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Abstract

Let γ(k, p) denote Waring’s number (mod p) and δ(k, p) denote the ± Waring’s number
(mod p). We use sum-product estimates for |nA| and |nA − nA|, following the method of
Glibichuk and Konyagin, to estimate γ(k, p) and δ(k, p). In particular, we obtain explicit
numerical constants in the Heilbronn upper bounds: γ(k, p) ≤ 83 k1/2, δ(k, p) ≤ 20 k1/2 for
any positive k not divisible by (p− 1)/2.

1. Preliminaries

Let p be a prime and k a positive integer. The smallest s such that the congruence

xk
1 + xk

2 + · · · + xk
s ≡ a (mod p) (1.1)

is solvable for all integers a is called Waring’s number (mod p), denoted γ(k, p). Similarly,
the smallest s such that

±xk
1 ± xk

2 + · · · ± xk
s ≡ a (mod p), (1.2)

is solvable for all a is denoted δ(k, p). If d = (k, p− 1) then clearly γ(d, p) = γ(k, p) and so
we assume henceforth that k|p− 1. If A is the multiplicative subgroup of k-th powers in Z∗

p

then we write
γ(A, p) = γ(k, p), δ(A, p) = δ(k, p).

Cauchy [4] established the uniform bound γ(k, p) ≤ k with equality if k = p − 1 or
(p − 1)/2, and many improvements to this bound have been made since then; see [6] for
references. Heilbronn [11] made the following conjectures: Let t = |A| = (p− 1)/k.
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I: For any ε > 0, γ(k, p) $ε kε for t > cε.

II: For t > 2, γ(k, p) $ k1/2.

The first conjecture was proved by Konyagin [13] and the second by Cipra and the authors
[6]. For t = 3, 4, 6 it was shown [6] that

√
2k − 1 ≤ γ(k, p) ≤ 2

√
k, (1.3)

and thus the exponent 1/2 is sharp. Indeed, the exact value of γ(k, p) was determined for
these three cases. The purpose of this paper is to show how sum-product estimates can be
used to obtain explicit constants in the Heilbronn upper bounds.

Theorem 1.1. For t > 2 we have the uniform upper bound γ(k, p) ≤ 83 k1/2.

The proof of the theorem (Section 9) uses the sum-product method of Glibichuk and
Konyagin [9] for t ≥ 34 (Sections 6,7) and the lattice method of Bovey [3] for t < 34 (Section
8). An explicit version of the first Heilbronn conjecture is given in Corollary 7.1. For delta
we obtain δ(k, p) ≤ 20 k1/2; Corollary 10.3. We also explore the relationship between γ(k, p)
and δ(k, p) (Section 4) proving in particular,

γ(k, p) ≤ 2 'log2(log2(p))( δ(k, p).

Bovey [3] proved the weaker bound γ(k, p) ≤ δ(k, p) log p. We leave open the following

Question 1. Does there exist a constant C such that γ(k, p) ≤ C δ(k, p)?

2. Sum-Product Estimates

For any subsets S, T of Zp let

S + T = {s + t : s ∈ S, t ∈ T}, ST = {st : s ∈ S, t ∈ T},

S − T = {s− t : s ∈ S, t ∈ T}, nS = S + S + · · · + S (n− times).

Note that (nS)T ⊂ n(ST ). We let nST denote the latter, n(ST ). If A is a multiplicative
subgroup of Z∗

p then for any $, A# = A, nA# = nA and (nA)(mA) ⊂ nmA. The basic
strategy for bounding Waring’s number is to first obtain good lower bounds for |nA| and
then apply the following lemma to sets of the form nA, mA to obtain all of Zp.

Lemma 2.1. Let A, B be subsets of Zp and m a positive integer.

a) If 0 /∈ A and |B||A|1− 2
m > p then mAB = Zp.

b) If |B||A| ≥ 2p then 8AB = Zp.
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Part (a) was proven by Bourgain [1, Lemma 1] for the case m = 3. We prove the general
case in Section 3. Part (b) is due to Glibichuk and Konyagin [9, Lemma 2.1]. It follows from
(b) that if |nA| ≥

√
2p (for a multiplicative group A) then γ(A, p) ≤ 8n2.

We shall make frequent use of the Cauchy-Davenport inequality,

|S + T | ≥ min{|S| + |T |− 1, p},

for any S, T ⊂ Zp, and its corollary

|nS| ≥ min{n(|S|− 1) + 1, p}.

Another key tool we need is Rusza’s triangle inequality (see, e.g., Nathanson [15, Lemma
7.4]).

|S + T | ≥ |S|1/2|T − T |1/2, (2.1)

for any S, T ⊂ Zp, and its corollary

|nS| ≥ |S|
1

2n−1 |S − S|1−
1

2n−1 ≥ |S − S|1− 1
2n , (2.2)

for any positive integer n.

In Section 5 we obtain lower bounds for |A−A| and |A+A| using the method of Stepanov.
Next we obtain lower bounds for |nA− nA| (Section 6), followed by lower bounds for |nA|
(Section 7).

3. Proof of Lemma 2.1(a)

Let a ∈ Zp and N denote the number of 2m-tuples (x1, . . . , xm, y1, . . . ym) ∈ Z2m
p with

x1y1 + · · · + xmym = a. We first note that

∑

λ∈Zp

∣∣∣∣∣
∑

x∈A

∑

y∈B

ep(λ(xy))

∣∣∣∣∣

2

=
∑

x1,x2∈A

∑

y1,y2∈B

∑

λ∈Fp

ep(λ(x1y1 − x2y2))

= p|{(x1, x2, y1, y2) : x1, x2 ∈ A, y1, y2 ∈ B, x1y1 = x2y2}| ≤ p|A|2|B|,

the last inequality following from the assumption that 0 /∈ A (and thus x1y1 = x2y2 implies
y1 = x−1

1 x2y2.) Now,

pN = |A|m|B|m +
∑

λ$=0

∑

xi∈A

∑

yi∈B

ep(λ(x1y1 + · · · + xmym − a)) (3.1)

= |A|m|B|m +
∑

λ$=0

ep(−λa)

(
∑

x∈A

∑

y∈B

ep(λxy)

)m

. (3.2)
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By the Cauchy-Schwarz inequality, for λ += 0,

∣∣∣∣∣
∑

x∈A,y∈B

ep(λxy)

∣∣∣∣∣ ≤
∑

y∈B

∣∣∣∣∣
∑

x∈A

ep(λxy)

∣∣∣∣∣ ≤ |B|1/2




∑

y∈B

∣∣∣∣∣
∑

x∈A

ep(λxy)

∣∣∣∣∣

2



1/2

≤ |B|1/2




∑

y∈Fp

∣∣∣∣∣
∑

x∈A

ep(λxy)

∣∣∣∣∣

2



1/2

= |B|1/2(p|A|)1/2,

and so by the note above,

∣∣∣∣∣
∑

λ$=0

ep(−λa)

(
∑

x∈A

∑

y∈B

ep(λxy)

)m∣∣∣∣∣ ≤ (|A||B|p)
m−2

2

∑

λ∈Zp

∣∣∣∣∣
∑

x∈A

∑

y∈B

ep(λ(xy))

∣∣∣∣∣

2

≤ |A|m
2 +1|B|m

2 p
m
2 .

We conclude from (3.2) that N is positive provided that

|A|m|B|m > |A|m
2 +1|B|m

2 p
m
2 ,

yielding the result of the theorem.

4. Relations Between γ(k, p) and δ(k, p)

Theorem 4.1. Let A be the set of nonzero k-th powers in Zp with k|(p− 1), k += p− 1.

a) γ(k, p) ≤ 3
⌈
log2

(
3 log p
log |A|

)⌉
δ(k, p).

b) γ(k, p) ≤ 3 (log2(δ(k, p)) + 4) δ(k, p).

c) γ(k, p) ≤ 2 'log2(log2(p))( δ(k, p).

d) γ(k, p) ≤ (pmin − 1)δ(k, p), where pmin is the minimal prime divisor of |A|.

e) If |A| is even then δ(k, p) = γ(k, p). If |A| is odd, then δ(k, p) = γ(k
2 , p).

Proof. a) Put A0 = A ∪ {0}, δ = δ(k, p). Since δA0 − δA0 = Zp we obtain from (2.2)

|jδA0| ≥ |δA0 − δA0|1−1/2j
= p1−1/2j

(4.1)

for any positive integer j. Hence if j > log2

(
3 log p
log |A|

)
we have |jδA0||A| 13 > p, and by Lemma

2.1(a), 3(jδA0)A = Zp, that is, 3jδA0 = Zp.

b) This follows from part (a) and the trivial bound (2|A| + 1)δ ≥ p, when |A| ≥ 2.
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c) If j ≥ log2(log2(p)) then p1/2j ≤ 2 and so by (4.1) |jδA| ≥ p/2, and thus 2jδA = Zp.

d) Let q be the minimal prime divisor of |A|. Then A has a subgroup G of order q and∑
x∈G x = 0 so that −1 is a sum of q − 1 elements of A.

e) If |A| is even then −1 is a k-th power, and so γ(k, p) = δ(k, p). If |A| is odd then k
must be even (for p += 2) and A ∪ (−A) is the set of k/2-th powers.

5. Lower Bounds for |A + A| and |A−A|

We give two estimates for |A + A| and |A− A| with A a multiplicative subgroup of Zp, the
first effective when |A| ≥ p2/3 and the second when |A| < p2/3. Throughout this section
A ± A will denote either one of these two sets.

Theorem 5.1. If A is a multiplicative subgroup of Z∗
p then

|A ± A| ≥ p

(
1 +

p2

|A|3

)−1

.

In particular |A ± A| ≥ p
2 if |A| ≥ p2/3.

Proof. Let N denote the number of solutions of the congruence x1 ± x2 ≡ y1 ± y2 (mod p)
with x1, x2, y1, y2 ∈ A, and Na the number of solutions of x1 ± x2 ≡ a (mod p), x1, x2 ∈ A,
for a ∈ Zp. By the Cauchy-Schwarz inequality |A|2 =

∑
a Na ≤ |A ± A|1/2N1/2. The lower

bound for |A ± A| then follows from the estimate of Hua and Vandiver [12] and Weil [16],

N ≤ |A|4
p + |A|p.

Theorem 5.2. (a) Let A be a multiplicative subgroup of Z∗
p and σ be a positive integer. If

4σ(4σ−2) ≤ |A| ≤ p
4σ−2 , then |A±A| ≥ (σ+1)|A|. (b) In particular, if A is a multiplicative

subgroup of Z∗
p with |A| < p2/3, we have

|A ± A| ≥ 1
4 |A|

(√
|A| + 1 + 1

)
> 1

4 |A|3/2.

The theorem is a refinement of a special case of Bourgain, Glibichuck and Konyagin [2,
Lemma 7] which gives |A − A| ≥ 1

9 |A|3/2 for |A| < p1/2. The case σ = 1 is comparable
to what one obtains from the Cauchy-Davenport Theorem, |2A| ≥ min{p, 2|A|}, for any
multiplicative subgroup A. If 0 is included there is the stronger result |2A0| ≥ min{p, 3|A|+
1}, for any multiplicative subgroup A with |A| ≥ 2, where A0 = A ∪ {0}; see [15, Theorem
2.8].

It is plain that the exponent 3/2 in the lower bound of the theorem cannot be improved
if we allow |A| to approach p2/3 in size, but we are lead to ask the following questions.

Question 2. For |A| < p1/2 can the exponent 3/2 in the theorem be improved?
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Question 3. For |A| - p2/3 do we have A + A ⊃ Z∗
p, that is, γ(A, p) ≤ 2? (Note, 0 may

not be in A + A even when |A| = p−1
2 .) It is known that γ(A, p) ≤ 2 for |A| > p3/4.

Proof of Theorem 5.2. We use the Stepanov method as developed by Heath-Brown and
Konyagin [10]. Let A be a multiplicative subgroup of Zp with t = |A| and σ be a positive
integer. Suppose that 4σ(4σ − 2) ≤ |A| ≤ p

4σ−2 . We proceed with a proof by contradiction.
Assume that |A ± A| < (σ + 1)t. Write A ± A as a union of disjoint cosets of A in Z∗

p,

A ± A = Ax1 ∪Ax2 · · · ∪Axs ∪ {0},

where the {0} is omitted if 0 /∈ A + A. In particular,

|A ± A| = st + 1 or st, (5.1)

and so s ≤ σ.

For any coset Axj let

Nj = |{x ∈ A : x ± 1 ∈ Axj}| = |{(x, y) ∈ A×A : x ± y = xj}|.

Now for any x ∈ A, x += ∓1, x ± 1 ∈ Axj for some j and so

s∑

j=1

Nj = t− 1 or t. (5.2)

The next lemma is extracted from the proof of [14, Lemma 3.2].

Lemma 5.1. Let a, b, d be positive integers such that sad+ 1
2sd(d− 1) < ab2, ab ≤ t, tb ≤ p.

Then
s∑

j=1

Nj ≤
a− 1 + 2t(b− 1)

d
.

Proof. The lower case a, b, d in the lemma correspond to the upper case A,B,D in [14]. In
equation (3.11) of [14] we actually have sad + 1

2sd(d − 1) < ab2 by summing over k in the
preceding line of their proof.

We apply the lemma with a = 4s, b = 4s− 2, d = 8s− 5. Then

sad +
1

2
sd(d− 1) = 64s3 − 64s2 + 15s,

while
ab2 = 64s3 − 64s2 + 16s,
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so the first hypothesis holds. Next, ab = 4s(4s−2) ≤ 4σ(4σ−2) ≤ t. Finally, since t ≤ p
4σ−2

we have tb ≤ p
4σ−2(4σ − 2) = p. Thus, by the lemma,

s∑

j=1

Nj ≤
4s− 1 + 2t(4s− 3)

8s− 5
= t− 1− t + 6− 12s

8s− 5
< t− 1,

the latter inequality following from 12s−6 ≤ 4s(4s−2) ≤ t. This contradicts the inequality
in (5.2).

For part (b) simply choose σ = [14(
√

t + 1 + 1)] and observe that t < p2/3 implies t ≤
p

4σ−2 .

6. Lower Bounds for |nA− nA|, Part I

We follow the method of Glibichuk and Konyagin [9], which builds upon ideas in [2]. For
any subsets X,Y of Zp let

X −X

Y − Y
=

{
x1 − x2

y1 − y2
: x1, x2 ∈ X, y1, y2 ∈ Y, y1 += y2

}
.

The key lemma is

Lemma 6.1. [9, Lemma 3.2] For X,Y ⊂ Zp with |Y | > 1 and X−X
Y−Y += Zp we have

|2XY − 2XY + Y 2 − Y 2| ≥ |X||Y |.

Proof. If X−X
Y−Y += Zp then there exist x1, x2 ∈ X, y1, y2 ∈ Y such that x1−x2

y1−y2
+ 1 /∈ X−X

Y−Y . But

then the mapping from X × Y into 2XY − 2XY + Y 2 − Y 2 given by

(x, y) → (y1 − y2)x + (x1 − x2 + y1 − y2)y,

is clearly one-to-one and the lemma follows.

We also use the elementary

Lemma 6.2. Let A be a multiplicative subgroup of Z∗
p and X,Y be subsets of Zp such that

AX ⊂ X, AY ⊂ Y . Then
∣∣∣∣
X −X

Y − Y

∣∣∣∣ ≤
|X −X|(|Y − Y |− 1)

|A| .

Proof. If c = (x1 − x2)/(y1 − y2) for some x1, x2 ∈ X, y1 += y2 ∈ Y , then c = (ax1 −
ax2)/(ay1 − ay2) for any a ∈ A.
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For k ∈ N, let

ak =
4k − 1

3
, bk =

4k + 8

6
,

so that a1 = 1, a2 = 5, a3 = 21, a4 = 85, b1 = 2, b2 = 4, b3 = 12, b4 = 44, and for k ≥ 1,

ak+1 = 4ak + 1, bk+1 = 8ak−1 + 4. (6.1)

Put
Ak = (akA− akA), Bk = (bkA− bkA).

Theorem 6.1. Let A be a multiplicative subgroup of Z∗
p.

a) For k ≥ 1, |Ak| ≥ |A−A||A|k−1 if k = 1 or |Ak−1 −Ak−1||A−A| < p|A|.

b) For k ≥ 3, |Bk| ≥ |A−A|2|A|k−3 if |Ak−2 −Ak−2||2A− 2A| < p|A|.

Proof of Theorem 6.1. a) The statement is trivial for k = 1. For k > 1, put X = Ak−1,
Y = A. The hypothesis |Ak−1−Ak−1||A−A| < p|A| implies, by Lemma 6.2, that X−X

Y−Y += Zp.
Noting that by relation (6.1)

2XY − 2XY + Y 2 − Y 2 = 2Ak−1 − 2Ak−1 + A−A = (4ak−1 + 1)A− (4ak+1 + 1)A = Ak,

we obtain |Ak| ≥ |Ak−1||A| by Lemma 6.1. The theorem now follows by induction on k.

b) Put X = Ak−2, Y = A−A. Under the assumption of the theorem (X−X)/(Y −Y ) +=
Zp. Now, by relation (6.1), 2XY − 2XY + Y 2 − Y 2 ⊆ (8ak−2 + 4)A − (8ak−2 + 4)A = Bk,
and so by Lemma 6.1 we have |Bk| ≥ |Ak−2||A−A|. Part (b) follows from the bound in part
(a).

Theorem 6.2. Let A be a multiplicative subgroup of Z∗
p and λ be a positive real number such

that |A−A| ≥ λ|A|3/2.

a) For k ≥ 1, |Ak| ≥ min{31/3p2/3,λ|A|k+ 1
2}.

b) For k ≥ 3, |Bk| ≥ min{33/7p4/7,λ2|A|k}.

Proof. a) The result is immediate for k = 1 or |A| = 1, so we assume k ≥ 2 and |A| ≥
2. If |Ak−1 − Ak−1||A − A| < p|A| the inequality follows from Theorem 6.1. Otherwise,
|Ak−1 −Ak−1| ≥ p|A|/|A−A|. Then

|Ak| = |akA− akA| ≥ |4ak−1A− 4ak−1A| ≥ |Ak−1 −Ak−1| ≥
p|A|

|A−A| ≥
p

|A−A|1/2
.

Also by the Cauchy-Davenport relation |Ak| ≥ |A2| = |5A − 5A| ≥ 3|A − A| (for |A| > 1).
Thus |Ak|3 ≥ (p2/|A−A|)(3|A−A|) = 3p2 and the result follows.
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b)We may assume |A| > 1. If |Ak−2 − Ak−2||2A − 2A| < p|A| the result follows from
Theorem 6.1. Assume that |Ak−2 −Ak−2||2A− 2A| ≥ p|A|. Then

|Bk| = |bkA− bkA| ≥ |8ak−1A− 8ak−aA| ≥ |32ak−2A− 32ak−2A| ≥ |Ak−2 −Ak−2|

≥ p|A|
|2A− 2A| ≥

p

|2A− 2A|3/4
.

Also |Bk| ≥ |12A− 12A| > 3|2A− 2A| and so |Bk|7 ≥ (p4/|2A− 2A|3)33|2A− 2A|3.

Thus with λ = 1
4 (as given by Lemma 5.2) we have for any multiplicative subgroup A of

Z∗
p,

|A−A| ≥ min{1
4 |A|3/2, p/2}

|3A− 3A| ≥ min{|A|2, 2p2/3}
|5A− 5A| ≥ min{1

4 |A|5/2, 31/3p2/3}
|12A− 12A| ≥ min{ 1

16 |A|3, 33/7p4/7}
|21A− 21A| ≥ min{1

4 |A|7/2, 31/3p2/3}
|44A− 44A| ≥ min{ 1

16 |A|4, 33/7p4/7}
|85A− 85A| ≥ min{1

4 |A|9/2, 31/3p2/3}

The bound for |A−A| is from Theorems 5.1 and 5.2. The bound for |3A− 3A| follows from
Lemma 6.1 when |A − A|2 < p|A| and from the Cauchy-Davenport inequality otherwise.
Further lower bounds on |nA− nA| are given in Section 10.

7. Lower Bounds for |nA|

For k ∈ N, put mk = 1
34

k+1 + k − 13
3 and nk = 2

34
k+1 + k − 14

3 , so that m1 = 2, m2 = 19,
m3 = 84, n1 = 7, n2 = 40, n3 = 169.

Theorem 7.1. Suppose that A is a multiplicative subgroup of Z∗
p and λ is a positive real

number such that |2A| ≥ λ|A|3/2 and |A−A| ≥ λ|A|3/2. Then for any k ∈ N,

a) |mkA| ≥ min{
√

2p, αk|A|k+ 1
2},

b) |nkA| ≥ min{
√

2p, βk|A|k+1},

where αk = λ
5
3−

8
3·4k , βk = λ

4
3−

4
3·4k .

Observing that 3A = Zp when |A| > p2/3 (see, e.g., [7]) and that by Theorem 5.2 we can
take λ = 1/4 for |A| < p2/3 , we obtain in particular that for any multiplicative subgroup A
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of Z∗
p,

|2A| ≥ min{.25|A|3/2, p/2}
|4A| ≥ min{|A|3/2, p5/8}
|7A| ≥ min{.25|A|2,

√
2p}

|19A| ≥ min{.125|A|5/2,
√

2p}
|40A| ≥ min{.177|A|3,

√
2p}

|84A| ≥ min{.106|A|7/2,
√

2p}
|169A| ≥ min{.163|A|4,

√
2p}.

The estimate for |4A| comes from |4A| ≥ |A|1/2|3A − 3A|1/2 ≥ |A|3/2 for |A − A|2 < p|A|,
|4A| ≥ |A−A|15/16 ≥ (p|A|)15/32 ≥ p5/8, otherwise.

In comparison [9, Lemma 5.3] has |13A| ≥ 3
8 |A|13/7 for |A|2 ≤ p−1

2 , |53A| ≥ 3
8 |A|20/7 for

|A|3 ≤ p−1
2 , |213A| ≥ 3

8 |A|27/7 for |A|4 < p−1
2 , etc.

Proof of Theorem 7.1. The inequalities |mkA| ≥ 1
2 |A|k+ 1

2 and |nkA| ≥ 1
2 |A|k+1 follow im-

mediately from the Cauchy-Davenport estimates of |mkA| and |nkA| for |A| < 5 and so we
assume |A| ≥ 5.

We prove parts (a) and (b) simultaneously by induction on k. First note that the validity
of part (a) for k implies the validity of part (b) for k. If |mkA| ≥

√
2p then trivially

|nkA| ≥
√

2p. Otherwise |mkA| ≥ αk|A|k+ 1
2 . Then since nk = mk + ak+1 we have by Rusza’s

inequality (2.1): |nkA| ≥ |mkA|1/2|ak+1A− ak+1A|1/2 ≥ |mkA|1/2|Ak+1|1/2.

If |Ak −Ak||A−A| < p|A| then by Theorem 6.1 and the bound in part (a),

|nkA| ≥ λ
5
6−

4
3·4k |A|k

2 + 1
4 |A−A|1/2|A|k/2 ≥ βk|A|k+1.

If |Ak − Ak||A− A| ≥ p|A| then, in particular, |2akA− 2akA| = |Ak − Ak| ≥ p1/2|A|1/2 and
|2akA|2|A| ≥ p. Thus

|nkA| ≥ |3(2akA)| ≥ |2akA|1/4|2akA− 2akA|3/4 ≥ |2akA|1/4p3/8|A|3/8

= (|2akA|2|A|)1/8|A|1/4p3/8 ≥ |A|1/4p1/2 ≥
√

2p.

For k = 1 we have |m1A| = |2A| and so the inequality in (a) is trivial. Suppose the
theorem is true for k − 1. Note that for k ≥ 2, mk = nk−1 + bk+1 and so by inequality (2.1)

|mkA| ≥ |nk−1A|1/2|bk+1A− bk+1A|1/2 = |nk−1A|1/2|Bk+1|1/2. (7.1)

If |Ak−1−Ak−1||2A− 2A| < p|A| then, by Theorem 6.1(b) and the induction assumption we
have

|mkA| ≥ λ
2
3−

2
3·4k−1 |A|k

2 |A−A||A|
k−2
2

≥ λ
2
3−

8
3·4k +1|A|k+ 1

2 = αk|A|k+ 1
2 .
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If |Ak−1 − Ak−1||2A − 2A| ≥ p|A| then, in particular, |2ak−1A − 2ak−1A| ≥ p1/2|A|1/2 and
|2ak−1A|2|A|3 ≥ p. Thus

|mkA| ≥ |4(2ak−1A)| ≥ |2ak−1A|1/8|2ak−1A− 2ak−1A|7/8 ≥ |2ak−1A|1/8p7/16|A|7/16

≥ (|2ak−1A|2|A|3)1/16|A|1/4p7/16 ≥ |A|1/4p1/2 ≥
√

2p.

Theorem 7.2. Put γk =
(

2
α2

k

)1/(2k+1)
, δk =

(
2
β2

k

)1/(2k+2)
. Let A be a multiplicative subgroup

of Z∗
p and k ∈ N.

a) If |A| ≥ γkp1/(2k+1), then 8m2
kA = Zp.

b) If |A| ≥ δkp1/(2k+2), then 8n2
kA = Zp.

Proof. Under the given hypotheses, it follows from Theorem 7.1 that |mkA| ≥
√

2p and
|nkA| ≥

√
2p, and so by Lemma 2.1 (b) the theorem follows.

Letting λ = 1/4 we obtain the following for any multiplicative subgroup A of Z∗
p:

8A = Zp for |A| > p1/2

32A = Zp for |A| > 3.18p1/3

392A = Zp for |A| > 2.38p1/4

2888A = Zp for |A| > 2.64p1/5

12800A = Zp for |A| > 2p1/6

56448A = Zp for |A| > 2.11p1/7

228488A = Zp for |A| > 1.72p1/8.

The result for 8A is due to Glibichuk [8, Corollary 4]. Note that mk ≤ 1.00054k+1

3 and

nk ≤ 1.000132·4k+1

3 for any k ≥ 1. Define c1 = c2 = 1 and

c# =

{
γ !−1

2
if $ ≥ 3 is odd

δ !−2
2

if $ ≥ 4 is even
.

Then we obtain from Theorem 7.2 that for $ ≥ 2,

|A| ≥ c#p
1/# =⇒ 57 · 4#−2A = Zp. (7.2)

Corollary 7.1. For any prime p, $ ≥ 2 and multiplicative subgroup A of Z∗
p with

c#p1/# ≤ |A| < c#−1p1/(#−1), we have γ(A, p) ≤ 14.25 p
ln 4

ln(|A|/c!−1) .

Proof. |A| ≥ c#p1/# and so 57
16 · 4#A = Zp. We also have ($ − 1) ln(|A|/c#−1) ≤ ln p. Thus

γ(A, p) ≤ 57
16 · 41+ ln p

ln(|A|/c!−1) ≤ 14.25p
ln 4

ln(|A|/c!−1) .



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A46 12

8. Bovey’s Method for Small |A|.

For small |A| we use a method of Bovey to bound δ(k, p) and γ(k, p). Let t = |A| so that
tk = (p − 1) and put r = φ(t). Let R be a primitive t-th root of one (mod p), that is,
a generator of the cyclic group A, and Φt(x) be the t-th cyclotomic polynomial over Q of
degree r and ω be a primitive t-th root of unity over Q. In particular, Φt(R) ≡ 0 (mod p).
Let f : Zr → Z[ω] be given by

f(x1, x2, . . . , xr) = x1 + x2ω + · · · + xrω
r−1.

Then f is a one-to-one Z-module homomorphism.

Consider the linear congruence

x1 + Rx2 + R2x3 + · · · + Rr−1xr ≡ 0 (mod p). (8.1)

By the box principle, we know there is a nonzero solution of (8.1) in integers v1 = (a1, a2, . . . , ar)
with |ai| ≤ [p1/r] ≤ (p − 1)1/r, 1 ≤ i ≤ r. For 2 ≤ i ≤ r set vi = f−1(ωi−1f(v1)). Then
v1, . . . , vr form a set of linearly independent solutions of (8.1) and by [3, Lemma 3]

δ(k, p) ≤ 1

2

t∑

i=1

‖vi‖1,

where ‖(x1, x2, . . . , xt)‖1 =
∑t

i=1 |xi|. To determine the latter sum we start with the system

a1 + a2ω + . . . + arωr−1

a1ω + a2ω2 + . . . + arωr

a1ω2 + a2ω3 + . . . + arωr+1

a1ω3 + a2ω4 + . . . + arωr+2

a1ω4 + a2ω5 + . . . + arωr+3

. . . . . .
a1ωr−1 + a2ωr + . . . + arω2r−2

and then reduce the higher powers of ω to powers less than r using Φt or any other relation
that is convenient. Note that for 0 ≤ i ≤ r − 1, ωi occurs i + 1 times in the array, while for
r ≤ i ≤ 2r − 2, ωi occurs 2r − 1− i times. If ωi can be expressed as a sum/difference of wi

powers of ω less than r then we will call wi the weight of ωi in the above system. We see
that

δ(k, p) ≤ 1

2

(
r∑

i=1

i +
2r−2∑

i=r

wi(2r − 1− i)

)
(p− 1)1/r.

In passing from δ(k, p) to γ(k, p) we use the relation of Theorem 4.1 (d),

γ(k, p) ≤ (pmin − 1)δ(k, p). (8.2)
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where pmin is the minimal prime divisor of t. To illustrate the method we consider a few
special cases.

Case 1. Suppose t is a prime power qα so that r = qα − qα−1. Then ωr+qα−1
= 1 and

ωr = −
∑q−2

i=0 ωqα−1i. It follows that wi = q − 1 for i = r, . . . , r + qα−1 − 1 and that wi = 1
for i = r + qα−1, . . . , 2r − 2. Thus

δ(k, p) ≤ 1

2




r∑

i=1

i +
r+qα−1−1∑

i=r

(2r − 1− i)(q − 1) +
2r−2∑

i=r+qα−1

(2r − 1− i)



 (p− 1)1/r (8.3)

and so

δ(k, p) ≤ 1

4
qα−1

(
qα−1(4q2 − 11q + 8)− (q − 2)

)
(p− 1)1/r < t2+

1
r k1/r,

γ(k, p) ≤ 1

4
(q − 1)qα−1

(
qα−1(4q2 − 11q + 8)− (q − 2)

)
(p− 1)1/r < t3+

1
r k1/r.

In particular, for t = 2α, we have δ(k, p) ≤ t2

8 (p− 1)1/r, and for prime t = q

δ(k, p) ≤ (t2 − 3t + 2.5)(p− 1)1/(t−1), γ(k, p) ≤ (t− 1)(t2 − 3t + 2.5)(p− 1)1/(t−1). (8.4)

Case 2. Suppose t = 2q where q is a prime, so that r = q − 1 and we have ωq = −1,
ωq−1 = −1 + ω − · · · + ωq−2. We obtain

r∑

i=1

‖vi‖1 ≤
(

t2

2
− 3t + 5

)
(p− 1)2/(t−2),

δ(k, p) ≤ (.25t2 − 1.5t + 2.5)(p− 1)2/(t−2) and γ(k, p) ≤ (.25t2 − 1.5t + 2.5)(p− 1)2/(t−2).

Case 3. t = 21, r = 12. We have ω12 = ω11 − ω9 + ω8 − ω6 + ω4 − ω3 + ω − 1, and
ω14 = −ω7 − 1. Thus ω13 = ω11 − ω10 + ω8 − ω7 − ω6 + ω5 − ω3 + ω2 − 1 giving it a weight
of 9. ω14 to ω18 each have weight 2, ω19 weight 9, ω20 weight 8, ω21 and ω22 each of weight
1. Altogether we get

r∑

i=1

‖vi‖1 ≤ (1+ · · ·+12+8 ·11+9 ·10+2(9+ · · ·+5)+9 ·4+8 ·3+1(2+1))p1/12 = 389p1/12,

δ(k, p) ≤ 194.5p1/12 and γ(k, p) ≤ 389p1/12.

In a similar manner we obtain the following table of upper bounds for δ(k, p) and γ(k, p).
The values for t = 3, 4 and 6 were determined in [6]. The p’s appearing in the table may be
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replaced by (p− 1).

t δ(k, p) γ(k, p) t δ(k, p) γ(k, p)
2 (p− 1)/2 (p− 1)/2 21 194.5p1/12 389p1/12

3 2
√

k 2
√

k − 1 22 90.5p1/10 90.5p1/10

4 2
√

k − 1 2
√

k − 1 23 462.5p1/22 10175p1/22

5 12.5p1/4 50p1/4 24 43p1/8 43p1/8

6 2
3

√
6k 2

3

√
6k 25 327.5p1/20 1310p1/20

7 30.5p1/6 183p1/6 26 132.5p1/12 132.5p1/12

8 8p1/4 8p1/4 27 220.5p1/18 441p1/18

9 24p1/6 48p1/6 28 124.5p1/12 124.5p1/12

10 12.5p1/4 12.5p1/4 29 756.5p1/28 21182p1/28

11 90.5p1/10 905p1/10 30 74p1/8 74p1/8

12 10.5p1/4 10.5p1/4 31 870.5p1/30 26115p1/30

13 132.5p1/12 1590p1/12 32 128p1/16 128p1/16

14 30.5p1/6 30.5p1/6 33 583.5p1/20 1167p1/20

15 74p1/8 148p1/8 34 240.5p1/16 240.5p1/16

16 32p1/8 32p1/8 35 1233p1/24 4932p1/24

17 240.5p1/16 3848p1/16 36 97.5p1/12 97.5p1/12

18 24p1/6 24p1/6 37 1260.5p1/36 45378p1/36

19 306.5p1/18 5517p1/18 38 306.5p1/18 306.5p1/18

20 51.5p1/8 51.5p1/8

9. Proof of Theorem 1.1

Let t = |A| > 2. As noted in (1.3), for t = 3, 4, γ(k, p) ≤ 2
√

k and so we may assume t ≥ 5.
The inequality γ(k, p) ≤ [k/2] + 1 of S. Chowla, Mann and Strauss [5], implies the theorem
for k ≤ 27551 and so we assume k > 27551. The first step is to prove the theorem for t < 34
using the table from the previous section. Suppose t is a prime. Then by (8.4),

γ(k, p) ≤ (t− 1)(t2 − 3t + 2.5)t1/(t−1)k1/(t−1) ≤ 83 k1/2,

provided that k > 106, t < 34. For k < 106, p < 4 · 107 < 225
and so by Theorem 4.1 (c),

γ(k, p) ≤ 10δ(k, p). Thus we get the improved (for t > 10) upper bound

γ(k, p) ≤ 10(t2 − 3t + 2.5)t1/(t−1)k1/(t−1).

With the aid of a calculator one can check that the latter quantity is less than 83k1/2 for
t ≤ 31 and k ≥ 27552.

For nonprime values of t < 34, we turn to the table in the previous section. We note that
if γ(k, p) ≤ C(p−1)1/r then γ(k, p) ≤ 83 k1/2 provided that k > (C/83)2r/(r−2)t2/(r−2). Using
the values of C in the table one checks that the statement is valid for k > 27551.
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Finally, suppose that t ≥ 34 and that k > 27551. If t > c6p1/6 we have by Theorem 7.2,
γ(k, p) ≤ 12800 < 83 k1/2. Next, assume t < c6p1/6 = 2p1/6. Say c#p1/# ≤ t < c#−1p1/(#−1) for
some $ ≥ 7. Then by Corollary 7.1, and noting that 2.102 > c7 > c6 > c8 > c9 . . . we have

γ(k, p) ≤ 14.25 p
ln 4

ln(t/c7) ≤ 14.25 · (t + 1/k)
ln 4

ln(t/c7) k
ln 4

ln(t/c7)

≤ 14.25 (34 + 1/27552)
ln 4

ln(34/c7) k
ln 4

ln(34/c7) ≤ 83 k.499.

10. Lower Bounds for |nA− nA|, Part II

The lower bounds on |Ak| and |Bk| established in Section 6 were sufficient for yielding good
upper bounds on γ(k, p). One can achieve slightly better upper bounds on δ(k, p) by using
the following variant of Theorem 6.1.

Theorem 10.1. For any multiplicative subgroup A of Z∗
p,

a) |3A− 3A| ≥
{

1
2 min{|A|2, p + 1} for any A

|A|2 for |A| ≤ p1/3.

b) For k ≥ 1, |Ak| ≥
{

3
8 min{|A−A||A|k−1, p+1

2 }
|A−A||A|k−1 for |A| < p

1
k+2 .

c) For k ≥ 3, |Bk| ≥
{

min{ 3
16 |A−A|2|A|k−3, p+1

2 },
|A−A|2|A|k−3 for |A| < p

1
k+4 .

The theorem follows from a couple of lemmas of Glibichuk and Konyagin.

Lemma 10.1. [9, Corollary 3.5] For X,Y ⊂ Zp with |Y | > 1,

|2XY − 2XY + Y 2 − Y 2| >
|X||Y |(p− 1)

|X||Y | + p− 1
.

(Although their lemma is stated with a nonstrict inequality, the proof makes it clear that
it is strict.)

The following lemma is the same as Glibichuk and Konyagin [9, Lemma 5.1] applied to a
slightly different set Ak.

Lemma 10.2. Suppose A is a multiplicative subgroup of Z∗
p with |A| ≥ 5. For any k and

real number U with 0 ≤ U ≤ |A−A||A|k−1 we have

|Ak| ≥ U − 5

4

U2

p− 1
.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A46 16

Proof. The proof is by induction on k, with k = 1 being trivial. We use Lemma 10.1 with
X = Ak−1, Y = A. Noting that 2XY − 2XY + Y 2− Y 2 = 2Ak−1− 2Ak−1 + A−A = Ak, as
above, we obtain

|Ak| ≥
|Ak−1||A|(p− 1)

|Ak−1||A| + p− 1
, (10.1)

and the proof proceeds identically as in [9].

Proof of Theorem 10.1. a) Put X = Y = A in 10.1 to get |3A−3A| ≥ |A|2(p−1)
|A|2+p−1 . If |A|2 ≤ p−1

then |3A − 3A| ≥ 1
2 |A|2, while if |A|2 > p − 1 then |3A − 3A| > 1

2(p − 1). If |A|3 < p then
|A−A
A−A | ≤ |A|3 < p and so Lemma 6.1 gives |3A− 3A| ≥ |A|2.

b) Put U = min{|A−A||A|k−1, p−1
2 }. Then by Lemma 10.2, |Ak| ≥ 3

8 min{|A−A||A|k−1, p−1
2 },

provided that |A| ≥ 5. For |A| = 1, 2, 3, 4 the inequality follows from the Cauchy-Davenport
bound |Ak| ≥ min{p, 2ak(|A|−1)+1} and |A−A| = 1, 3, 7, 9 for |A| = 1, 2, 3, 4 respectively.

The second inequality is proven by induction on k, the case k = 1 being trivial. Suppose
the statement is true for k − 1 and let |A|k+2 < p. Put X = Ak−1, Y = A. If |X − X| <
|A−A||A|k−1, in which case |X −X||A−A|/|A| < p, we can apply Theorem 6.1 to get the
result. If |X −X| ≥ |A−A||A|k−1 then since Ak ⊃ X −X the result is immediate.

c) Suppose k ≥ 3. If |A| = 1 the bound is trivial, so assume |A| > 1. Put X = Ak−2,
Y = A−A. Then

2XY − 2XY + Y 2 − Y 2 = 8
4k−2 − 1

3
A− 8

4k−2 − 1

3
A + 4A− 4A = Bk,

and so by Lemma 10.1

|Bk| ≥ min

{
|Ak−2||A−A|

2
,
p + 1

2

}

and the result follows from the bound in part (b).

Suppose now that |A|k+4 < p. If |Ak−2−Ak−2| < |A−A|2|A|k−3, in which case |X−X||Y −
Y |/|A| < p, then the result follows from Theorem 6.1. Otherwise |Bk| ≥ |Ak−2 − Ak−2| ≥
|A−A|2|A|k−3.

Corollary 10.1. Let A be a multiplicative subgroup of Z∗
p with |A| > 1 and λ < 1 be a

positive real with |A−A| ≥ λ|A|3/2.

a) For k ≥ 1 if |A| ≥ ( 8
3λ)2/(2k+1)p2/(2k+1) then 2akA− 2akA = Zp.

b) For k ≥ 3, if |A| > ( 8
3λ2 )1/kp1/k then 2bkA− 2bkA = Zp.

Proof. a) As seen in (10.1), |Ak| > min
{

|Ak−1||A|
2 , p

2

}
. Under the given hypotheses we have,

by Theorem 10.1,

|A||Ak−1| ≥ min

{
3

8
λ|A|k+ 1

2 ,
3

8

p + 1

2
|A|

}
≥ p,
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for |A| > 5. Thus |Ak| > p
2 and 2Ak = Zp. If |A| = 2, 3, or 4 then the corollary follows

readily from the Cauchy-Davenport inequality, |2akA − 2akA| ≥ min{p, 4ak(|A| − 1) + 1}.
For |A| = 5 the conditions require k ≥ 3. Using the bound for δ(A, p) from the table in
Section 8 (t = 5), we get

δ(A, p) ≤ 12.5p1/4 ≤ 12.5(3λ/8)1/45
2k+1

8 ≤ 12 · 5k/4 ≤ 2

3
(4k − 1) = 2ak.

b) Under the given hypothesis 3
16λ

2|A|k > p
2 and so by Theorem 10.1, |Bk| > p

2 . Thus
2Bk = Zp.

Thus we obtain (with λ = .25)

4A− 4A = Zp for |A| >
√

p

10A− 10A = Zp for |A| > 2.58p2/5

16A− 16A = Zp for |A| > 3.18p1/3

42A− 42A = Zp for |A| > 1.97p2/7

88A− 88A = Zp for |A| > 2.56p1/4

170A− 170A = Zp for |A| > 1.70p2/9

344A− 344A = Zp for |A| > 2.12p1/5

682A− 682A = Zp for |A| > 1.54p2/11

1368A− 1368A = Zp for |A| > 1.87p1/6.

The result for 4A − 4A is due to Glibichuk [8]. The result for 16A − 16A is obtained from
|A−A| ≥ .25|A|3/2 ≥

√
2p for |A| > 3.18p1/3, and thus 8(A−A)(A−A) = Zp.

Put
d# = (8/(3λ))1/# for $ = 3/2, 5/2, 7/2, . . . . (10.2)

Applying Corollary 10.1 (a) with k = $− 1
2 we see that if |A| ≥ d#p1/# then δ(A, p) ≤ 4ak =

4
3(4

k − 1) = 2
34

# − 4
3 . We deduce

Corollary 10.2. For any prime p and multiplicative group A with d#p1/# ≤ |A| ≤ d#−1p1/(#−1)

for some half integer $ ≥ 5/2, we have

δ(A, p) ≤ 8
3 p

ln 4
ln(|A|/d!−1) .

Corollary 10.3. For t > 2 we have the uniform upper bound, δ(k, p) ≤ 20k1/2.

Proof. For k ≤ 1595 the result follows from δ(k, p) ≤ [k/2] + 1 ≤ 20k1/2. Suppose that
k > 1595. We note that δ(k, p) ≤ C(p − 1)1/r implies δ(k, p) ≤ 20k1/2 provided that
k > (C/20)2r/(r−2)t2/(r−2). Using the values of C given in the table in Section 6 we see that
the latter holds for t < 29, k > 1595. Next, if t > 1.70p2/9 then δ(k, p) ≤ 340 ≤ 20k1/2 for



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A46 18

k > 1595. Otherwise, d#p1/# ≤ t ≤ d#−1p1/#−1 for some half integer $ ≥ 11/2. If 29 ≤ t < 50
then we can take λ = .28 in the definition of d# (10.2) since

|A−A|
|A|3/2

≥ 2t− 1

t3/2
≥ 99

503/2
≥ .28,

and get d9/2 = 1.6501 . . . . Thus by Corollary 10.2

δ(k, p) ≤ 8
3 (29 + 1

1595)
ln 4

ln(29/1.6502) k
ln 4

ln(29/1.6502) ≤ 14k.49.

Finally, if t ≥ 50 then we take λ = .25, d9/2 = 1.70, and get

δ(k, p) ≤ 8
3 (50 + 1

1595)
ln 4

ln(50/1.70) k
ln 4

ln(50/1.70) ≤ 14k.41.
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