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Abstract
In this paper, by employing Cilleruelo’s method, we prove that neither

∏n
k=1(4k

2+1)
nor

∏n
k=1(2k(k−1)+1) is a perfect square for all n > 1, which confirms a conjecture

of Amdeberhan, Medina, and Moll.

1. Introduction

Recently, there has been a renewed interest in investigating whether or not certain
product sequences contain perfect squares. Amdeberhan, Medina and Moll [1] pro-
posed several conjectures in this direction. Soon after, J. Cilleruelo [2] proved that
the number

n∏

k=1

(k2 + 1)

is not a perfect square provided n > 3, which settles Conjecture 5.1 in [1]. Amde-
berhan, Medina and Moll [1] also proposed the following conjecture.

Conjecture 1 ([1, Conjecture 7.1]). The even and odd parts of
n∏

k=1
(k2 + 1) are

defined by

tn :=
n∏

k=1

(1 + 2k(k − 1)), and sn :=
n∏

k=1

(1 + 4k2).

These products involve the triangular and square numbers respectively. Neither of
them is a perfect square.

In this paper, by employing Cilleruelo’s method, we confirm this conjecture.

Theorem 2. Neither
n∏

k=1
(4k2 + 1) nor

n∏
k=1

(2k(k − 1) + 1) is a perfect square

for all n > 1.
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2. Proof of Theorem 2

Proof. In this paper, p always denotes a rational prime.

Let Pn =
n∏

k=1
(4k2 + 1). Assume that Pn is a perfect square for some n > 1. Let

p be a prime with p|Pn. Then p2|Pn and p ≡ 1 (mod 4). If there exists a positive
integer k ≤ n with p2|4k2 + 1, then p ≤

√
4n2 + 1 < 2n + 1. Thus p < 2n. If there

exist i, j, 1 ≤ i < j ≤ n with p|4i2 + 1 and p|4j2 + 1, then p|4(j − i)(j + i). Thus
either p|j − i or p|j + i. So p ≤ j + i < 2n.
Hence

Pn =
∏

p<2n
p≡1 (mod 4)

pαp .

Let n! =
∏

p≤n
pβp . Since 4nn!2 < Pn, we have

∑

p≤n

βplog p <
1
2

∑

p<2n
p≡1 (mod 4)

αplog p− n log 2. (1)

Since each interval of length pj contains at most two solutions of 4x2 + 1 ≡ 0
(mod pj), we have

αp =
∑

j≤log(4n2+1)/ log p

#{k ≤ n : pj |4k2 + 1} ≤
∑

j≤log(4n2+1)/ log p

2%n/pj&. (2)

On the other hand

βp =
∑

j≤log n/log p

#{k ≤ n : pj |k} =
∑

j≤log n/log p

'n/pj(. (3)

Thus we have

αp/2− βp ≤
∑

j≤log(4n2+1)/ log p

%n/pj& −
∑

j≤log n/ log p

'n/pj(

=
∑

j≤log n/ log p

(%n/pj& − 'n/pj() +
∑

log n/ log p<j≤log(4n2+1)/ log p

%n/pj&

≤ log (4n2 + 1)
log p

. (4)

By (1) and (4) we have
∑

p≤n
p#≡1 (mod 4)

βp log p =
∑

p≤n

βp log p−
∑

p≤n
p≡1 (mod 4)

βp log p

≤ 1
2

∑

n<p<2n

αp log p− n log 2 + log(4n2 + 1)π(n; 1, 4), (5)
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where π(n; 1, 4) denotes the number of primes which are less than or equal to n and
congruent to 1 modulo 4.

If p > n, then
log (4n2 + 1)

log p
<

log (n + 1)3

log(n + 1)
= 3.

By (2) we have αp ≤ 4.
If p ≤ n, then by (3) we have

βp ≥
∑

j≤log n/log p

(
n

pj
− 1

)
= n

(
1− p−1−#log n/log p$

1− 1/p
− 1

)
− 'log n/log p(

≥ n

(
1− 1/n

1− 1/p
− 1

)
− 'log n/log p( =

n− p

p− 1
− 'log n/log p(

≥ n− 1
p− 1

− log(4n2 + 1)
log p

,

where the last inequality is based on the fact p ≤ n.
Thus, by (5) we have

(n− 1)
∑

p≤n
p#≡1 (mod 4)

log p

p− 1
< log(4n2 + 1)π(n) + 2

∑

n<p<2n

log p− n log 2,

where π(n) denotes the number of primes which are less than or equal to n.
Now we use the Chebyshev’s estimates

∑

p≤n

log p ≤ 2n log 2,
∑

n<p<2n

log p ≤ 2n log 2

and (see [3])

π(x) ≤ x

log x

(
1 +

1.2762
log x

)
(x > 1)

to obtain

∑

p≤n
p#≡1 (mod 4)

log p

p− 1
<

log(4n2 + 1)
n− 1

(
n

log n
+

1.2762n
log2 n

)
+

3n
n− 1

log 2.

We know that the right-hand side is monotonic decreasing. Actually, that quantity
is less than 7.14 for n ≥ 702007.

For n ≥ 702007, we have

∑

p≤n
p#≡1 (mod 4)

log p

p− 1
≥

∑

p≤702007
p#≡1 (mod 4)

log p

p− 1
> 7.14,

which proves the theorem for n ≥ 702007.
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Finally we have to check that Pn is not a square for 2 ≤ n < 702007.

• 17 = 4 × 22 + 1. The next time that the prime 17 divides 4k2 + 1 is for
k = 17− 2 = 15. Hence Pn is not a square for 2 ≤ n ≤ 14.

• 101 = 4 × 52 + 1. The next time that the prime 101 divides 4k2 + 1 is for
k = 101− 5 = 96. Hence Pn is not a square for 5 ≤ n ≤ 95.

• 1297 = 4× 182 + 1. The next time that the prime 1297 divides 4k2 + 1 is for
k = 1297− 18 = 1279. Hence Pn is not a square for 18 ≤ n ≤ 1278.

• 739601 = 4× 4302 + 1. The next time that the prime 739601 divides 4k2 + 1
is for k = 739601 − 430 = 739171. Hence Pn is not a square for 430 ≤ n ≤
739170.

Therefore
∏n

k=1(4k
2 + 1) is not a perfect square. The proof that

∏n
k=1(2k(k −

1) + 1) is not a perfect square is completely similar. This completes the proof of
Theorem 2. !
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