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Abstract

The one-player game Solitaire Clobber was introduced by Demaine et al. Beaudou et al.
considered a variation called SC2. Black and white stones are located on the vertices of a
given graph. A move consists in picking a stone to replace an adjacent stone of the opposite
color. The objective is to minimize the number of remaining stones. The game is interesting
if there is at least one stone of each color. In this paper, we investigate the case of Hamming
graphs. We prove that game configurations on such graphs can always be reduced to a single
stone, except for hypercubes. Nevertheless, hypercubes can be reduced to two stones.

1. Introduction and Definitions

We consider the one-player game SC2 that was introduced in [3]. This game is a variation of
the game Solitaire Clobber defined by Demaine et al. in [2]. Note that both solitaire games
come from the two-player game Clobber, that was created and studied in [1]. One can have
a look to [4] for more information about Clobber.

The game SC2 is a solitaire game whose rules are described in the following. Initially,
black and white stones are placed on the vertices of a given graph G (one per vertex), forming
what we call a game configuration. A move consists in picking a stone and ”clobbering” (i.e.
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removing) another one of the opposite color located on an adjacent vertex. The clobbered
stone is removed from the graph and is replaced by the picked one. The goal is to find a
succession of moves that minimizes the number of remaining stones. A game configuration
of SC2 is said to be k-reducible if there exists a succession of moves that leaves at most k
stones on the board. The reducibility value of a game configuration C is the smallest integer
k for which C is k-reducible.

In [3], the game was investigated on cycles and trees. It is proved that in these cases, the
reducibility value can be computed in quadratic/cubic time. In this paper, we play SC2 on
Hamming graphs.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the cartesian product G1!G2 is the
graph G = (V,E) where V = V1 × V2 and (u1u2, v1v2) ∈ E if and only if u1 = v1 and
(u2, v2) ∈ E2, or u2 = v2 and (u1, v1) ∈ E1. One generally depicts such a graph with |V2|
vertical copies of G1, and |V1| horizontal copies of G2, as shown on Fig. 1.
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Figure 1: The cartesian product of two graphs G1 and G2

A Hamming graph is a multiple cartesian product of cliques. K2!K3 and K4!K5!K2

are examples of Hamming graphs. Hypercubes, defined by !nK2, constitute a well-known
class of Hamming graphs.

For the convenience of the reader, we may often mix up a vertex and the stone that it
supports. The label/color of a vertex will thus define the color of the stone on it. We may
also say that ”a vertex clobbers another one”, instead of talking of the corresponding stones.

Given a game configuration C on a graph G, we say that a label/color c is rare on
a subgraph S of G if there exists a unique vertex v ∈ S such that v is labeled c. On
the contrary, c is said to be common if there exist at least two vertices of this color in
S. A configuration is said to be monochromatic if all the vertices have the same color. A
monochromatic game configuration does not allow any move, so we now assume that a game
configuration is never monochromatic.
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Given v a vertex of G, the color of the stone on v will be denoted by c(v). For a color c
(black or white), we denote by c the other color.

In this paper, we prove that we can reduce any game configuration (non monochromatic)
on a Hamming graph to one or two stones. Moreover, we assert that we can choose the color
and the location of the remaining stones. To facilitate the proofs, we make the following
three definitions.

Definition We say that a graph G is strongly 1-reducible if: for any vertex v, for any
arrangement of the stones on G (provided G \ v is not monochromatic), for any color c
(black or white), there exists a way to play that yields a single stone of color c on v.

A joker move consists of changing the color of any stone at any time during the game. It
can be used only once.

Therefore, a graph G is strongly 1-reducible joker if: for any vertex v, for any color c, for
any arrangement of the stones on G (provided c(v) is not rare or c(v) = c), there exists a
way to play that yields a single stone of color c on v, with the possible use of a joker move.

Definition A graph G is said to be strongly 2-reducible if: for any vertex v, for any arrange-
ment of the stones on G (provided G \ v is not monochromatic), for any two colors c and
c′ (provided there exist two different vertices u and u′ such that c(u) = c and c(u′) = c′),
there exists a way to play that yields a stone of color c on v, and (possibly) a second stone
of color c′ somewhere else.

Definition Let G be a graph, vi and vj two vertices of G, c and c′ two colors belonging
to {0, 1}. A game configuration C on G is said to be 1-reducible on vi with c or (1, vi, c)-
reducible if there exists a way to play that yields only one stone of color c on G, located on
vi. A configuration C is said to be 2-reducible on vi with c and c′ or (2, vi, c, c′)-reducible if
there exists a way to play that yields a stone of color c on vi, and (possibly) a second stone
of color c′ on some other vertex. C is said to be (2, vi, c, vj, c′)-reducible if there exists a way
to play that yields a stone of color c on vi and a second stone of color c′ on vj.

In the next section, we solve the case of SC2 played on cliques. We prove in Proposition 1
that any clique of size at least 3 is strongly 1-reducible.

In Section 3, we play the game on hypercubes. We prove in Theorem 5 that hypercubes
are both strongly 1-reducible joker and strongly 2-reducible, the proofs are intertwined. We
also prove in Proposition 6 that any hypercube has a non-monochromatic configuration for
which it is not 1-reducible. This somehow stresses the relevance ot Theorem 5.

Finally, in Section 4, we prove in Theorem 12 that all the Hamming graphs except
hypercubes and K2!K3 are strongly 1-reducible. To prove this, we use a slightly stronger
result in Theorem 8; we prove that if G is a strongly 1-reducible graph containing at least 4
vertices, then the Cartesian product of G with any clique is strongly 1-reducible.
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2. SC2 Played on Cliques

It is not very surprising that every game configuration on a clique is 1-reducible. Further-
more, we also prove that we can choose the color and the location of the single remaining
stone.

Proposition 1. Cliques of size n ≥ 3 are strongly 1-reducible.

When n < 3, note that cliques are 1-reducible, but we can’t decide where and with which
color we finish.

Proof. Let C be a game configuration on Kn (n ≥ 3). Let v be a vertex of Kn such that Kn\v
is not monochromatic. Let c be any color in {0, 1}. We prove that C is (1, v, c)-reducible:

First assume that C contains no rare color. We consider two cases:

∗ if c = c(v). By hypothesis, there exists a vertex w labeled c(v). Since c(v) and
c(w) are not rare, there exist two vertices v′ and w′ such that c(v′) = c(v) and
c(w′) = c(w). The succession of moves leading to a single remaining stone is the
following: w clobbers v, w′ clobbers all the vertices with the label c(v) except v′,
and finally, v′ clobbers all the vertices labeled c(v), and ends on v.

∗ if c = c(v). As previously, there exist w labeled c(v) and v′ labeled c(v). v′

clobbers all the vertices labeled c(v) except w. Then w clobbers all the vertices
labeled c(v) and ends on v.

Now assume that C has a rare color located on a vertex vr %= v. If c = c(vr), then it is
enough to have vr clobber all the vertices and finish on v. If c = c(vr), have vr clobber all
the vertices except one (call it v′ %= v) and finish on v. Then have v′ clobber v and this
concludes the proof.

3. SC2 Played on Hypercubes

In this section, we study SC2 on hypercubes. We prove that these graphs are strongly 2-
reducible.

Let n > 2. Note that Qn is defined recursively as the product K2!Qn−1, Q0 being a
single vertex. This means that Qn is made of two copies Ql

n and Qr
n of Qn−1, where each

vertex of Ql
n is adjacent to its copy in Qr

n. Let N = 2n−1. For each i > 1, it is well known
that Qi admits a Hamiltonian cycle. Denote by v1, . . . , vN the vertices of Ql

n, ordered such
that (v1, . . . , vN) form a Hamiltonian cycle. Denote by v′1, . . . , v

′
N the vertices of Qr

n, such
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that vi is adjacent to v′i for all i. Note that (v′1, . . . , v
′
N) forms a Hamiltonian cycle of Qr

n.
Here is the diagram of the hypercube Qn that will be used in the rest of the paper:
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Figure 2: The hypercube Qn

Let vi be a vertex of Qn. Note that when referring to vi+j, where (i + j) is not in [1, N ],
then use the appropriate subscript i + j ± N instead.

The following lemmas describe the successions of moves used to reduce a game configu-
ration to a certain form:

Lemma 2. Let C be a game configuration on a Hamiltonian graph G with n vertices (n > 2).
Let (v1, . . . , vn) be the list of the vertices ordered according to a Hamiltonian cycle of G. If
there exists a vertex vi such that c(vi) is rare on G, then C is both (1, vi±1, c(vi))-reducible
and (1, vi±2, c(vi))-reducible.

Proof. The first reduction is obtained when vi clobbers all the stones along the Hamiltonian
cycle (v1, . . . , vN). According to the direction in which we move around the cycle, we end
either on vi+1 or on vi−1.

To get the second reduction, vi clobbers all the stones along the Hamiltonian cycle, except
the last one. This means that vi finishes on vi+2 or vi−2, and is then clobbered by vi+1 or
vi−1 respectively.

Lemma 3. Let C be a game configuration on Qn, with n > 3. If there exists a rare color on
Qr

n, and if Ql
n is not monochromatic, then there exists a way to play that yields no stones

on Qr
n and N stones on Ql

n, both colors being common on Ql
n. If n = 3, there may be a rare

color on Ql
n, but we can choose its location on two distinct vertices.

Proof. Let c be the rare color on Qr
n and denote by v′i the vertex such that c(v′i) = c. We

consider three cases for the stones on Ql
n:

• c is rare on Ql
n. Thanks to its Hamiltonian cycle and by Lemma 2, we know

that Qr
n is (1, v′i±2, c)-reducible. If n > 3, v′i+2 and v′i−2 are distinct vertices. Also
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since c is rare on Ql
n, this means that either vi+2 or vi−2 is labeled with the color

c. Without loss of generality, suppose that vi+2 is labeled c; hence we apply a
(1, v′i+2, c)-reduction of Qr

n. Then v′i+2 clobbers vi+2, so that Ql
n contains at least

two stones of each color afterwards.

If n = 3 and c(vi+2) = c, this proof is no longer valid. In that case, there are two
ways to play, each of them leaving the rare color c either on vi+1 (diagram 1) or
on vi−1 (diagram 2).
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Figure 3: Lemma 3: special instance of the case n = 3

• c is rare on Ql
n. By Lemma 2, Qr

n is (1, v′i±1, c)-reducible. We know that at
least one of both vertices vi+1 and vi−1 has the common label c. Without loss of
generality, assume vi+1 does. Last, we apply a (1, v′i+1, c)-reduction of Qr

n, and
then we play from v′i+1 to vi+1.

• Both colors are common on Ql
n. We consider the four cases for the labels of vi+1

and vi+2:

− c(vi+1) = c and c(vi+2) = c. Use a Hamiltonian cycle of Qr
n to have v′i

clobber all the vertices except v′i+1. This operation yields two stones
on Qr

n: v′i+1 labeled c, and v′i+2 labeled c. Play now from v′i+1 to vi+1

and from v′i+2 to vi+2.
− c(vi+1) = c and c(vi+2) = c. If n > 3, c or c′ appears more than twice in

Ql
n. If it is the case of c, then apply a (1, v′i+1, c)-reduction of Qr

n, and
play from v′i+1 to vi+1. If c appears more than twice in Ql

n, then apply
a (1, v′i+2, c)-reduction of Qr

n, and play from v′i+2 to vi+2. If n = 3, there
are two possible arrangements of the stones on Ql

n. In both cases, there
exists a way to play that yields a rare color on Ql

n, with two possible
locations:

− c(vi+1) = c and c(vi+2) = c. If c appears more than twice in Ql
n, then

apply a (1, v′i+2, c)-reduction of Qr
n, and play from v′i+2 to vi+2. Then

play from v′i+2 to vi+2. Otherwise, and if n > 3, this means that the
color c appears more than twice, in particular on vi−1. Then apply a
(1, v′i+1, c)-reduction of Qr

n, and play from v′i−1 to vi−1. If n = 3, this
implies c(vi) = c(vi−1) = c. It then suffices to invert the order of the
vertices (vi+1 becomes vi−1...) to reduce to the previous case.

− c(vi+1) = c and c(vi+2) = c. This case is similar to the previous one.
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Figure 4: Lemma 3: special instances of the case n = 3 (2)

Lemma 4. Let C be a game configuration on Qn, with n > 2. If there exists a rare color
on Qr

n, and if Ql
n is monochromatic, then there exists a way to play that yields no stones on

Qr
n and N stones on Ql

n, which is not monochromatic. Also, if this operation yields a rare
label on Ql

n, we can choose its location on two distinct vertices.

Proof. Let c be the rare color on Qr
n and denote by v′i the vertex such that c(v′i) = c. We

consider two cases about Ql
n:

• All the vertices of Ql
n have the color c. Use a Hamiltonian cycle of Qr

n to have v′i
clobber all the vertices except v′i+1 and v′i+2. It ends on v′i+3. Then v′i+2 clobbers
v′i+3. This operation yields two stones labeled c on v′i+1 and v′i+3. Then play from
v′i+1 to vi+1 and from v′i+3 to vi+3. Both colors now appear at least twice on Ql

n.

• All the vertices of Ql
n have the color c. By Lemma 2, we can apply a (1, v′i±1, c)-

reduction of Qr
n. Then play from v′i+1 or v′i−1 to the corresponding vertex in Ql

n.
In that case, the color c is rare on Ql

n, but it can be located either on vi+1 or on
vi−1.

We now give the main result of this section about the ”strong reducibility” of the hyper-
cube.

Theorem 5. Hypercubes are strongly 1-reducible joker and strongly 2-reducible.

Of course, the most interesting property concerns the 2-reducibility of the hypercube.
However, this result is tightly linked to the strong 1-reducibilty joker. One can notice
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that the conditions defining the strong 2-reduction and the strong 1-reduction joker are
a bit different. Indeed, the ”vertex” condition of strong 2-reducibility (i.e. G \ v must
not be monochromatic) is contained in the condition of strong 1-reducibility joker. But
monochromatic hypercubes and hypercubes with a rare color on vr such that c = c(vr) are
also strongly 1-reducible joker, although they are not strongly 2-reducible. This explains
why the conditions of strong 1-reducibility joker are ”larger”.

Proof. We proceed via induction on the dimension of the hypercube. The reader can verify
that these results are true on the hypercube Q2 (the square). Note that only four arrange-
ments of the stones must be considered:

!"!" !!!! !!!" !""!
Assume that the theorem is true for the hypercube Qn−1 and consider the hypercube Qn.

Qn is strongly 1-reducible joker.

Without loss of generality, assume that the vertex that will support the last stone is v1.
Let c be any color in {0, 1}. We consider any arrangement of the stones on Qn such that
c(v1) is not rare or c(v1) = c. Our objective consists in finding a way to yield a single stone
of color c on v1. We are allowed to use a joker. Five cases are considered:

1. Suppose Ql
n is (1, v1, c)-reducible joker, and the joker is used to change the color of some

vertex vj from the color d ∈ {0, 1} to d. Also, we suppose that Qr
n is (1, v′j, d)-reducible

joker.

We first apply the (1, v′j, d)-reduction joker on Qr
n, which yields a stone of color d on

v′j. We may have used a joker to do this. Then we apply a (1, v1, c)-reduction joker on
Ql

n with a small modification: instead of using the joker on vj, we play from v′j to vj.

This move is indeed equivalent to the use of the joker, since v′j has the color d at this
moment. At the end of the play, the joker has been used at most once.

2. Ql
n is (1, v1, c)-reducible joker, and the joker is used to change the color of some vertex

vj from the color d ∈ {0, 1} to d. Moreover, Qr
n is not (1, v′j, d)-reducible joker. From

the conditions of the strong 1-reduction joker, this means that c(v′j) = d, and c(v′i) = d
for all i %= j.

Since d is rare on Qr
n, we can apply both Lemma 3 and 4. If this yields a rare color on

Ql
n, we choose a location different from v1 for it. Hence c(v1) is never rare and we can

apply a (1, v1, c)-reduction joker on Ql
n.

3. Ql
n is (1, v1, c)-reducible joker, but the joker is not used. We consider any arrangement

of the stones on Qr
n.

We consider a succession of moves resulting from a (1, v1, c)-reduction of Ql
n. In this

sequence, there exists a vertex vi that clobbers at least two other vertices before being
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(or not) clobbered. Indeed, if each vertex clobbers at most once, then Ql
n would be a

star, which is not the case. Denote by vj and vk the first two vertices clobbered by vi.
When the moves from vi to vj and then to vk are made, let y be the color of vi, and y
the color of vj and vk. We consider four cases about the colors of v′i and v′j:
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Figure 5: Ql
n is 1-reducible on v1 with c

• CASE 1: c(v′i) = y and c(v′j) = y. Apply a (1, v1, c)-reduction of Ql
n, and

when the time comes to play from vi to vj, play to v′i instead. At this
moment, y is not rare on Qr

n, so we can apply a (1, v′j, y)-reduction joker on
Qr

n. Play then from v′j to vj and continue the (1, v1, c)-reduction of Ql
n.

• CASE 2: c(v′i) = c(v′j) = y. Begin a (1, v1, c)-reduction of Ql
n up to the

move from vj to vk (not included). Play to v′j instead. Since c(v′k) is not
rare, apply a (1, v′k, y)-reduction joker on Qr

n. Then play from v′k to vk and
continue the (1, v1, c)-reduction of Ql

n.
• CASE 3: c(v′i) = c(v′j) = y. Apply a (1, v1, c)-reduction of Ql

n up to the
move from vi to vj (not included). Instead of it, have vj clobber vi and then
v′i. The rest of the play is identical to the previous case.

• CASE 4: c(v′i) = y and c(v′j) = y. If c(v′k) = y, then play as in the second
case. Otherwise, play as in the third case.

4. Ql
n is not (1, v1, c)-reducible joker, and Qr

n is (2, v′1, c, c)-reducible.

This implies that c(v1) = c and c(vi) = c for all i > 1. If Qr
n is (1, v′1, c)-reducible, we

apply this reduction and then play from v′1 to v1. Ql
n becomes monochromatic and the

(1, v1, c)-reduction joker can now be applied on it. If Qr
n is (2, v′1, c, c)-reducible, then

choose the second remaining stone of color c. Let v′j be the vertex on which this stone
is left. Play now from v′1 to v1, and from v′j to vj. Ql

n now satisfies the right conditions
to apply a (1, v1, c)-reduction joker.

5. Ql
n is not (1, v1, c)-reducible joker, and Qr

n is not (2, v′1, c, c)-reducible.

There are four possible arrangements of the stones on Qn corresponding to these con-
ditions:

• The arrangement (A) does not have to be considered. Indeed, this arrange-
ment is not allowed by the conditions of the 1-reduction joker, since c(v1) is
rare on Qn and c(v1) %= c.
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Figure 6: Strong 1-reducibility joker: case 5

• If the arrangement of the stones is (B), have v′1 clobber all the vertices of
Qr

n and end on v′N . Then v′N clobbers vN , and the conditions of a (1, v1, c)-
reduction joker are fulfilled on Ql

n.
• If the arrangement of the stones is (C), have vi clobber v′i for all 2 < i < N .

Apply now a (1, v′1, c)-reduction joker of Qr
n. Finally, v1 is clobbered by v2,

v′1 and vN in this order.
• If the stones are placed as in (D), use Lemma 2 to apply a (1, v′N−1, c)-

reduction of Qr
n. Then v′N−1 clobbers vN−1, and we can apply a (1, v1, c)-

reduction joker of Ql
n.

Qn is strongly 2-reducible.

Without loss of generality, assume that the vertex that will support the last stone is v1.
We consider any arrangement of the stones on Qn such that Qn \ v1 is not monochromatic.
Let c and c′ be any two colors in {0, 1} such that there are two distinct vertices of Qn labeled
with these values. Our objective consists in finding a way to leave a stone of color c on v1,
and possibly another one of color c′ somewhere else. We consider eleven cases, starting with
those where Qr

n is monochromatic (cases 1 to 5):

1. Qr
n is monochromatic of color y ∈ {0, 1}, and Ql

n is (1, v1, c)-reducible. Consider a
succession of moves resulting from a (1, v1, c)-reduction of Ql

n. First suppose that
there exists a move from a stone of color y on some vertex vi clobbering a stone of
color y on the vertex vj. Replace this move by having vi clobber v′i. There exists an
Hamiltonian cycle of Qr

n where v′i and v′j are consecutive. Have v′i clobber all the stones
of Qr

n and end on v′j with the color y. Finally v′j clobbers vj, and we can continue the
(1, v1, c)-reduction of Ql

n.

Suppose now that there exist no moves clobbering a vertex labeled y when applying a
(1, v1, c)-reduction of Ql

n. Necessarily this means that c = y. Also, this implies that
all the vertices of Ql

n are labeled y, except one, namely vi. The (1, v1, c)-reduction of
Ql

n thus consists in having vi clobber all the vertices of Ql
n and end on v1. Without

loss of generality, suppose that v2 is the penultimate vertex which is clobbered when
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applying the (1, v1, c)-reduction of Ql
n. The following diagram shows how to apply the

(1, v1, c)-reduction of Qn:
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Figure 7: Strong 2-reducibility: specific instance of case 1

2. Qr
n is monochromatic of color y ∈ {0, 1}, and Ql

n is (2, v1, c, y)-reducible.

If Ql
n is (1, v1, c)-reducible, then we are in case 1. Suppose then that the reduction

yields two stones, the second one being located on some vertex vi. In that case, apply
a (2, v1, c, vi, y)-reduction of Ql

n and play from vi to v′i. Then use Lemma 2 to yield a
stone of color c′ either on v′i+1 (if c′ = y) or on v′i+2 (if c′ = y).

In cases 3, 4 and 5, we suppose that Ql
n is not (2, v1, c, y)-reducible. If Ql

n is not
(2, v1, c, y)-reducible, then either Q \ v1 is monochromatic, or c = y and y is rare in
Ql

n. But from our initial assumption that Qn \ v1 is not monochromatic, we know that
there is at least one stone colored in y in Q \ v1. So either Q \ v1 is monochromatic of
color y (see cases 4 and 5), or y is rare in Ql

n and c(v1) %= y (see case 3).

3. Qr
n is monochromatic of color y ∈ {0, 1}, and y is rare on Ql

n with c(v1) %= y. If Ql
n is

not (2, v1, c, y)-reducible, then c = y and c′ = y (by our initial assumption that there
are two distinct vertices of color c and c′ respectively in Qn). Let vi be the vertex of
Ql

n such that c(vi) = y. See Fig.8 for the diagram of such a configuration.

Since c = y and c′ = y, Ql
n is (2, v1, c, c′)-reducible. Consider the first move of this

2-reduction: it is a move from vi to some vj since c(vi) is rare. Instead of playing it,
play from vi to v′i, and then have v′i clobber all the stones of Qr

n and end on v′j. Then
play from v′j to vj and continue the (2, v1, c, c′)-reduction of Ql

n to conclude this part
of the proof.

4. Qr
n is monochromatic of color y ∈ {0, 1} and c(v1) = y is rare on Ql

n (see Fig. 9).

We first consider the case c = y. For all 2 ≤ i ≤ N , play from vi to v′i. Then use an
Hamiltonian cycle of Qr

n to yield the second stone of the right color c′ (on vN or vN−1

according to c′) after having clobbered all the other vertices of Qr
n.
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reducibility: case 4

If c = y, then first vN clobbers v1. Then vi clobbers v′i for all 3 ≤ i ≤ N − 1. We apply
a (2, v′1, y, c′)-reduction of Qr

n. The last two moves are v′1 to v1, and v2 to v1.

5. Qr
n is monochromatic of color y ∈ {0, 1} and Ql

n is monochromatic of color y.

We first consider the case when c = y. Play from vN to v′N and from v′N−1 to vN−1.
Then use a Hamiltonian cycle of Qr

n to clobber all its vertices and yield a stone of color
c′ on Qr

n. Finally, have vN−1 clobber all the stones of Ql
n and end on v1.

If c = y, play from v′1 to v1, and then from v2 to v1. Have vi clobber v′i for all 2 < i ≤ N .
Use a Hamiltonian cycle to reduce Qr

n to a single stone of color c′.

In the next cases, we suppose that Qr
n is not monochromatic.

6. Ql
n is (1, v1, c)-reducible, and Qr

n has a rare color.

Apply a (1, v1, c)-reduction of Ql
n and use a Hamiltonian cycle to reduce Qr

n to a single
stone of color c′ on v′i+1 or v′i+2.

7. Ql
n is (1, v1, c)-reducible and both colors are common on Qr

n.

We consider a sequence of moves resulting from a (1, v1, c)-reduction of Ql
n. In this

sequence, there exists a vertex vi that clobbers at least two other vertices before being
(or not) clobbered. Denote by vj and vk the first two vertices clobbered by vi. When
considering the moves from vi to vj and then to vk, let y be the color of vi, and y the
color of vj and vk. We consider four cases according to the colors of v′i and v′j:

• CASE 1: c(v′i) = y and c(v′j) = y. Apply a (1, v1, c)-reduction of Ql
n until

the move from vi to vj (not included). Play now from vi to v′i, and from
vj to v′j instead. After this operation, both colors are still common on Qr

n,
so that we can apply a (2, v′k, y, c′)-reduction. Then play from v′k to vk, and
continue the (1, v1, c)-reduction of Ql

n.
• CASE 2: c(v′i) = c(v′j) = y. Apply a (1, v1, c)-reduction of Ql

n, and when the
time comes to play from vj to vk, play to v′j instead. Since y is not rare on
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Figure 10: Strong 2-reducibility: case 7

Qr
n after this operation, apply a (2, v′k, y, c′)-reduction of Qr

n. After this, play
from v′k to vk and continue the (1, v1, c)-reduction of Ql

n.
• CASE 3: c(v′i) = c(v′j) = y. Apply a (1, v1, c)-reduction of Ql

n until the move
from vi to vj (not included). Instead of it, have vj clobber vi and then v′i. If
y is not rare on Qr

n after this operation, then apply a (2, v′k, y, c′)-reduction
of Qr

n. If y is rare on Qr
n, then use a Hamiltonian path of Qr

n starting on v′j
and ending on v′k to yield a stone of color y on v′k.

After this, play from v′k to vk and continue the (1, v1, c)-reduction of Ql
n.

• CASE 4: c(v′i) = y and c(v′j) = y. If the color y appears more than twice in
Qr

n, or if c(v′k) = y, then play as in the second case. Otherwise, this means
that c(v′j) = c(v′k) = y and the other vertices of Qr

n have the color y. Play
thus as in the third case.

In the next two cases, we suppose that c(v1) is not rare on Ql
n (which may be mono-

chromatic). Hence Ql
n is (1, v1, c)-reducible joker. If this reduction does not use the

joker, then refer to case 6 or 7. Otherwise, assume that the joker is used to change the
color of some vertex vj from d to d.

8. If Qr
n is (2, v′j, d, c′)-reducible, we first apply a (2, v′j, d, c′)-reduction of Qr

n. We then
apply a (1, v1, c)-reduction joker of Ql

n, and when the time comes to use the joker, we
play from v′j to vj instead.

9. Suppose that Qr
n is not (2, v′j, d, c′)-reducible. By our earlier assumption, Qr

n is not
monochromatic, so this can occur in only three kinds of arrangements of the stones on
Qr

n, all with a rare color. The case when Ql
n is monochromatic is studied in case 10,

we assume in this section that Ql
n is not monochromatic.

• c(v′j) %= d, d is rare on Qr
n and c′ = d. If n > 3, then use Lemma 3 to empty

Qr
n and yield N stones on Ql

n where both colors are common. Then we can
apply a (2, v1, c, c′)-reduction of Ql

n.

If n = 3, the lemma can not be used. We thus have to consider all the
configurations on Q3 satisfying these conditions. Figure 11 details these five
configurations (the final colors c and c′ are detailed under each diagram):

• c(v′j) = d, and d is rare on Qr
n. If n > 3, we play as in the previous case.

When n = 3, here are the configurations that must be considered:
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Figure 12: Case 9: arrangements on Q3 (2)

• d is rare on Qr
n and c(v′j) = d. If n > 3, we play as in the previous case. If

n = 3, here are the configurations that must be considered:

10. Assume that c(v1) = y is rare on Ql
n or that Ql

n is monochromatic, and that Qr
n has a

rare label. This induces four possible cases:

• CASE 1: We suppose that c(v1) = y is rare on Ql
n and Qr

n. Let v′i be the
vertex such that c(v′i) = y. Either v′i+1 or v′i−1 (or both) is different from v′1.
Without loss of generality, assume v′i+1 is. Apply a (1, v′i+1, y)-reduction of
Qr

n in the way of Lemma 2. Then play from v′i+1 to vi+1. Both colors are
now common on Ql

n, which becomes (2, v1, c, c′)-reducible.
• CASE 2: c(v1) = y is rare on Ql

n and y is rare on some vertex v′i of Qr
n. By

Lemma 2, apply a (1, v′i±2, y)-reduction of Qr
n (choose to finish on a vertex

different from v′1). Play then as in the previous case. This operation is not
possible if n = 3 and when the arrangement of the stones is the following:
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Figure 15: Special instance of the case 10.2

In that case, if (c, c′) %= (y, y), then consider the following succession of
moves: v′i+1 to vi+1, v′i to v′2, v′1 to v′2, v′2 to v2. Use then a Hamiltonian cycle
of Ql

n to conclude. If (c, c′) = (y, y), then play like this: Use a Hamiltonian
cycle of Qr

n to apply a (1, v′1, y)-reduction. Then move from v2 to v1, from v′1
to v1, and from vN to v1.

• CASE 3: Ql
n is monochromatic of color y and y is rare on some v′i of Qr

n.
This case is identical to the first case (note that c = c′ = y is not allowed
since y is rare on Qn).

• CASE 4: Ql
n is monochromatic of color y and y is rare on some v′i. Have v′i

clobber all the vertices of Qr
n except v′i+1 and v′i+2,and end on v′i+3. Then

play from v′i+2 to v′i+3, from v′i+3 to vi+3, and from v′i+1 to vi+1. All the stones
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of Qr
n have been removed and both colors are now common on Ql

n. Apply
now a (2, v1, c, c′)-reduction of Ql

n.

11. Assume that c(v1) = y is rare on Ql
n and that both colors are common on Qr

n.

If Qr
n is (1, v′N−1, y)-reducible, then apply this reduction and move from v′N−1 to vN−1.

Both colors are now common on Ql
n, and we can conclude to the right result.

Otherwise, Qr
n is 2-reducible on v′N−1 with y, and y on some other vertex called v′i.

Apply this reduction. If v′i %= v′1, move from v′N−1 to vN−1, and from v′i to vi. If n > 3,
then both colors are common on Ql

n, and we can conclude the proof. If n = 3, then y
is rare on Ql

n, and located either on v2, or on vN . Clobbering along the Hamiltonian
cycle of Ql

n permits a 2-reduction.

If v′i = v′1, we distinguish two cases. If c = y, then play from v2 to v1, v′1 to v1 and vN

to v1. Then have v′N−1 clobber vN−1 and follow a Hamiltonian cycle of Ql
n to leave the

last stone of color c′. If c = y, then play from vN to v1, and from v′1 to v1. Have v′N−1

clobber vN−1 and use a Hamiltonian cycle of Ql
n to leave the last stone of color c′.

This theorem ensures that hypercubes are 2-reducible. Besides, as next proposition
shows, non 1-reducible configurations exist. We use to prove it the invariant δ given by
Demaine et al. in [2], defined below.

Proposition 6. For each integer n, there exists a non-monochromatic configuration on Qn

which is not 1-reducible.

Proof. We prove this result thanks to the invariant defined by Demaine et al. in [2]. On
a bipartite graph G, vertices of both partitions are respectively labeled ’0’ and ’1’. Now
consider a game configuration C of Solitaire Clobber on G, with stones labeled ’0’ and ’1’.
A stone is said to be ”clashing” if its label differs from the label of the vertex it occupies.
Denote by δ(C) the following quantity:

δ(C) = number of stones plus number of clashing stones.

In their paper, Demaine et al. proved that δ(C) (mod 3) never changes during the game.

Let n > 1 and consider Qn = Qn−1!K2. As previously, denote by Ql
n and Qr

n both copies
of Qn−1. Hypercubes are bipartite graphs. Choose a bipartition of Qn such that half the
vertices of Ql

n are labeled ’0’, and the other ones are labeled ’1’. Ditto for Qr
n. Now choose

an arrangement of the stones on Qn such that all the stones labeled ’0’ belong to Ql
n, and

all the stones labeled ’1’ belong to Qr
n. In that case, we have

δ(C) = 2n + 2n−1 = 3 · 2n−1

Hence δ(C) (mod 3) = 0. Since a single stone configuration never satisfies δ(C) (mod 3) = 0
(see [2]), this concludes the proof.
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Proposition 6 shows that our result is sharp. Nevertheless, it is still an open problem to
determine if a given configuration in a hypercube satisfying δ = 1 is 1-reducible.

4. On the Other Hamming Graphs

Hypercubes are strongly 2-reducible. In this section, we prove that almost all the other
Hamming graphs are strongly 1-reducible. This induction is initialized by Lemmas 10 and
11, and the property is proved to be hereditary by Theorem 8.

In the following, we prove that the cartesian product of a strongly 1-reducible graph G
with a clique Kn is strongly 1-reducible. This product contains n copies of G, that we denote
by G1, . . . , Gn. For any vertex v of G, we denote by vi the corresponding vertex in the copy
Gi. Then, denote by v1 any vertex of G1.

Lemma 7. Let G be a strongly 1-reducible graph containing at least 4 vertices. K2!G is
strongly 1-reducible.

Proof. Let G be a strongly 1-reducible graph with at least 4 vertices. Without loss of
generality, assume that the vertex on which we will leave the last stone is v1. Let c be any
color in {0, 1}. We consider any arrangement of the stones on K2!G such that K2!G \ v1

is not monochromatic. Let us prove that K2!G is (1, v1, c)-reducible. We split the problem
into three cases.

1. G2 is not monochromatic.
Since G is of size at least 4, there exist 2 vertices of the same color in G1 \ v1. We
denote them by a1 and b1. Similarly, c(a2) or c(b2) (or both) is common in G2. Without
loss of generality, we suppose c(a2) is. One applies a (1, a2, c(a1))-reduction of G2, and
then have a2 clobber a1. G2 is now empty. a1 and b1 are now of different colors on G1,
so we can apply a (1, v1, c)-reduction of G1.

2. G2 is monochromatic of color y and G1 \ v1 is not monochromatic.

This means that G1 is (1, v1, c)-reducible. We consider two cases:

• Suppose that when one applies a (1, v1, c)-reduction of G1, there exists a vertex a1

colored in y clobbering another vertex b1 of color y. We then choose to apply this
reduction, and when the time comes to play from a1 to b1, play to a2 instead. We
then apply a (1, b2, y)-reduction of Q2. b2 then clobbers b1 and we can continue
the (1, v1, c)-reduction of G1.

• Otherwise, there is exactly one vertex a1 colored in y in G1. Since there are at least
4 vertices in G1, a1 has to clobber consecutively 2 vertices during the (1, v1, c)-
reduction of G1. Denote them by b1 and c1. We replace these two consecutive
moves by these ones: b1 clobbers a1 and then a2. We then apply a (1, c2, y)-
reduction of G2. It finally suffices to play from c2 to c1, and continue the (1, v1, c)-
reduction of G1.
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3. G2 is monochromatic of color y and G1 \ v1 is monochromatic.
Since K2!G \ v1 is not monochromatic, G1 \ v1 is necessarily colored y. Let a1 be any
vertex of G1 different from v1. Act now as if a1 was colored y. We can thus consider
a (1, v1, c)-reduction of G1. The first step of such a reduction would be “a1 clobbers
some vertex b1.” We use this reduction, replacing this step by “a1 (which is actually
colored y) clobbers a2, then we do a (1, b2, y)-reduction of G2, followed by b2 clobbers
b1”.

Theorem 8. Let G be a strongly 1-reducible graph containing at least 4 vertices. Then for
any positive integer n, Kn!G is strongly 1-reducible.

Proof. Let G be a strongly 1-reducible graph with at least 4 vertices. We prove the theorem
by induction on n. If n = 2, see Lemma 7. Suppose n ≥ 3 and Kn−1!G is strongly 1-
reducible. Without loss of generality, assume that the vertex on which we will leave the
last stone is v1. Let c be any color in {0, 1}. We consider any arrangement of the stones
on K2!G such that K2!G \ v1 is not monochromatic. Let us give a (1, v1, c)-reduction of
Kn!G.

We consider 3 different cases:

1. There exists i ∈ [2 . . . n] such that Gi is not monochromatic.
Since G contains at least 4 vertices, there are 2 vertices ai and bi such that Gi \{ai, bi}
is not monochromatic. For the same reasons, in any other copy Gj, c(aj) or c(bj) (or
both) is not rare. Without loss of generality, we can suppose that c(aj) is common on
Gj. Start by applying a (1, ai, c(aj))-reduction of Gi, and then play from ai to aj. We
can proceed with a (1, v1, c)-reduction of the remaining non monochromatic Kn−1!G.

2. For all i ∈ [2 . . . n], Gi is monochromatic of color y.
If Gn is deleted from the graph, then the configuration is (1, v1, c)-reductible according
to the induction hypothesis. In this reduction, there exists a move from some ai to
some bi of color y, where 1 < i < n. When considering the graph with Gn, we apply
the (1, v1, c)-reduction as if Gn was not there. And when the time comes to play from
ai to bi, we play to an instead. We then do a (1, bn, y)-reduction of Gn and have bn

clobber bi. We can finally continue the execution of the (1, v1, c)-reduction.

3. For all i ∈ [2 . . . n], Gi is monochromatic, but all the copies do not have the
same color.
Let y be the color of some vertex of G1 \ v1. Let Gi (i > 1) be a copy of color y and
Gj (j > 1) a copy of color y. We start by having all the vertices of Gj clobber the
corresponding vertices of Gi. Hence there remains a Kn−1!G where Kn−1!G \ v1 is
not monochromatic. We can apply the induction hypothesis to conclude the proof.

With these results, we can assert that any Hamming graph containing a K4 is strongly
1-reducible. What about Hamming graphs that are the product of K2 and K3 only?
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We begin by studying configurations on K2!K3. Such a graph will be considered as two
adjacent copies G1 and G2 of K3.

Lemma 9. Let G = K3!K2 and i ∈ {1, 2}. For any vertex ai of G, for any color c ∈ {0, 1}
and for any configuration C on G such that: (i) c(ai) is not rare on Gi and (ii) K3!K2 \ ai

is not monochromatic, C is (1, ai, c)-reducible.

Proof. For i ∈ {1, 2}, let vi, ui, and wi be the vertices of each copy Gi. Without loss of
generality, assume that we will leave the last stone on v1. By (i), one may assume that v1

and u1 have the same color y. Let c ∈ {0, 1}. Our goal is now to prove that any configuration
satisfying (i) and (ii) is (1, v1, c)-reducible. We consider several cases:

• c(w1) = y and G2 is not monochromatic. By Proposition 1, G2 is either (1, u2, y)-
reducible, or (1, w2, y)-reducible. Without loss of generality, suppose that G2 is
(1, u2, y)-reducible. Apply this reduction and play from u2 to u1. The conditions
are now fulfilled on the clique G1 to apply a (1, v1, c)-reduction.

• c(w1) = y and G2 is monochromatic. From (ii), G2 is monochromatic of color
y. According to c, play as shown on diagrams (a) (c = y) or (b) (c = y) of Figure
16.

• c(w1) = y and G2 is (1, v2, y)-reducible. Apply this reduction, and then play
from v2 to v1. Now G1 is (1, v1, c)-reducible by Proposition 1.

• c(w1) = y and G2 is monochromatic. Play according to Figure 16. On diagrams
(c) and (e), we have c = y. On diagrams (d) and (f), we end with the color
c = y.

• c(w1) = y and c(v2) is rare on G2. In both cases, we play from v2 either to
u2 or to w2, such that c(u2) %= c(u1) and c(w2) %= c(w1) after this operation.
We then play from u2 to u1, and from w2 to w1. Use Proposition 1 to apply a
(1, v1, c)-reduction of G1.
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yy

yy

yy

1u1v1 w
y

c)

yy

yy

yy

1u1v1 w
y

d)

a)

yy

yy

yy
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1u1v1 w
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Figure 16: reduction of K2!K3
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Lemma 10. K3!K3 is strongly 1-reducible.

Proof. Let us consider the graph K3!K3, v1 being any vertex of it. Assume that we will leave
the last stone on v1. Let c ∈ {0, 1}. We consider any arrangement of the stones such that
K3!K3 \v1 is not monochromatic. Let us prove that this configuration is (1, v1, c)-reducible.

Among the six copies of K3 constituting the product K3!K3 (three horizontal and three
vertical), one of them is not monochromatic and does not contain v1: call it G3. Denote by
G1 the parallel copy of G3 containing v1, and G2 the last parallel copy. G3 is then 1-reducible
with any color on two possible vertices: a3 and b3. At least one of these is different from v3

(v3 being the copy of v1 in G3). Without loss of generality, assume a3 %= v3.

If G1 \ v1 is not monochromatic, we apply a (1, a3, c(a2))-reduction of G3 and then play
from a3 to a2. Otherwise, we apply a (1, a3, c(a1))-reduction of G3 and then play from a3

to a1. In both cases, we finally get a configuration on K2!K3 that we can reduce from
Lemma 9.

Lemma 11. K3!K2!K2 is strongly 1-reducible.

Proof. Consider the graph K3!K2!K2. Let v1 be any vertex of it and let c be any color.
Assume that we will leave the last stone on v1. We consider any arrangement of the stones
such that K3!K2!K2 \ v1 is not monochromatic.

Let G1 be the copy of K3 containing v1. We call G2, G3, and G4 the other copies of K3,
G3 being the copy containing no neighbour of v1. We distinguish two cases:

• The graph without G1 is not monochromatic
There exists a non monochromatic copy of K2!K3 that does not contain G1. Without
loss of generality, suppose it is the one made of G3 and G4. We can 1-reduce it to
various places.

We first suppose that both vertices a1 and b1 of G1 \ v1 have the same color. At least
one of the corresponding vertex a4 and b4 in G4 has a common color in G4. Assume it
is the case of a4. The conditions of Lemma 9 are fulfilled so that we are able to apply
a (1, a4, c(a1))-reduction of G3 ∪G4; then we have a4 clobber a1. Now, G1 ∪G2 \ v1 is
not monochromatic, and c(v1) is common on G1. By Lemma 9, G1 ∪ G2 is (1, v1, c)-
reducible.

Suppose now that the vertices a1 and b1 of G1 \ v1 have different colors. At least
one vertex of a3 and b3 has a common color in G3. Assume it is a3. The conditions
of Lemma 9 are fulfilled to apply a (1, a3, c(a2))-reduction of G3 ∪ G4; then have a3

clobber a2. Now, G1 ∪G2 \ v1 is not monochromatic, and c(v1) is common on G1. By
Lemma 9, G1 ∪G2 is (1, v1, c)-reducible.
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• The graph without G1 is monochromatic of color y
Then G1\v1 contains a stone of color y. Denote by z the initial color of v1. We describe
the way to play on Figure 17.

v1

yy

z

y y

v1

yy

v1

yy

v1 z
a) c)

z

y y

y

b) d)

y y

y

z

y y

y

z

y y

y

z
v2 v2

Figure 17: 1-reduction of K3!K2!K2

In cases (a) and (c), we have c = z. We execute the moves described by the figure,
leaving v1 and a copy of K2!K3. We can apply a (1, v2, z)-reduction of this copy (from
Lemma 9), and conclude by playing from v2 to v1. In cases (b) and (d), we have c = z.
Just follow the moves on the figure as soon as they are possible.

From all these results, we can deduce the following theorem about Hamming graphs.

Theorem 12. Any Hamming graph that is neither K2!K3 nor a hypercube is strongly 1-
reducible.

Note that K2!K3 is 1-reducible for any coloration, and is also strongly 1-reducible joker.
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