# THE FROBENIUS NUMBER OF GEOMETRIC SEQUENCES 

Darren C. Ong ${ }^{1}$<br>Texas Christian University, Fort Worth, Texas, USA<br>d.ong@tcu.edu<br>Vadim Ponomarenko ${ }^{2}$<br>San Diego State, San Diego, California, USA<br>vadim@sciences.sdsu.edu

Received: 5/22/08, Accepted: 7/11/08, Published: 7/30/08


#### Abstract

The Frobenius problem is about finding the largest integer that is not contained in the numerical semigroup generated by a given set of positive integers. In this paper, we derive a solution to the Frobenius problem for sets of the form $\left\{m^{k}, m^{k-1} n, m^{k-2} n^{2}, \ldots, n^{k}\right\}$, where $m, n$ are relatively prime positive integers.


## 1. Introduction

The Frobenius number of a set of positive integers $\left\{a_{1}, \ldots, a_{k}\right\}$ (known as the generators) is the largest integer that is not in the numerical semigroup generated by the generators. This number is denoted by $g\left(a_{1}, \ldots, a_{k}\right)$. Finding the Frobenius number without any restrictions on the set of generators is known to be NP-hard [1]. However, James Joseph Sylvester discovered a simple formula for the problem with two generators in 1884 [7]. Efficient algorithms for the solution of the three generator case were discovered by Greenberg [3] in 1988. Also of particular interest is a formula by Roberts for the Frobenius number for arithmetic sequences [5], and a formula by Lewin for almost arithmetic sequences [4]. An extensive list of literature on the problem can be found in [2].

In this note, we investigate the Frobenius number for geometric sequences, that is, sequences of the form $\left\{a, a r, a r^{2}, \ldots, a r^{k}\right\}$ where $a$ is an initial value and $r$ the common ratio. Since $\operatorname{gcd}\left(a, a r, a r^{2}, \ldots, a r^{k}\right)$ must equal one[6], then we have that $a=m^{k}$ and $r=n / m$

[^0]where $m, n$ are relatively prime integers. Our main result is the following:
Theorem. Let $m, n, k$ be positive integers such that $\operatorname{gcd}(m, n)=1$. Then
$$
g\left(m^{k}, m^{k-1} n, m^{k-2} n^{2}, \ldots, n^{k}\right)=n^{k-1}(m n-m-n)+\frac{(n-1) m^{2}\left(m^{k-1}-n^{k-1}\right)}{(m-n)} .
$$

Acknowledgements. We are thankful to Stan Wagon for insightful suggestions concerning the exposition of this result and conversations about the Frobenius problem in general. We also wish to thank our anonymous referee.

## 2. Finding the Frobenius Number

We denote by $A(m, n, k)$ the numerical semigroup generated by $\left\{m^{k}, m^{k-1} n, m^{k-2} n^{2}, \ldots, n^{k}\right\}$. We will also denote $g\left(m^{k}, m^{k-1} n, m^{k-2} n^{2}, \ldots, n^{k}\right)$ by $G(m, n, k)$.

Lemma 1. For $m$, $n$ relatively prime and $k \geq 1, G(m, n, k+1) \geq(n-1) m^{k+1}+n G(m, n, k)$.

Proof. We have to show that $(n-1) m^{k+1}+n G(m, n, k)$ is not in $A(m, n, k+1)$. Assume instead that $(n-1) m^{k+1}+n G(m, n, k) \in A(m, n, k+1)$. Then

$$
(n-1) m^{k+1}+n G(m, n, k)=\sum_{i=0}^{k+1} c_{i} m^{i} n^{k+1-i}, c_{i} \in \mathbb{Z}_{\geq 0}
$$

Taking both sides $\bmod n$ we obtain $-m^{k+1} \equiv c_{k+1} m^{k+1}$. Since $m, n$ are relatively prime, we conclude $c_{k+1} \equiv-1 \bmod n$. Say that $c_{k+1}=b n-1$ for some positive integer $b$. Then we have

$$
(n-1) m^{k+1}+n G(m, n, k)=\left[\sum_{i=0}^{k-1} c_{i} m^{i} n^{k+1-i}\right]+\left((b-1) m+c_{k}\right) m^{k} n+(n-1) m^{k+1}
$$

and so

$$
G(m, n, k)=\left[\sum_{i=0}^{k-1} c_{i} m^{i} n^{k-i}\right]+\left((b-1) m+c_{k}\right) m^{k}
$$

But this implies $G(m, n, k) \in A(m, n, k)$, which is absurd. Thus we conclude that ( $n-$ 1) $m^{k+1}+n G(m, n, k) \notin A(m, n, k+1)$, and so $G(m, n, k+1) \geq(n-1) m^{k+1}+n G(m, n, k)$.

Lemma 2. For $m$, $n$ relatively prime and $k \geq 1, G(m, n, k+1) \leq(n-1) m^{k+1}+n G(m, n, k)$.

Proof. We will show that if $y>(n-1) m^{k+1}+n G(m, n, k)$, then $y \in A(m, n, k+1)$. Let $y \equiv d m^{k+1} \bmod n, d \in[0, n-1]$. Let $z=y-d m^{k+1}$. Since $z \equiv 0 \bmod n$, we have $z=n w$ for some non-negative integer $w$. But $y>(n-1) m^{k+1}+n G(m, n, k)$ implies $z>n G(m, n, k)$, and so $w>G(m, n, k)$, and thus $w \in A(m, n, k)$. But this means that $y=n w+d m^{k+1} \in A(m, n, k+1)$, and so $G(m, n, k+1) \leq(n-1) m^{k+1}+n G(m, n, k)$

Proof of Theorem. We prove this by induction on $k$. For $k=1$ this reduces to the result of Sylvester in [7], $G(m, n, 1)=m n-m-n$. Suppose that it is true for $k=t$ and thus

$$
G(m, n, t)=n^{t-1}(m n-m-n)+\frac{(n-1) m^{2}\left(m^{t-1}-n^{t-1}\right)}{m-n}
$$

By Lemmas 1 and 2 we have

$$
\begin{aligned}
G(m, n, t+1) & =(n-1) m^{t+1}+n\left(n^{t-1}(m n-m-n)+\frac{(n-1) m^{2}\left(m^{t-1}-n^{t-1}\right)}{(m-n)}\right) \\
& =n^{t}(m n-m-n)+(n-1)\left(m^{t+1}+\frac{n m^{2}\left(m^{t-1}-n^{t-1}\right)}{(m-n)}\right) \\
& =n^{t}(m n-m-n)+\frac{(n-1) m^{2}\left(m^{t}-n^{t}\right)}{(m-n)}
\end{aligned}
$$

which is the theorem for $k=t+1$.

## References

[1] J. L. Ramìrez Alfonsìn. Complexity of the Frobenius problem, Combinatorica 16(1) (1996), 143-147.
[2] J. L. Ramìrez Alfonsìn. The Diophantine Frobenius Problem, Oxford University Press, Oxford, 2005.
[3] H. Greenberg. Solution to a linear Diophantine equation for nonnegative integers, J. Algorithms 9 (1988), 343-353.
[4] M. Lewin. An algorithm for a solution of a problem of Frobenius, J. Reine Angew. Math. 276 (1975), 68-82.
[5] J. B. Roberts. Note on linear forms, Proc. Amer. Math. Soc. 7 (1956), 465-469.
[6] E. S. Selmer. On the linear diophantine problem of Frobenius, J. Reine Angew. Math. 293/294 (1977), 1-17.
[7] J. J. Sylvester. Question 7382, Mathematical Questions from the Educational Times 41 (1884), 21.


[^0]:    ${ }^{1}$ Undergraduate Mathematics Major
    ${ }^{2}$ Assistant Professor

