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Abstract

Let ((z) be the Riemann zeta function and s(k,n) the Stirling numbers of the first kind.
Shen proved the identity ((n+1) = ;- ng;;) (1 <n €?Z). We give a short proof by
elementary methods.

1. The Result

Let ((z) = > ;- k=* be the Riemann zeta function, and let s(k,n) denote the Stirling
numbers of the first kind, which are defined by
stk+1,n+1)=sk,n)+k-s(k,n+1) (k€Z,neZ). (2)

Shen [2] proved the following identity, which shows an interesting relation between ((n) and
s(k,n) by using Gauss’s summation theorem of the hypergeometric series:

> s(k,n)
k- k!

Cn+1) = (1<nel). (3)

k=n

In this paper we give a short proof of (3) by elementary methods.

First we show the outline of the proof. We denote
1
k)_, =
(k) k(k+1)(k+2)---(k+n—-1) (
and put {(n) =Y ,-;(k)_n. Then we have

[e.9]

En+1) =
k=1

1<neZ1<keZ)

1
n-n!

S|

{(k)—n - (k + 1)—71} =
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Proposition. For 1 <z € R and 0 < n € Z we have

(e}

2 =N sk n) - (2) - (k41)- (5)

k=n

By this proposition we have

((n+1) Zm_("H)—ZZ (k,n) (k1)

m=1 k=n
Since it is a convergent series Wlth positive terms, we can change the order of summation.
Noting (4), we obtain
= s(k,n)
k-k!

k=n

((n+1) is E(k+1)
k=n

Now we prove the proposition above. We need the following result [1, Section 54, p. 160].

s(N. k
Lemma. For fixed 1 <k € Z, we have th (Nj‘ )

We prove (5) by induction on n. The case n = 0, which is 27" = >/ s(k,0) - (@) _(k41),
follows from (1) and the definition of (x)_j. Now let N be a sufficiently large integer. From
(2) we have

N N
D s(kyn) - (@) ey = Y _(stk+1,n+1) — k- s(k,n+1)) - (2)_s)
k=n k=n
N N
= Zs(k +1Ln+1) - (@) 1) — Zk cs(k,n+1) - (@) - k)
k=n k=n
N N
= sk+Ln+1) (@) g (@+k+1) =Y k-sk,n+1) (2)_gs)
k=n k=n
N+1
= Y stk 1) - (2) ) (v 4+ k) — Z k-s(k,n+1) (@) k)
k=n+1 k=n-+1
(Note s(n,n+1)=0.)
N+1
=z- Z s(k,n4+1) - () -y +S(N+1L,n+1) - () (nt2) - (N +1).
k=n+1

Noting = > 1, we obtain
N +1
1-2---(N+2)
_s(N+1L,n+1) N+1
(N+1)! N+42

S(IN+1Ln+1) - (z)-(vt2) - (N+1) <s(N+1Ln+1)-
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which tends to 0 as N — oo because of the lemma above. Therefore as N — 0o we obtain
by the induction assumption

[e.9]

x= (D — o Z s(kyn A+ 1) - (@) -t
k=n+1

Hence we have complete the proof of (5).

Remark. Let S(n, k) be the Stirling number of the second kind and denote (z), = z(x —
1)---(x —n+1) for 1 <n e Z. Equation (5) can be viewed as the negative n case of the
well-known identity

" = iS(n,k‘) () (0<neZ).
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