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Abstract

We consider two complementary classes of subsets in Zn. A non-empty subset U of Zn is
universal if, for all x ∈ U and all 0 < ! ≤ n

2 , at least one of x± ! (mod n) is in U . A proper
subset M of Zn is middle-inclusive if, for all a, b ∈M , all solutions x of 2x ≡ a + b (mod n)
are in M . We derive a formula for β(n), the minimum cardinality of a universal set modulo
n, and examine how universal sets arise in the context of the Vector Game, studied in an
earlier paper by Nedev and Muthukrishnan.

1. Introduction

In this paper we introduce the concept of a universal subset of Zn, and derive a formula for
β(n), the minimal cardinality of a universal set modulo n, in terms of the factorization of n.

We also study the connection between universal sets and the Vector Game, a two-player
game in which one player attempts to minimize, and the other to maximize the cardinality
of the set of positions visited during the course of the game. This game was studied for the
first time in [2, 3]. We prove that the set of positions visited is β(n) when both players play
optimally.

2. Universal and Middle-inclusive Sets

Definition. A nonempty subset S of Zn is called universal modulo n if, for each x ∈ S and
for each magnitude ! ∈ N, 1 ≤ ! ≤

⌊
n
2

⌋
, at least one of {x + ! (mod n), x− ! (mod n)} is in

S. Let β(n) denote the minimum cardinality of a universal set modulo n.

Note that Zn is trivially universal. Furthermore, when n is odd, Zn \ {y} is universal for
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any y ∈ Zn.

Definition. A proper subset S of Zn is called middle-inclusive modulo n if, for all a, b ∈ S,
when x ∈ Zn is a solution of 2x ≡ a + b (mod n), x ∈ S. In other words, if a, b ∈ S, then so
is their midpoint x.

Notice that for a = b, the congruence 2x ≡ a + b (mod n) has only the trivial solution a
when n is odd, and has exactly one non-trivial solution, a + n

2 , when n is even. For distinct
a and b, there is exactly one solution when n is odd, and either zero or two solutions when
n is even.

Note that ∅ is trivially middle-inclusive. Furthermore, when n is odd, {y} is middle-
inclusive for any y ∈ Zn.

Lemma 1. S is universal modulo n if and only if Zn \ S is middle-inclusive modulo n.

Proof. (⇒) Let S ⊆ Zn be universal modulo n. Now S (= ∅, so Zn\S ! Zn. Let a, b ∈ Zn\S.
Let x ∈ Zn be a solution to 2x ≡ a + b (mod n), and assume by way of contradiction that
x (∈ Zn \ S. Then x ∈ S. Now one of x − a (mod n),−x + a (mod n) will be ≤

⌊
n
2

⌋
; we

assume, without loss of generality, that x − a (mod n) ≤
⌊

n
2

⌋
. Then since S is universal,

x + (x − a) ≡ 2x − a ≡ b (mod n) or x − (x − a) ≡ a (mod n) is in S, contradicting our
choice of a and b. Therefore Zn \ S is middle-inclusive modulo n.

(⇐) Let S ⊆ Zn be such that Zn \ S is middle-inclusive modulo n. Now Zn \ S ! Zn, so
S (= ∅. Let x ∈ S, ! ∈ {1, 2, . . . ,

⌊
n
2

⌋
}. Assume by way of contradiction that x + ! (mod n),

x − ! (mod n) are in Zn \ S. Since Zn \ S is middle-inclusive, and since x is a solution to
2x ≡ (x + !) + (x − !) (mod n), it follows that x ∈ Zn \ S, contradicting our choice of x.
Therefore S is universal modulo n.

Corollary 2. β(n) = n−max |S|, where S ranges over all middle-inclusive sets modulo n.

3. Minimum Size Universal Sets

Theorem 3. For any positive integer n,

β(n) =





n if n = 2k for some k > 0,

p−1
p · n otherwise, where p is the smallest odd prime factor of n.

Note that β(n) is non-monotonic; for example, for n = 1 . . . 16, β(n) is 1, 2, 2, 4, 4, 4, 6,
8, 6, 8, 10, 8, 12, 12, 10, 16. This is a new sequence in the Encyclopedia of Integer Sequences [1]
with reference to [2].

We will prove Theorem 3 by characterizing all non-empty middle-inclusive sets modulo n.
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Definition. Let d be a positive integer such that d | n. Let 0 ≤ r < d be an integer. We
let Cn(r, d) =

{
r + id | 0 ≤ i < n

d

}
⊆ Zn be the arithmetic progression beginning at r with

common difference d.

Lemma 4. Let n be a positive integer, and d > 2 an odd divisor of n. Then for all integers r,
with 0 ≤ r < d, Cn(r, d) is a middle-inclusive subset of Zn. Conversely, if M is a non-empty
middle-inclusive subset of Zn, then there exists an odd positive integer d with d | n, and an
integer 0 ≤ r < d, such that M = Cn(r, d).

Proof. (⇒) Let S = Cn(r, d). Since d > 2, S ! Zn. Let a, b ∈ S. Then a = r + id, b =
r + jd, 0 ≤ i, j < n

d . If x ∈ Zn is a solution to 2x ≡ a + b (mod n), then 2x ≡ 2r + (i + j)d

(mod n). It follows that x ≡ r + i+j
2 d (mod n) or x ≡ r + i+j

2 d + n
2 ≡ r +

i+j+n
d

2 d (mod n),
and so x ∈ S. Therefore S is middle-inclusive.

(⇐) Let M be a non-empty middle-inclusive subset of Zn.

Case 1) |M | = 1. Denote M = {r}. Note that n is odd; otherwise, r and r + n
2 (mod n)

would both be in M . Thus M = Cn(r, n).

Case 2) |M | > 1. Denote M = {i0, i1, . . . , i!−1}, where 0 ≤ i0 < i1 < . . . < i!−1 ≤ n − 1.
Since M is middle-inclusive, ! = |M | < n. We will adopt the convention for the
rest of this proof that all index arithmetic is performed modulo !; that is, i! = i0.

(For the intuition: let a round table have n symmetric positions labeled as 0, 1, . . . , n−
1 in clockwise direction.) For i, j ∈ {0, 1, . . . , n−1}, let d+(i, j) denote the distance
from i to j traveling in the clockwise direction. Thus,

d+(i, j) =

{
j − i if i ≤ j,
n− (i− j) otherwise.

Suppose there exists an index j ∈ {0, 1, . . . , ! − 1} such that d+(ij, ij+1) is even.
Since M is middle-inclusive, the midpoint between ij and ij+1 is in M , contradict-
ing ij and ij+1 being consecutive elements of M . Thus d+(ij, ij+1) is odd for all j.
Now, consider three consecutive elements of M , ij−1, ij, ij+1, j ∈ {0, 1, . . . , ! − 1}.
Since d+(ij−1, ij) and d+(ij, ij+1) are odd, their sum d+(ij−1, ij+1) is even. Suppose
d+(ij−1, ij) (= d+(ij, ij+1). Then the midpoint between ij−1 and ij+1 is not ij. How-
ever, since M is middle-inclusive, this midpoint is in M , contradicting the three
elements being consecutive. Thus d+(ij−1, ij) = d+(ij, ij+1). Since this is true for
all j, it follows that d = d+(i0, i1) | n.

Let r = i0. Then M = {r, r + d, r + 2d, . . . , r + (n
d − 1)d} = Cn(r, d).

Proof of Theorem 3. We have two cases to consider.

Case 1) n = 2k for some k > 0. Suppose there exists a non-empty middle-inclusive subset
of Zn. Then by Lemma 4, there must exist an odd divisor d > 2 of n, contradicting
n = 2k. Therefore, the only middle-inclusive subset of Zn is M = ∅. It follows that
S = Zn \ M = Zn is the only universal subset of Zn. Thus β(n) = n.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A45 4

Case 2) n (= 2k. By Lemma 4, all non-empty middle-inclusive subsets of Zn are of the form
Cn(r, d), where d > 2 is odd and d | n. The largest of these subsets is Cn(r, p),
where 0 ≤ r < d and p is the smallest odd prime factor of n. Then Zn \ Cn(r, p) is
the smallest universal subset, and thus β(n) = n− |Cn(r, p)| = n− n

p = p−1
p · n.

4. An Application for Small Universal Sets: The Vector Game

In [2], the following two-player game was introduced, which we will here call the maximal
variant of the Vector Game. The game is played on a circular board with n positions around
its circumference labelled from 0 to n − 1. A token is initially placed at position 0; as the
game proceeds, the token will mark the current position, denoted i. A round consists of the
first player, Magnus (from magnitude), choosing an integer magnitude 0 < ! ≤ n

2 , followed
by the second player, Derek (from direction), choosing a direction + or −. The token is
then moved to i + ! (mod n) or i− ! (mod n) according to Derek’s choice. Magnus aims to
maximize the cardinality of the set of positions visited over the course of the game; Derek
aims to minimize this same quantity.

In the minimal variant of the game which has been introduced in [3], instead of maximizing
the eventual set of occupied positions, Magnus’s goal was to minimize the set of occupied
positions. From the results in [3], we only know approximately the size of the set of occupied
positions if both players play optimally.

Returning to the maximal variant, in [2] the game was studied with an emphasis on finding
algorithmic strategies for the players to achieve their goals in a minimal number of rounds.
A simple formula in terms of the prime factorization of n was given in [2] for the size of the
set of visited positions when both players play optimally. In this paper we give a simpler
proof of the result.

Proposition 5. The set of visited positions has size β(n) when both players play optimally.

Proof. Suppose U is a universal set containing the current position. Consider the following
strategy for Derek. Given the current position i and a magnitude ! chosen by Magnus, Derek
chooses a direction such that that the next position is also in U ; this is possible as one of x±!
(mod n) ∈ U by the definition of a universal set. As any universal set may be translated
to include the initial position 0, Derek can follow this strategy from the beginning of the
game. Since the token never visits a position outside of U , at most β(n) positions are visited
irrespective of Magnus’s strategy.

Conversely, consider the following strategy for Magnus. For each position j, Magnus
maintains a counter kj, initially set to 1. Given the current position i, Magnus chooses the
value of kj for the magnitude, and then updates ki ← ki + 1 (mod

⌊
n
2

⌋
). In this manner,

Magnus chooses a different magnitude (modulo
⌊

n
2

⌋
) each time the same position is visited.
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Let S be the set of positions that are visited infinitely often in a continuous game. Since
there are finitely many positions, the set S is non-empty. We claim that S is universal.
Let j ∈ S. Since the token visits position j infinitely many times, Magnus chooses each
magnitude 0 < ! ≤ n

2 for position j infinitely many times. Consequently, one of j ± !
(mod n) is visited infinitely many times, and so belongs to S. It follows that S is universal.

Therefore, |S| ≥ β(n), and since S is a subset of the set of visited positions, at least β(n)
positions are visited.

Note that to achieve β(n) both players need to know the smallest prime factor of n. When
n has no small factors, this becomes equivalent to factoring n. A player that can factor n
has a definite advantage over a player that cannot factor n. To our knowledge, this game is
the first game in which playing well requires the ability to factor.

Acknowledgments

We are grateful to the following people and institutions for their advice, discussions and
support: Valerie King, Nikola S. Nikolov, Uriel Feige, S. Muthu Muthukrishnan, Mario
Szegedy and the DIMACS Center, Jeffrey O. Shallit and the School of Computer Science at
the University of Waterloo, and Noam Sturmwind for editing assistance.

References

[1] N. Sloane. On line Encyclopedia of Sequences. http://www.research.att.com/ njas/sequences/

[2] Nedev, Zhivko and Muthukrishnan, S., The Magnus-Derek Game, Theoretical Computer Science, Vol-
ume 393, Issues 1-3, 20 March 2008, Pages 124-132.

[3] Nedev, Zhivko and Quas, Anthony, Balanced sets and the vector game, International Journal of Number
Theory, 4 (2008), Pages 339-347.


