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Abstract

The Frobenius problem is about finding the largest integer that is not contained in the
numerical semigroup generated by a given set of positive integers. In this paper, we derive a
solution to the Frobenius problem for sets of the form {mk,mk−1n,mk−2n2, . . . , nk}, where
m,n are relatively prime positive integers.

1. Introduction

The Frobenius number of a set of positive integers {a1, . . . , ak} (known as the generators)
is the largest integer that is not in the numerical semigroup generated by the generators.
This number is denoted by g(a1, . . . , ak). Finding the Frobenius number without any restric-
tions on the set of generators is known to be NP-hard [1]. However, James Joseph Sylvester
discovered a simple formula for the problem with two generators in 1884 [7]. Efficient algo-
rithms for the solution of the three generator case were discovered by Greenberg [3] in 1988.
Also of particular interest is a formula by Roberts for the Frobenius number for arithmetic
sequences [5], and a formula by Lewin for almost arithmetic sequences [4]. An extensive list
of literature on the problem can be found in [2].

In this note, we investigate the Frobenius number for geometric sequences, that is, se-
quences of the form {a, ar, ar2, . . . , ark} where a is an initial value and r the common ratio.
Since gcd(a, ar, ar2, . . . , ark) must equal one[6], then we have that a = mk and r = n/m
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where m,n are relatively prime integers. Our main result is the following:

Theorem. Let m,n, k be positive integers such that gcd(m,n) = 1. Then

g(mk,mk−1n,mk−2n2, . . . , nk) = nk−1(mn−m− n) +
(n− 1)m2(mk−1 − nk−1)

(m− n)
.
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2. Finding the Frobenius Number

We denote by A(m,n, k) the numerical semigroup generated by {mk,mk−1n,mk−2n2, . . . , nk}.
We will also denote g(mk,mk−1n,mk−2n2, . . . , nk) by G(m,n, k).

Lemma 1. For m,n relatively prime and k ≥ 1, G(m,n, k+1) ≥ (n−1)mk+1+nG(m,n, k).

Proof. We have to show that (n − 1)mk+1 + nG(m,n, k) is not in A(m,n, k + 1). Assume
instead that (n− 1)mk+1 + nG(m,n, k) ∈ A(m,n, k + 1). Then

(n− 1)mk+1 + nG(m,n, k) =
k+1∑

i=0

cim
ink+1−i, ci ∈ Z≥0

Taking both sides mod n we obtain −mk+1 ≡ ck+1mk+1. Since m,n are relatively prime,
we conclude ck+1 ≡ −1 mod n. Say that ck+1 = bn − 1 for some positive integer b. Then
we have

(n− 1)mk+1 + nG(m,n, k) =

[
k−1∑

i=0

cim
ink+1−i

]
+ ((b− 1)m + ck)m

kn + (n− 1)mk+1

and so

G(m,n, k) =

[
k−1∑

i=0

cim
ink−i

]
+ ((b− 1)m + ck)m

k

But this implies G(m,n, k) ∈ A(m,n, k), which is absurd. Thus we conclude that (n −
1)mk+1+nG(m,n, k) /∈ A(m,n, k+1), and so G(m,n, k+1) ≥ (n−1)mk+1+nG(m,n, k).

Lemma 2. For m,n relatively prime and k ≥ 1, G(m,n, k+1) ≤ (n−1)mk+1+nG(m,n, k).

Proof. We will show that if y > (n − 1)mk+1 + nG(m,n, k), then y ∈ A(m,n, k + 1). Let
y ≡ dmk+1 mod n, d ∈ [0, n − 1]. Let z = y − dmk+1. Since z ≡ 0 mod n, we have
z = nw for some non-negative integer w. But y > (n − 1)mk+1 + nG(m,n, k) implies
z > nG(m,n, k), and so w > G(m,n, k), and thus w ∈ A(m,n, k). But this means that
y = nw + dmk+1 ∈ A(m,n, k + 1), and so G(m,n, k + 1) ≤ (n− 1)mk+1 + nG(m,n, k)
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Proof of Theorem. We prove this by induction on k. For k = 1 this reduces to the result of
Sylvester in [7], G(m,n, 1) = mn−m− n. Suppose that it is true for k = t and thus

G(m,n, t) = nt−1(mn−m− n) +
(n− 1)m2(mt−1 − nt−1)

m− n
.

By Lemmas 1 and 2 we have

G(m,n, t + 1) = (n− 1)mt+1 + n

(
nt−1(mn−m− n) +

(n− 1)m2(mt−1 − nt−1)

(m− n)

)

= nt(mn−m− n) + (n− 1)

(
mt+1 +

nm2(mt−1 − nt−1)

(m− n)

)

= nt(mn−m− n) +
(n− 1)m2(mt − nt)

(m− n)
,

which is the theorem for k = t + 1.
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