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Abstract

We study the exact extremal orders of compositions f(g(n)) of certain arithmetical functions,
including the functions σ(n), φ(n), σ∗(n) and φ∗(n), representing the sum of divisors of n,
Euler’s function and their unitary analogues, respectively. Our results complete, generalize
and refine known results.

1. Introduction

Let σ(n), φ(n) and ψ(n) denote – as usual – the sum of divisors of n, Euler’s function and
the Dedekind function, respectively, where ψ(n) = n

∏
p|n(1 + 1/p).

Extremal orders of the composite functions σ(φ(n)), φ(σ(n)), σ(σ(n)), φ(φ(n)), φ(ψ(n)),
ψ(φ(n)), ψ(ψ(n)) were investigated by L. Alaoglu and P. Erdős [1], A. Ma̧kowski and A.
Schinzel [9], J. Sándor [10], F. Luca and C. Pomerance [7], J.-M. de Koninck and F. Luca
[8], and others. For example, in paper [9] it is shown that

(1) lim inf
n→∞

σ(σ(n))

n
= 1,

(2) lim sup
n→∞

φ(φ(n))

n
=

1

2
,
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while in paper [7] the result

(3) lim sup
n→∞

σ(φ(n))

n log log n
= eγ

is proved, where γ is Euler’s constant.

It is the aim of the present paper to extend the study of exact extremal orders to other
compositions f(g(n)) of arithmetical functions, considering also the functions σ∗(n) and
φ∗(n), representing the sum of unitary divisors of n and the unitary Euler function, respec-
tively. Recall that d is a unitary divisor of n if d | n and (d, n/d) = 1. The functions σ∗(n)
and φ∗(n) are multiplicative and if n = pa1

1 · · · par
r is the prime factorization of n > 1, then

(4) σ∗(n) = (pa1
1 + 1) · · · (par

r + 1), φ∗(n) = (pa1
1 − 1) · · · (par

r − 1).

Note that σ∗(n) = σ(n), φ∗(n) = φ(n) for all squarefree n and that for every n ≥ 1,

(5) φ(n) ≤ φ∗(n) ≤ n ≤ σ∗(n) ≤ ψ(n) ≤ σ(n).

We give some general results which can be applied easily also for other special functions.
Our results complete, generalize and refine known results. They are stated in Section 2, their
proofs are given in Section 3. Some open problems are formulated in Section 4.

2. Main Results

Theorem 1. Let f be an arithmetical function. Assume that

(i) f is integral valued and f(n) ≥ 1 for every n ≥ 1,

(ii) f(n) ≤ n for every sufficiently large n (n ≥ n0),

(iii) f(p) = p− 1 for every sufficiently large prime p (p ≥ p0).

Then

(6) lim sup
n→∞

σ(f(n))

n log log n
= lim sup

n→∞

σ(f(n))

f(n) log log f(n)
= eγ,

(7) lim sup
n→∞

ψ(f(n))

n log log n
= lim sup

n→∞

ψ(f(n))

f(n) log log f(n)
=

6

π2
eγ,

(8) lim sup
n→∞

σ(f(n))

φ(f(n))(log log n)2
= lim sup

n→∞

σ(f(n))

φ(f(n))(log log f(n))2
= e2γ,
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(9) lim sup
n→∞

ψ(f(n))

φ(f(n))(log log n)2
= lim sup

n→∞

ψ(f(n))

φ(f(n))(log log f(n))2
=

6

π2
e2γ.

Theorem 1 can be applied for f(n) = φ(n) and f(n) = φ∗(n), the unitary Euler function.
For example, (6) and (7) give

(10) lim sup
n→∞

σ(φ∗(n))

n log log n
= eγ,

(11) lim sup
n→∞

ψ(φ(n))

n log log n
=

6

π2
eγ.

The weaker result lim sup
n→∞

ψ(φ(n))

n
=∞ is proved in [10].

Figure 1 is a plot of the functions σ(φ∗(n)) and eγn log log n for 10 ≤ n ≤ 10 000.

Theorem 2. Let g be an arithmetical function. Assume that

(i) g is integral valued and g(n) ≥ 1 for every n ≥ 1,

(ii) g(n) ≥ n for every sufficiently large n (n ≥ n0),

(iii) either g(p) = p+1 for every sufficiently large prime p (p ≥ p0), or g is multiplicative
and g(p) = p for every sufficiently large prime p (p ≥ p0).

Then

(12) lim inf
n→∞

φ(g(n)) log log n

n
= lim inf

n→∞

φ(g(n)) log log g(n)

g(n)
= e−γ.

Theorem 2 applies for g(n) = σ(n),σ∗(n),ψ(n),σ(e)(n), where σ(e)(n) represents the sum
of exponential divisors of n. We have for example

(13) lim inf
n→∞

φ(σ(n)) log log n

n
= e−γ.

Remark that according to a result of L. Alaoglu and P. Erdős [1], lim
n→∞

φ(σ(n))

n
= 0 on a

set of density 1.

Theorems 1 and 2 can be generalized as follows. If f(n) ≥ 1 is an integer valued
arithmetical function, let fk(n) denote its k-fold iterate, i.e., f0(n) = n, f1(n) = f(n),
..., fk(n) = f(fk−1(n)).
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Figure 1: Plot of σ(φ∗(n)) and eγn log log n for 10 ≤ n ≤ 10 000

Theorem 3. Let f be an arithmetical function. Suppose that

(i) f is integral valued and 1 ≤ f(n) ≤ n for every n ≥ 1,

(ii) f(p) = p− 1 for every prime p,

(iii) for every s, t ≥ 1 if s | t, then f(s) | f(t).

Then for every k ≥ 0,

(14) lim sup
n→∞

σ(fk(n))

fk(n) log log n
= eγ.

Theorem 3 applies for f(n) = φ(n), f(n) = (p1−1) · · · (pr−1), f(n) = (p1−1)a1 · · · (pr−
1)ar , where n = pa1

1 · · · par
r .

Theorem 4. Let g be an arithmetical function. Suppose that

(i) g is integral valued and g(n) ≥ n for every n ≥ 1,

(ii) g(p) = p + 1 for every prime p,



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A34 5

(iii) for every s, t ≥ 1 if s | t, then g(s) | g(t).

Then for every k ≥ 0,

(15) lim inf
n→∞

φ(gk(n)) log log n

gk(n)
= e−γ.

Theorem 4 applies for g(n) = ψ(n), g(n) = (p1 +1) · · · (pr +1), g(n) = (p1 +1)a1 · · · (pr +
1)ar , where n = pa1

1 · · · par
r .

For f(n) = φ(n) and g(n) = ψ(n) we have for every k ≥ 0,

(16) lim sup
n→∞

σ(φk(n))

φk(n) log log n
= eγ,

(17) lim inf
n→∞

φ(ψk(n))

ψk(n) log log n
= e−γ.

Compare Theorems 1–4 with the following deep results:

– for k ≥ 2 the normal order of
σk(n)

σk−1(n)
is keγ log log log n, i.e. σk(n) ∼ keγσk−1(n) log log log n

on a set of density 1, cf. P. Erdős [2],

– for k ≥ 1 the normal order of
φk(n)

φk+1(n)
is keγ log log log n, proved by P. Erdős, A. Granville,

C. Pomerance and C. Spiro [4].

– the normal order of
φ(σ(n))

σ(n)
is e−γ/ log log log n and the normal order of

σ(φ(n))

φ(n)
is

eγ log log log n, see L. Alaoglu and P. Erdős [1].

Note that the average orders of φ(n)/φ2(n) and φ2(n)/φ(n) were investigated by R.
Warlimont [15].

Theorem 5. Let h(n) be an arithmetical function such that n ≤ h(n) ≤ σ(n) for every
sufficiently large n (n ≥ n0). Then

(18) lim inf
n→∞

h(σ(n))

n
= 1.

For h(n) = σ(n) this is formula (1), for h(n) = ψ(n) it is due by J. Sándor [10], Theorem
3.30. Theorem 5 applies also for h(n) = σ∗(n),σ(e)(n).

Theorem 6.

(19) lim sup
n→∞

φ(φ∗(n))

n
= lim sup

n→∞

φ∗(φ(n))

n
= lim sup

n→∞

φ∗(φ∗(n))

n
= 1.
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Compare the results of (19) with (2).

Figure 2 is a plot of the functions φ∗(φ(n)) and n for 1 ≤ n ≤ 10 000.

Figure 2: Plot of φ∗(φ(n)) and n for 1 ≤ n ≤ 10 000

Concerning φ∗(φ∗(n)) and σ∗(φ∗(n)) we also prove:

Theorem 7.

(20) lim inf
n→∞

φ∗(φ∗(n))

log n log log n
> 0.

Theorem 8.

(21) lim inf
n→∞

σ∗(φ∗(n))

n
≤ inf

{
σ∗(φ∗(m/2))

m/2
: 2 | m,m &= 2", & ≥ 2

}
,

(22) lim inf
n→∞

σ∗(φ∗(n))

n
≤ 1

4
+ ε,

where ε =
3

4(232 − 1)
≈ 0.17 · 10−9.
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3. Proofs

The proofs of Theorems 1 and 2 are similar to the proof of (3) given in [7], using a simple
argument based on Linnik’s theorem, which states that if (k, &) = 1, then there exists a
prime p such that p ≡ & (mod k) and p) kc, where c is a constant (one can take c ≤ 11).

Proof of Theorem 1. To obtain the maximal orders of the functions σ(n)/n, ψ(n)/n,
σ(n)/φ(n) and ψ(n)/φ(n), which are needed in the proof, we apply the following result
of L. Tóth and E. Wirsing, see [13], Corollary 1:

If F is a nonnegative real-valued multiplicative arithmetic function such that for each
prime p,

a) ρ(p) := supν≥0 F (pν) ≤ (1− 1/p)−1, and

b) there is an exponent ep = po(1) satisfying F (pep) ≥ 1 + 1/p,

then

lim sup
n→∞

F (n)

log log n
= eγ

∏

p

(
1− 1

p

)
ρ(p).

For F (n) = σ(n)/n (with ρ(p) = (1− 1/p)−1, ep = 1), F (n) = ψ(n)/n (with ρ(p) = 1 +
1/p, ep = 1), F (n) =

√
σ(n)/φ(n) (with ρ(p) = (1−1/p)−1, ep = 1) and F (n) =

√
ψ(n)/φ(n)

(with ρ(p) =
√

(p + 1)/(p− 1), ep = 1), respectively, we obtain

(23) lim sup
n→∞

σ(n)

n log log n
= eγ,

(24) lim sup
n→∞

ψ(n)

n log log n
=

6

π2
eγ,

(25) lim sup
n→∞

σ(n)

φ(n)(log log n)2
= e2γ,

(26) lim sup
n→∞

ψ(n)

φ(n)(log log n)2
=

6

π2
e2γ.

Note that (23) is the result of T. H. Gronwall [5], (26) is due to S. Wigert [16] and (25)
is better than lim supn→∞ σ(n)/φ(n) =∞ given in [11].

We now prove (6). Using assumption (ii),

&f := lim sup
n→∞

σ(f(n))

n log log n
≤ &′f := lim sup

n→∞

σ(f(n))

f(n) log log f(n)
≤ lim sup

m→∞

σ(m)

m log log m
= eγ,
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according to (23). For every n, let pn be the least prime such that pn ≥ p0 and pn ≡ 1 (mod
n). Here n | pn − 1 and by Linnik’s theorem pn ) nc, so log log pn ∼ log log n. Hence, using
condition (iii),

σ(f(pn))

pn log log pn
=

σ(pn − 1)

pn log log pn
∼ σ(pn − 1)

(pn − 1) log log n
≥ σ(n)

n log log n
,

applying that if s | t, then σ(s)/s =
∑

d|s 1/d ≤
∑

d|t 1/d = σ(t)/t. We obtain that &f ≥ eγ,
therefore eγ ≤ &f ≤ &′f ≤ eγ, that is &f = &′f = eγ.

The proofs of (7), (8), (9). Analogous to the method of above taking into account (24),
(25), (26) and that s | t implies ψ(s)/s ≤ ψ(t)/t, σ(s)/φ(s) ≤ σ(t)/φ(t), ψ(s)/φ(s) ≤
ψ(t)/φ(t). !

Proof of Theorem 2. This is similar to the proof of Theorem 1. We use a result of E. Landau
[6],

(27) lim inf
n→∞

φ(n) log log n

n
= e−γ.

By condition (ii) and using that the function (log log x)/x is decreasing for x ≥ x0,

&g := lim inf
n→∞

φ(g(n)) log log n

n
≥ &′g := lim infn→∞

φ(g(n)) log log g(n)
g(n)

≥ lim infm→∞
φ(m) log log m

m = e−γ,

according to (27).

Assume that g(p) = p+1 for every p ≥ p0. For every n, let qn be the least prime such that
qn ≥ p0 and qn ≡ −1 (mod n). Here n | qn +1 and by Linnik’s theorem log log qn ∼ log log n.
Hence

φ(g(qn)) log log qn

qn
=

φ(qn + 1) log log qn

qn
∼ φ(qn + 1) log log n

qn + 1
≤ φ(n) log log n

n
,

applying that if s | t, then φ(s)/s ≥ φ(t)/t. We obtain that e−γ ≥ &g, therefore e−γ ≤ &′g ≤
&g ≤ e−γ, that is &g = &′g = e−γ.

Now suppose that g is multiplicative and g(p) = p for every prime p ≥ p0. As it
is known, in (27) the liminf is attained for n = nk = p1 · · · pk, the product of the first
k primes, when k → ∞. Since g(nk) = g(p1 · · · pk) = g(p1) · · · g(pk) = p1 · · · pk = nk,
limk→∞

φ(g(nk)) log log nk

nk
= limk→∞

φ(nk) log log nk

nk
= e−γ. !

Proof of Theorem 3. By condition (i), f2(n) = f(f(n)) ≤ f(n) ≤ n and fk(n) ≤ n for every
k ≥ 0. Therefore,

&k := lim sup
n→∞

σ(fk(n))

fk(n) log log n
≤ lim sup

n→∞

σ(fk(n))

fk(n) log log fk(n)
≤ &0 := lim sup

m→∞

σ(m)

m log log m
= eγ,
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by (23), for every k ≥ 0.

By (iii), if s | t, then f(s) | f(t), f2(s) | f2(t) and fk(s) | fk(t) for every k ≥ 0. Now
let k ≥ 1. If pn is the least prime such that pn ≡ 1 (mod n), cf. proof of Theorem 1, then
n | pn − 1 and fk−1(n) | fk−1(pn − 1). Therefore, applying also (ii),

σ(fk(pn))

fk(pn) log log pn
∼ σ(fk−1(pn − 1))

fk−1(pn − 1) log log n
≥ σ(fk−1(n))

fk−1(n) log log n
= &k−1,

Hence &k ≥ &k−1, and it follows &k ≥ &k−1 ≥ ... ≥ &0, &0 ≤ &k ≤ &0, &k = &0 = eγ. !

Proof of Theorem 4. Similar to the proof of Theorem 3. By condition (i), g2(n) = g(g(n)) ≥
g(n) ≥ n and gk(n) ≥ n for every k ≥ 0. Therefore,

Lk := lim inf
n→∞

φ(gk(n)) log log n

gk(n)
≥ lim infn→∞

φ(gk(n)) log log gk(n)
gk(n)

≥ L0 := lim supm→∞
φ(m) log log m

m = e−γ,

by (27), for every k ≥ 0.

By (iii), if s | t, then g(s) | g(t), gk(s) | gk(t) for every k ≥ 0. Now let k ≥ 1. If qn is
the least prime such that qn ≡ −1 (mod n), cf. proof of Theorem 2, then n | qn + 1 and
gk−1(n) | gk−1(qn + 1). Therefore, applying also (ii),

φ(gk(qn)) log log qn

gk(qn)
∼ φ(gk−1(qn + 1)) log log n

gk−1(qn + 1)
≤ φ(gk−1(n)) log log n

gk−1(n)
= Lk−1,

Hence Lk ≤ Lk−1, and it follows Lk ≤ Lk−1 ≤ ... ≤ L0, L0 ≤ Lk ≤ L0, Lk = L0 = e−γ. !

Proof of Theorem 5. By h(n) ≥ n we have h(σ(n)) ≥ σ(n) ≥ n, h(σ(n))/n ≥ 1 (n ≥ n0).
We use that for a fixed integer a > 1 and with p prime, for N(a, p) = ap−1

a−1 and for an
arithmetical function satisfying φ(n) ≤ F (n) ≤ σ(n) (n ≥ n0) one has

(28) lim
p→∞

F (N(a, p))

N(a, p)
= 1,

cf., for example, D. Suryanarayana [12].

For p, q primes, σ(qp−1) = qp−1
q−1 = N(q, p). We obtain, using (28),

h(σ(qp−1))

qp−1
=

h(N(q, p))

N(q, p))
· qp − 1

qp−1(q − 1)
→ q

q − 1
, as p→∞,

where q
q−1 < 1 + ε for each ε > 0 if q ≥ q(ε). !

Proof of Theorem 6. We have φ(n) ≤ n and φ∗(n) ≤ n for all n ≥ 1, and hence φ(φ∗(n)) ≤
φ∗(n) ≤ n. Similarly, φ∗(φ∗(n)) ≤ n.
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If n = 2p, p prime, then φ∗(n) = 2p − 1 and

φ(φ∗(n))

n
=

φ(2p − 1)

2p
=

φ(2p − 1)

2p − 1
· 2p − 1

2p
→ 1, p→∞,

using (28) for a = 2 and F (n) = φ(n).

Similarly the relation holds for φ∗(φ∗(n)), using (28) for F (n) = φ∗(n).

For φ∗(φ(n)) this can not be applied and we need a special treatment.

Let M =
∏

p≤x

pap , where ap =

{
[2 log x], if p < x1/2,

4, if p ∈ [x1/2, x]
(p prime).

Let q be the least prime of the form q ≡M + 1 (mod M2). By Linnik’s theorem one has
q )M c, where c satisfies c ≤ 11.

Now, put n = q. Then φ(n) = q− 1 = M(1+kM) = MN for some k. Thus (M,N) = 1,

so N is free of prime factors ≤ x. Since φ∗ is multiplicative,
φ∗(φ(n))

n
=

φ∗(M)

M
· φ∗(N)

N
·

MN

1 + MN
. Here

MN

1 + MN
→ 1, as n = q →∞, so it is sufficient to study

φ∗(M)

M
and

φ∗(N)

N
.

Clearly,
φ∗(M)

M
=

∏

p≤x

pap − 1

pap
=

∏

p≤x

(
1− 1

pap

)
. If p < x1/2, then pap ≥ 2[2 log x] > x for

sufficiently large x. Otherwise, pap ≥ (x1/2)4 = x2 > x again. So pap > x anyway, implying
that

(29)
ϕ∗(M)

M
>

(
1− 1

x

)π(x)

= 1 + O
(

1

log x

)
.

Remark that M <
∏

p<x1/2

p2 log x ·
∏

p≤x

p4 < exp
(
O(x1/2 log x + x)

)
= exp

(
O(x)

)
by the

well-known fact:
∏

p≤a

p = eO(a). From q )M c′
and M < exp

(
O(x)

)
, by N )M10 it follows

also that

(30) N < exp
(
O(x)

)
.

Let now N =
k∏

i=1

qbi
i be the prime factorization of N . We have log N =

k∑

i=1

bi log qi >

(log x)
k∑

i=1

bi, as qi > x for all 1 ≤ i ≤ k. Here
k∑

i=1

bi ≥ k, thus k <
log N

log x
) x

log x
by (30).

Thus

(31)
φ∗(N)

N
=

k∏

i=1

(
1− 1

qbi
i

)
>

(
1− 1

x

)k

≥
(

1− 1

x

)O(x/ log x)

= 1 + O
(

1

log x

)
.
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By (29) and (31),
φ∗(φ(n))

n
> 1+O

(
1

log x

)
for sufficiently large n. As n) exp

(
O(x)

)
,

we get log n) x, so
φ∗(φ(n))

n
→ 1, as n = q →∞.

As
φ∗(φ(n))

n
≤ φ(n)

n
≤ 1, the proof is ready. !

Proof of Theorem 7. For all n ≥ 1, φ∗(n) ≥ P (n) − 1, where P (n) is the greatest prime
factor of n. Let n = 2p, p prime, then φ∗(φ∗(n)) = φ∗(2p − 1) ≥ P (2p − 1)− 1. Now we use
the following result of P. Erdős and T. N. Shorey [3]: P (2p− 1) ≥ cp log p for every prime p,
where c > 0 is an absolute constant, and obtain

(32)
φ∗(φ∗(n))

log n log log n
≥ cp log p− 1

p log 2(log p + log log 2)
→ c

log 2
, p→∞,

and the result follows. !

Proof of Theorem 8. To prove (21), remark that if 2 | m and m &= 2" (& ≥ 2), then m/2
is not a power of 2, so φ∗(m/2) will be even (having at least an odd prime divisor). Since
2 | φ∗(m/2), one can write σ∗(2φ∗(m/2)) < 2σ∗(φ∗(m/2)). Let p be a sufficiently large prime
(p > p0), then (p,m/2) = 1 and obtain

σ∗(φ∗(mp/2))

mp/2
=

σ∗((p− 1)φ∗(m/2))

mp/2
≤

≤ σ∗((p− 1)/2)σ∗(2φ∗(m/2))

mp/2
≤ σ∗((p− 1)/2)

p/2
· σ∗(φ∗(m/2))

m/2

by the above remark.

It is known that
F ((p− 1)/2)

(p− 1)/2
→ 1, as p → ∞, for F (n) = σ(n), see [9] and it follows

that it holds also for F (n) = σ∗(n) and obtain (21).

Now for (22) let m = 4(232 − 1) = 4F0F1F2F3F4 be 4 times the product of the known

Fermat primes. Then φ∗(m/2) = φ∗(2F0F1F2F3F4) = 21+2+4+8+16 = 231,
σ∗(φ∗(m/2))

m/2
=

231 + 1

2(232 − 1)
=

1

4
+ ε, with the given value of ε. !

4. Open Problems

Problem 1. Are the results of Theorem 1 valid if f(n) ≤ n for each n ≥ n0 and f(p) = p
for each prime p ≥ p0?

Let n = pν1
1 · · · pνr

r > 1 be an integer. An integer a is called regular (mod n) if there is an
integer x such that a2x ≡ a (mod n). Let +(n) denote the number of regular integers a (mod
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n) such that 1 ≤ a ≤ n. Here +(n) = (φ(pν1
1 ) + 1) · · · (φ(pνr

r ) + 1), in particular +(p) = p for
every prime p, cf. L. Tóth [14].

Does Theorem 1 hold for f(n) = +(n)?

Problem 2. The method of proof of Theorems 1–4 does not work in the cases of σ∗(φ(n))
and σ∗(φ∗(n)), for example. We have

lim sup
n→∞

σ∗(φ(n))

n log log n
≤ lim sup

n→∞

σ∗(φ(n))

φ(n) log log φ(n)
≤ lim sup

n→∞

σ∗(n)

n log log n
=

6

π2
eγ,

cf. [13], but the second part of the proof can not be applied, because n | m does not imply
σ∗(n)/n ≤ σ∗(m)/m.

What are the maximal orders σ∗(φ(n)) and σ∗(φ∗(n))?

Figure 3 is a plot of the function σ∗(φ(n)) for 1 ≤ n ≤ 10 000.

Figure 3: Plot of σ∗(φ(n)) for 1 ≤ n ≤ 10 000

Problem 3. Note that

lim sup
n→∞

σ∗(σ(n))

n
= lim sup

n→∞

σ(σ∗(n))

n
= lim sup

n→∞

σ∗(σ∗(n))

n
=∞,
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since for n = nk = p1 · · · pk (the product of the first k primes),

σ∗(σ(nk))

nk
≥ σ(nk)

nk
= (1 + 1/p1) · · · (1 + 1/pk)→∞, k →∞;

similarly, the other relations hold.

What are the maximal orders of σ(σ∗(n)), σ∗(σ(n)), σ∗(σ∗(n))?

Problem 4. Also,

lim inf
n→∞

φ(φ∗(n))

n
= lim inf

n→∞

φ∗(φ(n))

n
= lim inf

n→∞

φ∗(φ∗(n))

n
= 0,

which follow at once by taking n = nk = p1 · · · pk. Here φ∗(φ(nk)) = φ∗((p1−1) · · · (pk−1)) ≤
(p1 − 1) · · · (pk − 1)− 1, and hence

φ∗(φ(nk))

nk
≤ (p1 − 1) · · · (pk − 1)− 1

p1 · · · pk
<

(
1− 1

p1

)
· · ·

(
1− 1

pk

)
→ 0, k →∞,

and similarly for the other relations.

What are the minimal orders of φ(φ∗(n)), φ∗(φ(n)), φ∗(φ∗(n))?

5. Maple Notes

The plots were produced using Maple. The functions σ∗(n) and φ∗(n) were generated by the
following procedures:

sigmastar:= proc(n) local x, i: x:= 1: for i from 1 to nops(ifactors(n)[ 2 ]) do
p_i:=ifactors(n)[2][i][1]: a_i:=ifactors(n)[2][i][2];
x := x*(1+p_i^(a_i)): od: RETURN(x) end; # sum of unitary divisors

phistar:= proc(n) local x, i: x:= 1: for i from 1 to nops(ifactors(n)[ 2 ]) do
p_i:=ifactors(n)[2][i][1]: a_i:=ifactors(n)[2][i][2];
x := x*(p_i^(a_i)-1): od: RETURN(x) end; # unitary Euler function
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[14] L. Tóth, Regular integers (mod n), Annales Univ. Sci. Budapest., Sect. Comp., 29 (2008), 263-275, see
http://front.math.ucdavis.edu/0710.1936

[15] R. Warlimont, On the iterates of Euler’s function, Arch. Math., 76 (2001), 345-349.

[16] S. Wigert, Note sur deux fonctions arithmètiques, Prace Mat.-Fiz., 38 (1931), 23-29.


