ..., A be nonempty subsets of the group Z,. Then
h
Ay + As + ...+ Ayl > min {p, > |4;| — h+1}.
i=1

Lemma 2.2 [4] Let A be a nonempty subset of the group Z,, and let 1 < h < |A|. Then
17 A] > min{p, h(JA] — h) + 1},

Lemma 2.3 Let h > 2, and let A be a subset of the group Z, such that |A] > 2h. Then
|RNA| > |A]. Moreover, equality holds if and only if A = 7Z,.

Proof. It follows from Lemma 2.2 that |h"A| > min{p, h(]A| — h) + 1} > |A]. Since
h(|A| — h) +1 > |A|, it follows that if |h"A| = | A| then |A| = p. O

Lemma 2.4 Let G be a finite abelian group, and let X and Y be two subsets of G such that
| X|=1|Y| > 2. Then |X +Y| > |X|. Moreover, equality holds if and only if there exists a
subgroup H of G such that, X = H + g, and Y = H + g, where g, € X and g, €Y.
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Proof. |X + Y] > |X| holds trivially. Now suppose |X + Y| = |X| = |Y|. Choose
g € Xand g, € Y. Pt X' = X —g, and Y =Y — g,. Since 0 € X'[Y’, we have
X'UY' C X' +Y' Also, we see that | X'| = | X, |Y'| = |Y|and | X' +Y'| = | X +Y]|. It
follows that | X'+ Y'| = |X'| =|Y’|,and so X' =Y’ = X'+ Y’ = X' 4+ X'. Therefore, X' is
a subgroup of G and we are done. O

Lemma 2.5 Let G, G’ be finite abelian groups and ¢ a homomorphism of G to G'. Let A be
a subset of G of cardinality I, and let 1 < h <1. Then p(h"A) = > (S), where S = [] ¢(g)
h

geA
. . /
is a sequence of elements in G .

Proof. The conclusion follows from the definition of a group homomorphism. a

Lemma 2.6 Let h > 1, and let S be a sequence of elements in the group Z, with |S| > h+1.
Then | 32(S)| = [supp(S)|.
h

Proof. Let k = |supp(S)|. The lemma is trivial if h = 1 or k = 1. Therefore, we may assume
that h > 2 and k > 2. Let S = Sy - Sy, where Sy = supp(S) and S; = S-Sy, Let hy =
min{k—1,h} and hy = h—hg. Then 1 < hg < k—1=1Sy| —1 and 0 < hy < |S;|. It follows
that 2(50)4—2(5’1) - Z( ). By Lemma 2.2, we have | Z(SO)| > min{p, ho(k—ho)+1} > k.

It follows from Lemma 2 1 that | Z( )| > Z(So) + Z(Sl)| > min{p, | Z(SO)| +| Z(Sl)|
1} > min{p, k} = k. O

Lemma 2.7 Let h > 2, and let S = ¢{"g5* - ... - g be a sequence of elements in the group
Z, with |S| > h+2, where r > 2 and oy > ag > -+ > o, > 1. Ifag > 2 orr > 4 then

|Zh:(5)\ > min{p,r + 1}.

Proof. Let S = Sy - Sy, where Sy = supp(S) = {g1,92,...,9-} and S; = S - Syt If ag > 2,
let hg = min{r —1,h—1} and hy =h — hg. Then 1 < hyg <r—1and 1 < h; <|S;|—1. By
Lemma 2.6, we have |E(So)\ > |supp(Sy)| = r and |Z(Sl)] > |supp(S1)| > 2. Note that

X(50) + X(5) € z( Y. Tt follows from Lemma 2.1 that IS(S)] = [ () + TS| =
minp | (50 + (5] - 1) > minfrr -+ 1), v

Now assume that r > 4. Let ho = min{r—2, h} and hy = h—ho. Then 2 < ho < r—2 and
0< i < |Si]. By Lemma 22, we have | ()| = min{p. ho(r — ho) + 1} > min{p.r + 1}
Note that Z(So) + Z(Sl) C Z( ). It follows from Lemma 2.1 that |Z( N >132(S) +
S(51)] > minp,| z<so>| FIS (5] 1} 2 mingp.r + 1) "o

h1
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Proof of Theorem 1.1. Let A = {ag,ay,...,a;,_1}, where ag = 0. Since |h"A| = |(I — h)"A|,
we need only to consider the case that h < [|.A|/2].

Let m be the number of prime factors of |G| (counted with multiplicity). We proceed
by induction on m. If m = 1, the theorem follows from Lemma 2.3. Now assume |G| is

composite. Let p be the smallest prime factor of |G|, and let H be a subgroup of G of
-1

index p. Let ¢y be the canonical epimorphism of G onto G H. Then S = H om(a;) is a

=0
sequence of elements in G/H. Let G/H ={H,H+g,....,H+ (p—1)g}. For convenience,
we also let G,/ H denote {g,23,...,pg}. Define A; = Aﬂ(H +ig) for i = 0,1,...,p— 1.

p—1
Then A = |J A;. Let M = max{|A4;| : 0 < i < p—1}. Since |h"A| is invariant under
i=0
the translation of A, we can assume without loss of generality that M = |Ay|. Note that, if
|A| =4, then h = 2, and so |2"A| > | A| follows by straightforward calculations. So, we may

assume that [A] > 5.

If M = 1, then S is squarefree, that is, S is a subset of G/ H with |S| = |A.
Lemma 2.3, we have ]Z( S)| > |S]. Tt follows from Lemma 2.5 that |pg(h"A)| = |Z( )|

and so [h"A| > |¢H(h/\A)| |Z( S) > |S| = |A]. Now suppose |h"A|] = |A|. Then
|Z( S)| = |S|. It follows from Lemma 2.3 that S = G/H, and so A = {ag,a1,...,a, 1},
Where br(a;) = ig for each i € [0,p — 1]. Moreover, since ¢y (h"A) = > (S) = G/ H, we
conclude that KA = {co,c1,...,¢p—1}, where ¢y (c;) = jg for each j € [O},Lp —1].

We denote by |i| the least nonnegative residue of ¢ modulo p. Let d; = aj41) — ) for
1=20,1,...,p— 1. We shall prove that d; = dy for i = 0,1,...,p — 1. Let 7 be an arbitrary
integer of [0,p — 1]. Choose a subset U of A of cardinality i such that {aj, a1} € U
and {aj_1),ais2 } (U = 0. Let U = (U\ {aH a1 ) U{aji-1), @i} It follows that
ou(o(U)) = 0(¢H( ) = o(¢u(U)) = ¢u(a(U)) = xg for some x € [0,p — 1], and so
U(U) =, = U(U/). It follows that d|z+1| = (a|1+2| CL|Z+1|) = (CLM a|Z_1|) = d|i_1|.
Since ged(2,p) = 1, it follows that d; = dy for ¢ = 0,1,...,p — 1. Therefore, we have
A ={ag, a9 + dy, a0+ 2dy, ... ,a0 + (p — 1)dp} =< dy >< G, and we are done.

Now we assume M > 2. We split the proof into two steps.
Step 1. We shall show |h"A| > |A|, and find some necessary conditions for |h"A| = |A|.

Let T= T[] ¢u(a;). Then T is a subsequence of S.
a; €A\ Ao

Case 1. [supp(S)| = 1. This implies that A C H. It follows from the induction
hypothesis that |[h"A| > |A|.

Case 2. |supp(S)| = 2. This implies that A = A JA;,, where i; € [1,p — 1].

Subcase 2.1 |A4;, | = 1. We have |[Ay| = |A|—=1>2h—1 > h+1. Let W, =
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h"Ay and Wi = (h — 1) Ag + A;;. Observe Wy |JW; C W A. Since ¢y(Wy) = 0 and
du(W1) = i1g, we have Wy (W7 = ). By the induction hypothesis, we have |h"Ag| > |Ao|
and |(h — 1)"Ag| > |Ao|. Thus, |W;| > |A| for both j = 0 and j = 1. Therefore, it follows
that |h"A| > [Wo W] = [Wo| + [Wi| > 2| Ao| > | Al

Subcase 2.2 |A4;,| > 2. Since |A| > max{2h,5} and |Ag| > |A]/2, we have |Aq| >
max{h,3}. Let hg = min{|Ag| — 1,h} and hy = h — hy. Then 2 < hg < |Ay| — 1, and
hy € {0,1} since h < ||A|/2] < |Ag|. Moreover, we have hy + 2 < |A; |, since if | A;,| = 2
then hg = h < ||A|/2] < |Ap| — 1, and since if |4;,| > 2 then it is trivial.

Let Wy = hy Ao + h{ Ay, Wi = (hg — 1) Ao + (hy + 1) A, and Wy = (hg — 2) " Ag +
(h1 +2)"A;,. Note that Wy, W7, Wy are pairwise disjoint nonempty subsets of h".A. By the
induction hypothesis, we have that |[Wy| > |hyAo| > |Ao| and |[Wi| > [(hg — 1) Ag| > |Ao|.
Therefore, |h"A| > |Wy| + |Wi| + [Wa| > 2| A4p] + 1 > | A].

_ r—1
Case 3. |[supp(S)| = r > 3. We rewrite A = |J A;;, where ig = 0, {i1,... 4,1} C
=0
[Lp_ 1]7 and ‘*A0| 2 "Al1’ =2 |Air—1’ > 0.
Ith =21et W; = Ag+A;; for j = 1,...,r—1. It follows that ¢ (W) = i;g. Since r > 3,
it follows from Lemma 2.2 that [2"supp(S)| > min{p, 2(r — 2) + 1} > r, and so there exists
a 2-subset {z,y} C [1,r — 1] such that i,g +iyg € {i17,929,...,i,—1g}. Let Wy = A;, + A, .

Since ¢ (Wo) = i,g+1,9, it follows that Wy, Wy, ..., W,_; are pairwise disjoint. It is easy to
see that [Wy| > max{|A,, |, |A;,|} > |Ai_,| and [W;| > |Ao| for j =1,...,r — 1. Therefore,

r—1
2"Al = 2 Wil 2 [Air |+ (r = DA 2 Aol + [ A+ + A, | = AL
‘7:
Moreover, if [2"A| = | A|, then,
r—1
2" = U W, and [W| = |A;,| = |Ag| for j =0,1,...,r — 1. (2.1)
=0

J

Now we suppose h > 3 and distinguish several subcases.

Subcase 3.1 |supp(S)| = 3. This implies that A = Ao J Ai, U As,, where {iy,is} C
[1,p — 1] and [Ag| > |A;, [ = A > 0.

Subsubcase 3.1.1 |Ag| > h. Let Wy = (h—1)"Ag+ A;,, W1 = (h—1)"Ag + A,
and Wy = (h — 2) Ay + A;; + A;,. Note that Wy, Wi, Ws are pairwise disjoint subsets of
h"A. By the induction hypothesis, we have that |(h—1)"Ag| > |Ao| and |(h—2)"Ag| > |Ao|.
Thus, |W;| > |Ao| for j =0,1,2. It follows that |h"A| > |Wy| + |Wi| + |[Wa| > 3| Ao > | A

Moreover, if |h"A| = |A|, then

2
WA= |J Wjand [W;| = |A;;| = |Ag| for j =0,1,2. (2.2)
=0

J
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Subsubcase 3.1.2 |A4g| < h. Note that since h < ||A]/2] we have [A;] > 2
for both j = 1 and j = 2. Let hy = |Ag| — 1 and hy = h — hg. Then hy > 1, and
2 < hy <|A\ Ag|—2, since |Ag] —1 < h—2 and | A\ Ao| — h1 +|Ao| —ho = |A|—h > h > 3.

By Lemma 2.5 and Lemma 2.7, we have |¢y (hy(A\Ap))| = | Z( [)| > min{p, |supp(T)|+

1} = 3, and so there exists a 3-subset {cg, c1,ca} C A (A\ Ayp) such that ¢y (co), ¢m(c1) and
o (c2) are pairwise distinct.

Let W; = h{}Ag + ¢; for j = 0,1,2. Similar to Subsubcase 3.1.1, we have |h"A| >
[Wol + [Wi| + [Wa| = 3| Ao| = [Al.

Moreover, if |h*A| = |A|, then

2
WA= |J Wjand [W;| = |A;;| = |Ag| for j =0,1,2. (2.3)

=0

Subcase 3.2 |supp(S)| = 4. This implies that A = Ay JA;, U Ai, U Ay, where
{i1,i2,13} C [1,p — 1] and |Ag| > |Ai| > |Aiy| > |Aiy] > 0. Let hg = min{|A| — 1,h — 2}
and h; = h — hg. Note that 1 < hg < |Ag| — 1 and 2 < hy < |A\ Ag| — 1.

Subsubcase 3.2.1 |A4,,| = 1. By Lemma 2.5 and Lemma 2.6, we have |¢g(h7(A\
Ap))| = |Z( )| > |supp(T)| = 3, and so there exists a 3-subset {co,c1, 2t € (AN Ap)

such that ¢H(Co), ¢r(c1) and ¢y (cy) are pairwise distinct.

Let W; = h{ Ao + ¢; for j = 0,1,2. Note that W,, W; and W, are pairwise disjoint
subsets of h"\/A. By the induction hypothesis, we have [W;| = |hgAo| > | Aol for j = 0,1,2.
By Lemma 2.5 and Lemma 2.7, we have ¢y (h"A)| = \Z( S)| > min{p, |supp(S)| + 1} = 5,

and so there exist at least two distinct elements ¢z, ¢4 of (hAA) \ (Wo U Wi |JWs). Therefore,
[ Al = [Wol + Wi + [Wa| + [{cs, ca}| = 3| Ao] +2 > [A].

Subsubcase 3.2.2 |A;,| > 2. We have h; < |A\ Ag| — 2, since it is trivial
if hg = h—2 < |4y — 1, and since |Ag| — ho + |[A\ Ao| — h1 = |A| —h > h > 3if

By Lemma 2.5 and Lemma 2.7, we have |y (h1(A\Ag))| = | Z( )| > min{p, |supp(T)|+

1} =4, and so there exists a 4-subset {cy, c1, 2,3} C A7 (A\ Ao) such that ¢y (co), du(cr),
or(c2) and ¢ (cs)are pairwise distinct.

Let W; = h{{ Ao + ¢; for j = 0,1,2,3. Note that Wy, Wy, Wy and W3 are pairwise
disjoint subsets of " A. By Lemma 2.7, we have | E( S)| > 5, and so there exists an element

cs € (WA)\ (Wo W UWaJWs3). Therefore, |hAA| > |\Wo| + |Wh| + [Wa| + [Ws] +1 >
4|./40| +1> |.A|

Subcase 3.3 |supp(S)| = r > 5. Let hy = min{|Ao| — 1,h — 2} and hy = h — hy,.
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Similar to Subsubcase 3.1.2, we have 1 < hy < |Ag| — 1 and 2 < hy < |A\ Ag| — 2.

By Lemma 2.5 and Lemma 2.7, we have |¢g (h1 (A\Ao))| = | S2(T)| > min{p, |supp(T)|+
h1

1} = |supp(T)| + 1 = r, and so there exists an r-subset {cg, c1,...,¢—1} C h(A\ Ap) such
that ¢g(co), dm(c1),...,dm(c—1) are pairwise distinct.

Let W; = h{{ Ao + ¢ for j = 0,1,...,r — 1. Note that Wy, Wi,...,W,_; are pairwise

disjoint subsets of h"A. By the induction hypothesis, we have |W;| = |h{Ao| > |A| for
r—1 r—1

j =0,1,...,7 — 1. Therefore, we conclude that |[h"A| > | U W;| = > [W;| > r|Ao| >
. =

7=0
r—1 r—1
> |Ai;| = |A], and moreover, |h"A| = |A| holds if, and only if, R"A = |J W}, |W;| =
=0 =0
A | = [Ao| for j=0,1,...,r— 1. (24)
Step 2. Suppose |h*A| = | A|. We shall prove A < G.

If |supp(S)| = 1, by the induction hypothesis, we have A < G. Recall that if |supp(S)| =
2, then |h"A| > | A|. So it suffices to consider the case when |supp(S)| =r > 3.
r—1
From Equations (2.1), (2.2), (2.3) and (2.4), we conclude that A = |J A;;, where iy = 0,
=0
r—1
{ir,.. . i1} © [L,p—1], and |A;| = |Ao| for j = 1,...,r — 1; and that h"A = [J W},
j=0
where |Wy| = |Wy| = -+ = |W,_1| = | Ao, and there exist r elements ¢y, c1, ..., c—1 of B*A
such that ¢ (W;) = ¢u(c;) are pairwise distinct for j =0,1,...,r — 1.

Claim. There exists a subgroup K of H such that A;, = K + b;, where b; € A;,, for
j=0,1,...,r—1.

Proof. Choose an arbitrary integer j in {1,...,r —1}. Let hg = min{h — 1, |Ag| — 1}, and
let hy = h —ho —1. Then 1 < hy < [Ag| — 1, and 0 < hy < [A] = 2| Ao = [A\ (AU A
since |A| > 3|Ao| and h < |A[/2. Fix a subset B of A\ (AgJAi,) with |[B| = hy. Then
ho Ai, + Ao+ o(B) € WA H + g, for some g, € G, and so hy A;; + Ay + o(B) C W, for
some t € [0,r — 1]. It follows that |hjA;, + Ao| < |Wi| = |Ag|. By the induction hypothesis,
we have |h{A;,| > |A;]. It follows from Lemma 2.4 that there exists a subgroup K of G,
such that Ay = K. Since Ay C H, then K is a subgroup of H. Similarly, by considering
ho Ao + Ai, + o(B), since hj Ay = K, we obtain A;; = K + b;, where b; € A;,. This proves
the claim. O

Let ¢k be the canonical epimorphism of G onto G/ K. Let |K| = k. By the claim above,
r—1 r—1
we see that A = (J A;;, = U (K +b;). Note that by the definitions of Wy, W1,..., W,_4,
=0 =0
r—1
U (K +¢;), where i (co), i (c1),. .., pr(c,—1) are pairwise distinct,
=0
since ¢y (), pu(cr), ..., ou(c,—1) are pairwise distinct and K < H. Hence, | (h"A)| = r.

r—1
then A= |J W, =
=0



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A22 8

-1 _ _
Let U = [] ¢x(a;). It follows that U = 0%} - ... - bk . If r = 3, we write U = U, - U;

1=0
where Uy = 0*726¥ 26572 and U; = 0%62b2. Let hg = h — 2. Since k > 3, we have hy =
h—2<|U|/2—-2 < |Ul -6 = |U|. Fix a subsequence V of Uy with |V| = hyo. We
have  (Uy) + (V) C Y (U) and > (Uy) = supp(U) + supp(U). It follows from Lemma
2 3 2

2.5 that [ox (W A)| = [22(U)] = | X2 (Uh)] = |supp(U) + supp(U)| = [supp(U)| = r, and so
B 2
|supp(U) + supp(U)| = |supp(U)|. Tt follows from Lemma 2.4 that supp(U) < G /K.

It r > 4, we write U = Uy - Uy where Uy = 0F1ph=1 . ... bf and Uy = supp(U) =
{0,01,...,b,_1}. Let hg = h — 2. Then hy < |U|/2 — 2 < |Uy|. Fix a subsequence V of Uy
with [V| = hg. We have 2"U; +0(V) C > (U). Tt follows from Lemma 2.5 and the induction

h
hypothesis that |px(h"A)| = |>(U)| > |2"Uy| > |Ui| = r, and so |2"U;| = |U|, which
n
implies supp(U) =U; < G/K.

Therefore, by the group homomorphism theorem, we have A < G. O
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