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Abstract
Let o in (0,1] and 8 > 1 be algebraic numbers. We study the asymp-
totic behaviour of the function that counts the number of digit changes
in the B-expansion of a.

1. Introduction

Let 8 > 1 be a real number. The S-transformation T is defined on [0,1] by
T : x — Bz mod 1. In 1957, Rényi [12] introduced the B-expansion of a real z in
[0,1], denoted by dg(z) and defined by

dg(z) =0.z122... Tk . . .,

where xp = LﬂTg_l(z)J for k > 1, except when [ is an integer and x = 1, in which
case dg(1) :==0.(8 —1)...(8 —1)... Here and throughout the present paper, |-]
denotes the integer part function. Clearly, we have
x
-y B
k>1

For x < 1, this expansion coincides with the representation of x computed by
the ‘greedy algorithm’. If § is an integer b, then the digits x; of = lie in the set
{0,1,...,b— 1} and, if < 1, then dy(x) corresponds to the b-ary expansion of x.
If 8 is not an integer, then the digits x; lie in the set {0,1,...,|3]}. We direct
the reader to [2] and to the references quoted therein for more on [(-expansions.
Throughout this note, we say that dg(x) is finite (resp. infinite) if there are only
finitely many (resp. there are infinitely many) non-zero digits in the S-expansion
of x.

We stress that the S-expansion of 1 has been extensively studied, for it yields a lot
of information on the §-shift. In particular, Blanchard [5] proposed a classification
of the f(-shifts according to the properties of the (finite or infinite) word given
by dg(1), see Section 4 of [2]. The occurrences of consecutive 0’s in dg(1) play a
crucial role in Blanchard’s classification of the -shifts. This motivates the following
problem first investigated in [17].
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Let 8 > 1 be a real number such that dg(1) is infinite and let (ax)r>1 be the
B-expansion of 1. Assume that there exist a sequence of positive integers (ry,),>1
and an increasing sequence of positive integers (s, )n>1 such that

Aspt1 = Qg2 =" = Astr, =0, s, pr,+1 # 0,

and Sp4+1 > Sp, + 7, for every positive integer n. The problem is then to estimate
the gaps between two consecutive non-zero digits in dg(1), that is, to estimate the
asymptotic behaviour of the ratio 7, /s,.

The main result of [17], quoted as Theorem VG below, mainly shows that dg(1)
cannot be ‘too lacunary’ when (3 is an algebraic number. Recall that the Mahler
measure of a real algebraic number 6, denoted by M (#), is, by definition, equal to
the product

d
M) :=a H max{1,|6;|},

where 6 = 61,05, ...,0, are the complex conjugates of # and a is the leading coeffi-
cient of the minimal defining polynomial of 6 over the integers.

Theorem VG. Let 3 > 1 be a real algebraic number. Then, with the above notation,

we have low M
lim sup n < 287 (8) -
n—oo Sn log 8

Theorem VG was extended in [2], where, roughly speaking, repetitions of arbi-
trary (finite) blocks in the [-expansion of an algebraic number (where 8 > 1 is
algebraic) are studied, see Theorem 2 from [2] for a precise statement.

The purpose of the present note is to study the [-expansion of an algebraic
number « from another point of view, introduced in [8]. We aim at estimating the
asymptotic behaviour of the number of digit changes in dg(a). For « in (0, 1], write

dﬂ(a) = O.Ctlag ey
and define the function nbdcg, ‘number of digit changes in the S-expansion’, by
nbdeg(n,a) = Card{1l <k <n:ap # ars1},

for any positive integer n. This function was first studied in [8] when [ is an integer,
see also [9] for an improvement of the main result of [8]. The short Section 6 of [§]
is devoted to the study of nbdcg for 3 algebraic, but it contains some little mistakes
(see below) and its main result can be strengthened (see Theorem 2 below).

The present note is organized as follows. Our results on the behaviour of the
function nbdcg when 3 is an algebraic number are stated in Section 2 and proved in
Section 4. New results on values of lacunary series at algebraic points are discussed
in Section 3.
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2. Results

We begin by stating a consequence of Theorem 2 from [2], that can also be obtained
with the tools used in [17].

Theorem 1. Let 3 > 1 be a real algebraic number. Let o be an algebraic number
n (0,1]. If dg() is infinite, then

lim inf 22400 @) (m(w) >1. (1)

n—-+00 log n log 16

For the sake of completeness, Theorem 1 is established in Section 4 along with
the proof of Theorem 2.

A Pisot (resp. Salem) number is an algebraic integer greater than 1 whose
conjugates are of modulus less than 1 (resp. less than or equal to 1, with at least
one conjugate on the unit circle). In particular, an algebraic number S > 1 is a
Pisot or a Salem number if, and only if, M (3) = . In that case, Theorem 1 implies
that

bd
nbdcg(n, a) oo, @)
log n n—-+00

The main purpose of the present note is to show how the use of a suitable version
of the Quantitative Subspace Theorem allows us to strengthen (2.2).

Theorem 2. Let 3 be a Pisot or a Salem number. Let o be an algebraic number
in (0, 1] such that dg(a) is infinite and write

dg(a) =0.a1a2... a5 ...

Then, there exists an effectively computable constant c(a, 3), depending only on «
and B3, such that

nbdes(n, a) > c(a, B) (logn)®? - (loglogn) /2, (3)
for every positive integer n.

We stress that the exponent of (logn) in (3) is independent of 3, unlike in
Theorem 3 of [8]. This is a consequence of the use of the Parametric Subspace
Theorem, exactly as in Theorem 3.1 of [9]. Note that Theorem 3 of [8] is not
correctly stated: indeed, it claims a result valid for all expansions, whereas in the
proof we are led to construct good algebraic approximations to « and to use one
property of the S-expansion (see (4.14) below) to ensure that, roughly speaking, all
these approximations are different.

We display two immediate corollaries of Theorem 2. A first one is concerned
with the number of non-zero digits in the [-expansion of an algebraic number for
( being a Pisot or a Salem number.
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Corollary 3. Let e be a positive real number. Let 3 be a Pisot or a Salem number.
Let o be an algebraic number in (0,1] whose (-expansion is infinite. Then, for n
large enough, there are at least

(logn)®2 . (loglogn)~1/?—¢

non-zero digits among the first n digits of the 3-ary expansion of «.

For § = 2, Corollary 3 gives a much weaker result than the one obtained by
Bailey, Borwein, Crandall, and Pomerance [3], who proved that, among the first
n digits of the binary expansion of a real irrational algebraic number £ of degree
d, there are at least c(£)n'/¢ occurrences of the digit 1, where ¢(€) is a suitable
positive constant (see also Rivoal [14]).

Recall that § is called a Parry number if dg(1) is finite or eventually periodic.
Every Pisot number is a Parry number [15, 4] and K. Schmidt [15] conjectured that
all Salem numbers are Parry numbers. This was proved for all Salem numbers of
degree 4 by Boyd [6], who gave in [7] a heuristic suggesting the existence of Salem
numbers of degree 8 that are not Parry numbers.

We highlight the special case of the S-expansion of 1 in a base § that is a Salem
number.

Corollary 4. Let € be a positive real number. Let 3 be a Salem number. Assume
that dg(1) is infinite and write

dﬁ(l) = 0.a1a2 ven

For any sufficiently large integer n, we have

ar+...+a, > (1ogn)3/2 - (log logn)fl/Qfs’

and there are at least (logn)®/? (loglogn)~1/2—¢
Q; 7é 0.

In view of Theorem 2, our Corollaries 3 and 4 can be (very) slightly improved.

indices 7 with 1 < 7 < n and

3. On Values of Lacunary Series at Algebraic Points

The following problem was posed in Section 7 of [8].

Problem 5. Let n = (n;);>1 be a strictly increasing sequence of positive integers
and set
falz) =3 21, (4)
Jj=1
If the sequence n increases sufficiently rapidly, then the function f,, takes transcen-
dental values at every non-zero algebraic point in the open unit disc.
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By a clever use of the Schmidt Subspace Theorem, Corvaja and Zannier [10]
proved that the conclusion of Problem 5 holds for f, given by (3.1) when the
strictly increasing sequence n is lacunary, that is, satisfies

nj+1

lim inf > 1.
j—too Ny
Under the weaker assumption that
s
lim sup KEERIES 1,

jotoe My
it follows from the Ridout Theorem that the function f, given by (3.1) takes tran-
scendental values at every point 1/b, where b > 2 is an integer (see, e.g., Satz 7
from Schneider’s monograph [16]), and even at every point 1/3, where 3 is a Pisot
or a Salem number [1] (see also Theorem 3 of [10]).
The latter result can be improved with the methods of the present paper. Namely,
we extend Corollary 4 of [8] and Corollary 3.2 of [9] as follows.

Corollary 6. Let 8 be a Pisot or a Salem number. For any real number n > 2/3,
the sum of the series

Z 87",  where nj = 2U" forj>1, (5)

j=>1
1s transcendental.

The growth of the sequence (n;);>1 defined in (5) shows that our Corollary 6 is
not a consequence of the results of [10].

To establish Corollary 6, it is enough to check that, for any positive integer N,
the number of positive integers j such that 21" < N is less than some absolute
constant times (log N)/", and to apply Theorem 2.

To be precise, to establish Corollary 3, we prove that any real number « having
an expansion in base 3 given by (5) is transcendental. We do not need to assume (or
to prove) that (5) is the S-expansion of «. Namely, this assumption is used in the
proof to guarantee that the approximants o; constructed in the proof of Theorem
2 are (essentially) all different. Under the assumption of Corollary 3, this condition
is automatically satisfied.

4. Proofs

The proof of Theorem 2 follows the same lines as that of Theorem 1 of [8]. For
convenience, we first explain the case where 3 is an integer b > 2. Then, we point
out which changes have to be made to treat the case of a real algebraic number
6> 1.
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The key point for our argument is the following result of Ridout [13].

For a prime number ¢ and a non-zero rational number x, we set |z|y := £7%,
where u is the exponent of ¢ in the prime decomposition of . Furthermore, we set
|0]¢ = 0. With this notation, the main result of [13] reads as follows.

Theorem (Ridout, 1957) Let S1 and Sy be disjoint finite sets of prime numbers.
Let 0 be a real algebraic number. Let € be a positive real number. Then there are
only finitely many rational numbers p/q with ¢ > 1 such that

p 1
o<\a——\- TT tole- TT lale < o )
q eSSy LeSs q

More precisely, we need a quantitative version of Ridout’s theorem, namely an
explicit upper bound for the number of solutions to (6). In this direction, Locher
[11] proved that, if € < 1/4, the degree of 6 is at most d and its Mahler measure at
most H, then (6) has at most

Ni(e) :=ci(d) e™ e *log(e™1) (7)

solutions p/q with ¢ > max{H,4%¢}, where s denotes the cardinality of the set
S1 U Sy, and ¢1(d) depends only on d.

Actually, as will be apparent below, in the present application of the quantitative
Ridout’s theorem, S; is the empty set and we have actually to estimate the total
number of solutions to the system of inequalities

P c c
0<‘9_E‘<q1+5a H |q|2<5a (8)

LeSy

where c is a positive integer. Every solution to (8) with ¢ large is a solution to (6),
with € replaced by 2¢, but the converse does not hold. Furthermore, the best known
upper bound for the total number of large solutions to (8) does not depend on the
set Sy. Namely, if € < 1/4, then there exists an explicit number c(d), depending
only on the degree d of 6, such that (8) has at most

Na(e) == ca(d)e 3 log(e ™) (9)

solutions p/q with ¢ > max{2H,4%¢}; see Corollary 5.2 of [9]. Since there is no
dependence on s in (9), unlike in (4.2), this explains the improvement obtained in
[9] on the result from [8].

After these preliminary remarks, let us explain the method of the proof. Let «
be an irrational (otherwise, the result is clearly true) real number in (0, 1) and write

a
azzb—zzo.alag...

k>1
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Define the increasing sequence of positive integers (n;);>1 by a1 = ... = ap,,
Any 7# Apyt1 and Q41 = o0 = Anyyys Anyyy 7# Aoy 11 for every j > 1. Observe
that

nbdcy(n, @) = max{j : n; < n} (10)

for n > nq, and that n; > j for j > 1. To construct good rational approximations
to a, we simply truncate its b-ary expansion at rank a1 and then complete with
repeating the digit an, 1. Precisely, for j > 1, we define the rational number

I +00 j
o Ok Anj+1 _ Ok ng+1 . Dj
G=d mt X ZepE T 1) bm(b-1)

k=1 k:nj+1

Set gj :=b" (b — 1) and take for Sy the set of prime divisors of b. Observe that

1 b—1
0<|0‘_0‘j|<m» H |gjle = o (11)
LeSs

On the other hand, the Liouville inequality as stated by Waldschmidt [18], p.
84, asserts that there exists a positive constant ¢, depending only on «, such that

c
a— —‘ > —, for all positive integers p, g,
q

where d is the degree of a. Consequently, we have
Nj+1 < 2d’flj, (12)
for every sufficiently large integer j, say for j > jo.

It then follows from (11) and (12) that

; b— 1) b—1
0< 04—& <%7 H |gjle = —— (13)
4 j LES 4

Note that all the p;/g;’s are different. We are in position to apply the quantitative
form of the Ridout Theorem to (4.8). Let ¢ be a real number with 0 < e < 1/4. Let
J > jo be alarge positive integer. It follows from Corollary 5.2 of [9] that there exist
at most N> (g) positive integers j > J such that n;y1 > (1 + ¢)n;. Consequently,
we infer from (9) and (12) that

B T x Dol o (1+¢)7 (2d)N>),
Mjq nj-1 Mo

and

logny < Je+¢e74,
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where the numerical constant implied in < depends only on . Selecting e = J~1/5,
we get that

logn; < J5, (14)

By (10), this implies a lower bound for nbdc,(n, ). Here, to get (14), we have used
a rather crude upper bound for As(g). A further refinement can be obtained by
means of the trick that allowed us to prove Theorem 3.1 of [9], which is similar to
Theorem 2 for 3 =b.

Replacing b by an algebraic number 3 > 1, everything goes along the same lines,
except that we have to apply a suitable extension of Ridout’s theorem, and several
technical difficulties arise.

We proceed exactly as above, keep the same notation, and set

anJ+1 anJ+1 . Pj
Z 29> Z YEG-n ey

k=n;+1

Here, p; is an element of the number field generated by 3. We have to prove that
oy is distinct from o: unlike when [ is an integer, this is not straightforward.

Recall that a,, 11 = ... = ayn,,, and ay, , # an,,,+1. Assume first that

C(/nj+1 > Clnj+1+1. (16)

Then, using (15), we have

A a a
n;+1 n;+1
Z ﬂn,+1+1 + ﬂnj+1+2’ (17)
while
Mj+1 an]+1+1 1 anﬁ_l ]_8
Z ﬂn1+1+1 ﬂnj+1+1 — ﬂnj+1+1’ ( )
since, by the property of the S-expansion,
Z ﬂk < —T, for every r > 0. (19)

k>r+1

Note that a,,+1 > 1, by (16). Combining this with (17) and (18), we get that

(20)

>
A= ﬂnj+1+2

Assume now that

Unj+1 < Qnjyi4+1- (21)
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Then, we have

T D (22
’ =1 gk privi(B—1)
while
Mj41
Ak _ Qnjq+1 _ Any+1 + 1

by (21). Since a,,+1 < 8 — 1, we infer from (22) that

Mj41
1

ag
Q5 = Z @ < ﬁnj+1+1’
k=1
and then from (23) that
a—a; > 0.
Note also that, by (23), at least one of the following statements holds:

Njy2 = Njt41 + 1 and 0= njyo41 < Apjyq+1 (24)

or

On the other hand, we check that

1 )
la — ;] < G for j > 1. (26)
Here, and throughout the end of the paper, the constants implied by < depend
only on « and (3. Disregarding the indices j for which we are in case (24) (and this
concerns at most one index in every pair (4,5 + 1)), we infer from (20), (25), and
(26) that the number of occurrences of a given element in the sequence (o) >1 is
bounded by an absolute constant.

Now, we apply the extension to number fields of the aforementioned results of
Ridout and Locher. We keep the notation from Section 6 of [2], noticing that the
rn (resp. sy) in that paper corresponds to our n; (resp. to 1). In particular, the
height function H is defined as in [2].

Let K be the number field generated by o and 8 and denote by D its degree. We
consider the following linear forms, in two variables and with algebraic coefficients.
For the place vy corresponding to the embedding of K defined by 8 — f, set
L1 4o (z,y) = x and Loy, (2,y) = (8 — 1)z + y. It follows from (15) and (26) that

1

[ L2,06 (8™, =pj) vy < B —m)/D’

where we have chosen the continuation of | - |,, to Q defined by |z|,, = |z|'/P.
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Denote by S’ the set of all other infinite places on K and by Sy the set of all
finite places v on K for which ||, # 1. For any v in SgUS._, set L1 ,(x,y) =  and
Lo, (z,y) = y. Denote by S the union of Sy and the infinite places on K. Clearly,
for any v in S, the linear forms L, , and L, are linearly independent.

To simplify the exposition, set

Xj = (ﬁnja _p])

We wish to estimate the product

from above. Arguing exactly as in [2], we get that

I < np g /P m@E)/P T Ix1,°

veES
<nf g /P A (B)/P H(x,) 72, (27)
since |x;|, = 1 if v does not belong to S.
Note that
B < H(xj) < nP M(B)". (28)

Let p denote a positive real number that is strictly smaller than the right-hand side
of (2.1). Assume that there are arbitrarily large integers n such that

nbdcg(n,a) < plogn.

Consequently, there must be infinitely many indices j with

nj1 > exp{p~'n;.

It then follows from (4.22) and (4.23) that there are a positive real number € and
arbitrarily large integers j such that

I < H(x;)7" 7"
We then get infinitely many indices j such that p;/3" takes the same value. This
contradicts the fact that the number of occurrences of a given element in the se-
quence (a;);>1 is bounded by an absolute constant, and proves Theorem 1.
From now on, we assume that M () = 8. We infer from (4.22) and (4.23) that
H]. < H(Xj)_Q_("jJrl/”j_l)/(QD)

as soon as j is sufficiently large.
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We need a suitable extension of Corollary 5.2 from [9] to conclude (unfortunately,
the notations used in [9] differ from ours). Exactly as in the case when [ is an
integer, we do not have to consider a product of linear forms, but rather a system

[L1,00 (%) 0g < KH (X5), |L 2,00 (%) |ue < H(x;)79,
|L10(xi) |0 < KH (%), |La,w (%)) < H(x;)" (veSL),
|L1,'U(Xj>|'u < /iH(xj)_C”7 |L2,v(xj>|'u < 1 (U S So)

Here, & is a positive real number, the ¢, are defined by |3|, = /P and
§ = (s"+ 1)n, where s’ is the cardinality of S%,. Observe that > cq g, ¢ = 1.
We do not work out the technical details. Everything goes along the same lines as
in [9]. It remains to note that, by the general form of the Liouville inequality (as
in [18], p. 83), we get that

lo — | > =P,

This provides us with the needed extension of (12) and completes the sketch of the
proof of Theorem 2.
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