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Abstract

Let {a,}22, be a strictly increasing sequence of nonnegative integers. We prove that for
F(z) = Y02 % and F(z)* = >°2, R(n)z", the condition limsup,_,., R(n) = A for
some positive integer A implies that liminf, .o R(n) < A — 2v/A + 1.

1. Introduction

Suppose that {a,}°, is a strictly increasing sequence of nonnegative integers. Let

F(z) = Zxa”

and

F(z)* = R(n)a".

The sequence {a,}2, is called an additive basis of order two if R(n) > 0 for every
nonnegative integer n and an asymptotic additive basis of order two if R(n) > 0 for every
sufficiently large n. The Erdés-Turdn conjecture says that for any additive basis of order
two {a,}22, the sequence {R(n)}>2, is unbounded. This conjecture can be rephrased
in number theoretic language: Let {a,}>°; be a strictly increasing sequence of integers.

Denote by R(n) the number of solution n = a; + a;, i.e.,
R(n) = #{(i,J) : n = a; + a;}.

Using this representation function the Erdds-Turan conjecture can be stated as follows,
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Conjecture 1 (Erds-Turan conjecture for bases of order two) Let {a,}>2, be a
strictly increasing sequence of nonnegative integers such that R(n) > 0 for every nonneg-
ative integer n. Then the sequence {R(n)}>2, is unbounded.

Grekos, Haddad, Helou and Pihko [3] proved that limsup,_,. R(n) > 6 for every
basis {a,}. Later Borwein, Choi and Chu [1] improved it to limsup,,_,., R(n) > 8.

If for some strictly increasing sequence nonnegative integers {a, }°°, the representa-
tion function R(n) > 0 for every n > ng (that is {a,};>, forms an asymptotic additive
basis), then the sequence {0,1,... ,ny — 1} U {a,}>2, forms a basis and if its represen-
tation function is denoted by R'(n) then R'(n) < R(n) + ng. Therefore, we get that the
above conjecture is equivalent to

Conjecture 2 (Erdds-Turdn conjecture for asymptotic bases of order 2) Sup-
pose that {a,}>2 | is a strictly increasing sequence of nonnegative integers such that
R(n) > 0 for every n > ng. Then the sequence {R(n)}2, is unbounded.

This second version can be formulated as:

Conjecture 3 (Erdds-Turdn conjecture for bounded representation function)
Suppose that {a,}° is a strictly increasing sequence of nonnegative integers and

limsup R(n) = A

n—oo

for some positive integer A. Then we have liminf, .., R(n) = 0.

In this note we give a non-trivial upper bound for liminf, .., R(n) if the sequence
{R(n)}>2, is bounded.

Theorem 1 Suppose that {a,}°, is a strictly increasing sequence of nonnegative inte-
gers and limsup,,_,  R(n) = A for some positive integer A. Then we have

liminf R(n) < A —2VA+ 1.

n—oo

2. Proof

If ay > N? for some N, then

4in: 1<n< N’ R(n)>0}< (Z)
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and therefore

#in: 1<n<N2% R(n)=0}> (NQH).

Hence it follows that if a,, > n? for infinitely many integers n, then R(n) = 0 for infinitely
many integers n. Then we have liminf,_., R(n) = 0 < A — 2y/A + 1, which proves the
theorem.

Therefore we may assume that
a, < n? for n > ny. (1)

Let us suppose that there exists a strictly increasing sequence of nonnegative integers
{a,}22, such that limsup, .. R(n) = A but liminf, .o R(n) > A — 2v/A 4+ 1. Then
there exist an integer n, and 0 < € < v/A for which A —2VA +1+¢ < R(n ) < A for

n > ny. Set C = A —+/A+ e. By elementary calculus we have f(z) = =0 C) < 1 for
every z € [A — 2v/A+ 1 + ¢, A, and therefore there exists a § > 0 such that
(R(n) — C)* < (1 —6)’R(n) for n > no. (2)
Let -
DI
n=1
Then .
F(2)* = Z R(n)z"
n=0
Let 1
y = (1 - N)e%ria — T627ria7

where N is a large integer. We give an upper and a lower bound for the integral

/O F(2) = C2"da (3)

to reach a contradiction. We get an upper bound for (3) by Cauchy’s inequality, Parseval’s
formula and (2):

1 00 1/2
/O \F(z)2—ZCz”yda:/ |Z C)z"|da < (/ VZ C)z"| da) -
00 1/2 1/2
(Z(R(n) — C)2r2n> < <01 + ( Z R(n ) <+ (1-0)F(%). (4)

n=0
Now here is the lower bound for (3). Obv10usly,

1 o0 1 1 [e’e)
/|F(z)2—ZC’z”|da2/ |F(z)2|da—/ 13 Cemda, (5)
0 n=0 0 0 n=0



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A30 4

where by Parseval’s formula

/0 |F?(2)|da =) 1™ = F(r?). (6)

Moreover

1 oo 1 /2 4
cz" da:C/ dazQC’/ dao.
/’Z | y T— T

Since
|1—2]* = (1—7cos 2ma)®+ (rsin 2ma)? = (1—7)*+2r(1—cos 2ma) = (1—7)*+4rsin® Ta,
we have |1 — z| > maz{;, a} for every 0 < a < 3. Hence

1/2

1 1/N 1
/ \ZCZ”M@ < 20(/ Nda) +/ —da < cglog N (7)
R — 0 1

/N &

for some ¢3 > 0. By (4), (6) and (7) we have

1 0
F(r*) — c3log N < / |F?(2) — ZC’Z”M& < (1= 8)F(r*) + c;
0

n=0

therefore
§F(r*) < cy + c3log N, (8)

but in view of (1)

00 VN
1
F(TQ) = Z’l“Qan Z Z(l — N)Qan > C4\/N
n=1

n=ni

for some positive ¢4, which is a contradiction to (8) if N is large enough. O
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