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Abstract

In this note, we find an asymptotic formula for the counting function of the set of totient
abundant numbers.

1. Introduction

Let ¢(n) be the Euler function of the positive integer n. Put
k(n) = min{k > 1: ¢ (n) = 1},

where f*) denotes the kth fold iteration of the function f. Put

k(n)

F(n) =) ¢®(n).

k=1

If o(n) is the sum of divisors function, numbers n for which o(n) = 2n are called perfect.
Results on perfect numbers are well documented; as of 2007, there are only 44 known perfect
numbers. By analogy, numbers n for which F(n) = n are called perfect totients. Their
distribution was studied in [4], [6], [9], [10] and [11]. Although there are infinitely many
perfect totients (for instance, 3* is a perfect totient for any k), it was shown in [11] that the
set of perfect totients has asymptotic density zero.

Abundant numbers are those for which o(n) > 2n. Analogously, let us call a number
n to be totient abundant if F(n) > n and let us put A for the set of all totient abundant
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numbers. It is known that the abundant numbers have a positive density whose value is in
the interval [.2474,.2480] (see [1]). It follows from Theorem 2 in [6], that A is of asymptotic
density zero. The following table shows the frequency of the totient abundant numbers in
various intervals.

Interval | Frequency Interval Frequency
1,10 383 | [10%,10° + 10°] 330491
[1,10%] 3708 | [10'2,10' + 10°] 323685
[1,10°] 35731 | [10%5, 10" + 10°] 319049
1,106] 347505 | [10'8,10'8 + 109] 315789
[1,107] 3407290 | [10%1,10%! + 109] 313195
[1,108] | 33579303 | [10%4,10%** + 10°] 310836

As the proportion of totient abundant numbers stays above 0.3 for quite large values of
n, it would seem interesting to find an asymptotic formula for #A(x) as * — oo, where
A(x) = AN [1,z], unraveling the slow convergence towards zero of this proportion. Our
result is the following (here, 7 is the Euler constant):

Theorem 1. The estimate

x
A(x) = (e 1 1
#A@) = (e +of ))log log log log x (1)
holds as r — oc.
2. The Proof
Throughout this proof, we write ¢y, ¢, ... for computable positive constants. We also write

log,, « for the function defined recursively by the formula log, z = max{1,log(log,_; z)},
where log is the natural logarithm. Note that log, « coincides with the kth fold iterate of
the natural logarithm function when x is large. When & = 1 we omit the subscript (but still
assume that all logarithms that will appear are > 1).

We start by eliminating a few subsets of positive integers n < x whose counting functions
are much smaller than what is shown in the right hand side of estimate (1). On the set of
remaining n < x, we then show that F'(n) > n holds for a set of numbers n < x of cardinality
as predicted by (1).

Lemma 2 in [7], with its proof, shows that all n < x have the property that p | ¢(n) for
all primes p < ¢; log, 2/ logs © holds with O(z/(log; z)?) exceptions in n. Let A;(x) be the
set of these exceptional n < z. From now on, we work with n < z not in A;(z).

For a positive integer m and a positive real number z we put

w,(m) = Z 1

p<z
plm
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for the number of distinct prime factors p of m not exceeding z. When we omit the subscript
we mean the total number of distinct prime factors of m.

Put y = logyz. Let As(x) be the set of n < x such that w(p(n)) > y* It follows
from the results from [2] that #.A4s(x) < x/y. It also follows from the results from [2] (see
page 349 in [2], for example) that if we put Ajz(z) for the set of n such that w,s(¢(n)) >
2log, xlog, y, then #A3(x) < x/y. From now on, we work with numbers n < z not in

A1($) U .AQ(.T) U A3<$)

Let m = ¢(n). We find upper and lower bounds for ¢(m)/m. On the one hand, since
n & Ai(x), we have

¢(m)

e I (1))

p<ci log, x/logs x
1 1
= e 1+0
‘ log(c1 logy 2/ logs ) ( - (log3 x))
—
_ (Ho(low)), 2)
log, x log, x
where we used Mertens’s estimate
1 - 1
() = g (40 (1))
st D ogt ogt
valid for all ¢ > 2. On the other hand,

eI () >

plm plm
p<y® p>y®

A

The first product above contains at most ¢ = |2log, = log, y| primes since n & As(z). Letting
P < pg < ---<pp<--- be the sequence of all the prime numbers, we get that

(-5) = H0-5)- T ()

plm p<log, x(logz x)?2

p<y?
e ( ) <log4 x) )
log, x log, x

for large x, where in the above inequalities we used the Prime Number Theorem to conclude
that the inequality p, < log, z(logs 2)? holds when z is large, as well as Mertens’s estimate.
As for the second product in (3), since n & Ay(z), we have that this product contains at
most y? primes all exceeding 3® so

11 (1 - %) > (1 - %)y — exp(O(1/y)) =140 (5) |

plm
p>y
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¢(m) > e’ (1+O (10g4$>) (4)
m — loggx logsz /) )’

which together with (2) shows that

) (1o ()
m logs = logs =

Recall that a famous theorem of Linnik asserts that there exists a positive constant L such
that whenever a and b > 1 are coprime integers, the least prime number p in the arithmetic
progression a (mod b) satisfies the inequality p < b*. The best known L appears in Theorem
6 in [5] and its value is 5.5. In particular, since our m is divisible by all primes p <
c1log, x/logy x, it follows that for large z, ¢(m) is divisible by all primes < (log, x)"/.
Hence, by the Mertens’s formula once again,

d(p(m)) 1 1
d(m) = 1l (1 p)<<10g3x'

p<(logy z)1/6

Thus,

Since ¢*)(m) is even for all k < k(n), it follows that ¢**+Y(m)/¢®) (m) < 1/2 for all
k < k(n). Hence,

k(n)
> 6m) < o(o(m) (14 5+ 1+ -+ ) < olom)
therefore oo
>~ m) = o)+ Olototom) = otm) (1+0 (1) )

Fln) — m+¢(m)+¢(¢(m))+...:m+¢5(m)<1—|—O< 1 )>

log, x

—
= m<1+ . (1+0(10g4‘r))). (5)
log, x log, x

Hence, for n < z not in A;(z) U As(z) U A3(x) we have that

F(n) = ¢(n) (1 + lfg_;g; (1 +0 Giii))) '

Suppose now that F'(n) > n. Then putting p(n) for the smallest prime factor of n, we have

that ., | .
e 084 T n
e (o)) L
logz x logs x ¢(n) p(n) —1
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giving p(n) > cglogg x for large =, where one can take ¢y to be any constant smaller than e7.
Hence, n < x is coprime to all primes p < cplogs , and the number of such numbers is, via
Eratosthenes’s sieve and Mertens’s formula,

—(+or [ (1—%):(w+o<1>>10;x,

p<calogsx

which proves the upper bound (1) on A(x). Finally, for the lower bound on the set A(z),
consider the set A4(z) of n < x such that either w(n) > 2y, or w,2(n) > (log,y)®. The
Turan-Kubilius inequalities (see, for example, [12]) assert that the estimate

S (wln) — logy 1)* = O logs 1

n<x

holds uniformly in 2 < ¢t < x. Applying this with t = 2 and t = 3%, we get easily that
x < x
(logyy)® — (log,z)*

A (z) < g n

Put now z = logz x. Consider numbers n < z coprime to all primes p < z(log 2)' which do
not belong to A;(x) U Az(z) U As(x) U A4(z). By the Eratosthenes’s sieve and Mertens’s
formula, the number of such numbers n is

> (1+oW))x ] (1-%) —g#fli(w)

p<z(log 2)'°

L +0 L
log, @ (logy x)?
x

, as r — 00.

= (7 +0(1))

= (7 +0(1))

log, x

n 1 1
s = () (5 2).
pp_\gb pp>|?1{b

For such numbers,

The first product contains at most (log,y)? < 2(logz)? primes all exceeding z(log 2)°,

therefore
I (1+ L) - 2(log 2)° <10
p—1 P z(log 2)10 — 1 z(log 2)®
p<y®
pln
for large z, where we used the fact that 1+ ¢ > ¢*/2 when t € (0,1/2). The second product
contains at most 2y primes all exceeding y? so

1 2y 5)
H I+ ——=) <exp| — <1+ -
g p—1 yr—1 Yy

p>y
pln
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Thus,
n ) 5) 1
YARY 14+ —— )1+~ 14—
¢(n) = ( " 2(10g2)8> < * y) ST logs xlog, x

for large x, which together with estimate (5) shows that the numbers n such constructed are
indeed totient abundant. This completes the proof of our theorem.

3. Comments

Let F = {F(n):n € N} and put F(z) = FN[1,z]. In [11], Shparlinski observed that since
the image of the map

U:{p(n):ne N} — N: v v+ @(v) + -+ ¢FO (v)

is the range of F, it follows that the order of magnitude of #F(z) is at most the order of
magnitude of the cardinality of the set of totients not exceeding x, which is known to be

L exp((cs + o(1))(logloglog )?)

log x

with some positive constant ¢z (see [3] and [8]) as x — oco. Note that the above argument is
not enough to decide whether the series

is convergent or divergent, which is a problem we leave for the reader. It will also seem
interesting to give a sharp lower bound on #F (x). Pomerance, in a personal communication,
notes that since ¢(n) = F(n) — F(¢(n)), it follows that #F(x) > x'/?*°W) as 2 — oco. It
would seem interesting to improve the exponent 1/2.
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