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Abstract

Let {an}∞n=1 be a strictly increasing sequence of nonnegative integers. We prove that for
F (x) =

∑∞
n=1 xan and F (x)2 =

∑∞
n=0 R(n)xn, the condition lim supn→∞R(n) = A for

some positive integer A implies that lim infn→∞R(n) ≤ A− 2
√

A + 1.

1. Introduction

Suppose that {an}∞n=1 is a strictly increasing sequence of nonnegative integers. Let

F (x) =
∞∑

n=1

xan

and

F (x)2 =
∞∑

n=0

R(n)xn.

The sequence {an}∞n=1 is called an additive basis of order two if R(n) > 0 for every
nonnegative integer n and an asymptotic additive basis of order two if R(n) > 0 for every
sufficiently large n. The Erdős-Turán conjecture says that for any additive basis of order
two {an}∞n=1 the sequence {R(n)}∞n=0 is unbounded. This conjecture can be rephrased
in number theoretic language: Let {an}∞n=1 be a strictly increasing sequence of integers.
Denote by R(n) the number of solution n = ai + aj, i.e.,

R(n) = #{(i, j) : n = ai + aj}.

Using this representation function the Erdős-Turán conjecture can be stated as follows,
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Conjecture 1 (Erdős-Turán conjecture for bases of order two) Let {an}∞n=1 be a
strictly increasing sequence of nonnegative integers such that R(n) > 0 for every nonneg-
ative integer n. Then the sequence {R(n)}∞n=0 is unbounded.

Grekos, Haddad, Helou and Pihko [3] proved that lim supn→∞R(n) ≥ 6 for every
basis {an}. Later Borwein, Choi and Chu [1] improved it to lim supn→∞R(n) ≥ 8.

If for some strictly increasing sequence nonnegative integers {an}∞n=1 the representa-
tion function R(n) > 0 for every n ≥ n0 (that is {an}∞n=1 forms an asymptotic additive
basis), then the sequence {0, 1, . . . , n0 − 1} ∪ {an}∞n=1 forms a basis and if its represen-
tation function is denoted by R′(n) then R′(n) ≤ R(n) + n0. Therefore, we get that the
above conjecture is equivalent to

Conjecture 2 (Erdős-Turán conjecture for asymptotic bases of order 2) Sup-
pose that {an}∞n=1 is a strictly increasing sequence of nonnegative integers such that
R(n) > 0 for every n ≥ n0. Then the sequence {R(n)}∞n=0 is unbounded.

This second version can be formulated as:

Conjecture 3 (Erdős-Turán conjecture for bounded representation function)
Suppose that {an}∞n=1 is a strictly increasing sequence of nonnegative integers and

lim sup
n→∞

R(n) = A

for some positive integer A. Then we have lim infn→∞R(n) = 0.

In this note we give a non-trivial upper bound for lim infn→∞R(n) if the sequence
{R(n)}∞n=0 is bounded.

Theorem 1 Suppose that {an}∞n=1 is a strictly increasing sequence of nonnegative inte-
gers and lim supn→∞R(n) = A for some positive integer A. Then we have

lim inf
n→∞

R(n) ≤ A− 2
√

A + 1.

2. Proof

If aN > N2 for some N , then

#{n : 1 ≤ n ≤ N2, R(n) > 0} ≤
(

N

2

)
,
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and therefore

#{n : 1 ≤ n ≤ N2, R(n) = 0} ≥
(

N + 1

2

)
.

Hence it follows that if an > n2 for infinitely many integers n, then R(n) = 0 for infinitely
many integers n. Then we have lim infn→∞R(n) = 0 ≤ A− 2

√
A + 1, which proves the

theorem.

Therefore we may assume that

an ≤ n2 for n ≥ n1. (1)

Let us suppose that there exists a strictly increasing sequence of nonnegative integers
{an}∞n=1 such that lim supn→∞R(n) = A but lim infn→∞R(n) > A − 2

√
A + 1. Then

there exist an integer n2 and 0 < ε <
√

A for which A − 2
√

A + 1 + ε ≤ R(n) ≤ A for

n ≥ n2. Set C = A −
√

A + ε. By elementary calculus we have f(x) = (x−C)2

x < 1 for

every x ∈ [A− 2
√

A + 1 + ε, A], and therefore there exists a δ > 0 such that

(R(n)− C)2 ≤ (1− δ)2R(n) for n ≥ n2. (2)

Let

F (z) =
∞∑

n=1

zan.

Then

F (z)2 =
∞∑

n=0

R(n)zn.

Let

z = (1− 1

N
)e2πiα = re2πiα,

where N is a large integer. We give an upper and a lower bound for the integral
∫ 1

0

|F (z)2 −
∞∑

n=0

Czn|dα (3)

to reach a contradiction. We get an upper bound for (3) by Cauchy’s inequality, Parseval’s
formula and (2):

∫ 1

0

|F (z)2−
∞∑

n=0

Czn|dα =

∫ 1

0

|
∞∑

n=0

(R(n)−C)zn|dα ≤
(∫ 1

0

|
∞∑

n=0

(R(n)− C)zn|2dα

)1/2

=

( ∞∑

n=0

(R(n)− C)2r2n

)1/2

≤
(

c1 + (1− δ)2(
∞∑

n=0

R(n)r2n)

)1/2

≤ c2 + (1− δ)F (r2). (4)

Now here is the lower bound for (3). Obviously,

∫ 1

0

|F (z)2 −
∞∑

n=0

Czn|dα ≥
∫ 1

0

|F (z)2|dα−
∫ 1

0

|
∞∑

n=0

Czn|dα, (5)



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A30 4

where by Parseval’s formula

∫ 1

0

|F 2(z)|dα =
∞∑

n=1

r2an = F (r2). (6)

Moreover ∫ 1

0

|
∞∑

n=0

Czn|dα = C

∫ 1

0

1

|1− z|dα = 2C

∫ 1/2

0

1

|1− z|dα.

Since

|1−z|2 = (1−r cos 2πα)2+(r sin 2πα)2 = (1−r)2+2r(1−cos 2πα) = (1−r)2+4r sin2 πα,

we have |1− z| ≥ max{ 1
N ,α} for every 0 < α < 1

2 . Hence

∫ 1

0

|
∞∑

n=0

Czn|dα ≤ 2C(

∫ 1/N

0

Ndα) +

∫ 1/2

1/N

1

α
dα ≤ c3 log N (7)

for some c3 > 0. By (4), (6) and (7) we have

F (r2)− c3 log N ≤
∫ 1

0

|F 2(z)−
∞∑

n=0

Czn|dα ≤ (1− δ)F (r2) + c2;

therefore
δF (r2) < c2 + c3 log N, (8)

but in view of (1)

F (r2) =
∞∑

n=1

r2an ≥

√
N∑

n=n1

(1− 1

N
)2an > c4

√
N

for some positive c4, which is a contradiction to (8) if N is large enough. !
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