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ON TWO-POINT CONFIGURATIONS IN A RANDOM SET
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Abstract
We show that with high probability, a random subset of {1, . . . , n} of size Θ(n1−1/k)

contains two elements a and a + dk, where d is a positive integer. As a consequence, we

prove an analogue of the Sárközy-Fürstenberg theorem for a random subset of {1, . . . , n}.

1. Introduction

Let ℘ be a general additive configuration, ℘ = (a, a+P1(d), . . . , a+Pk−1(d)), where
Pi ∈ Z[d] and Pi(0) = 0. Let [n] denote the set of positive integers up to n. A
natural question is:

Question 1. How is ℘ distributed in [n]?
Roth’s theorem [6] says that for δ > 0 and sufficiently large n, any subset of [n]

of size δn contains a nontrivial instance of ℘ = (a, a + d, a + 2d) (here nontrivial
means d "= 0). In 1975, Szemerédi [8] extended Roth’s theorem for general linear
configurations ℘ = (a, a + d, . . . , a + (k − 1)d). For a configuration of type ℘ =
(a, a + P (d)), Sárközy [7] and Fürstenberg [2] independently discovered a similar
phenomenon.

Theorem 2 (Sárközy-Fürstenberg theorem, quantitative version; [9, Theorem 3.2],
[4, Theorem 3.1]). Let δ be a fixed positive real number, and let P be a polynomial
of integer coefficients satisfying P (0) = 0. Then there exists an integer n = n(δ, P )
and a positive constant c(δ, P ) with the following property. If n ≥ n(δ, P ) and
A ⊂ [n] is any subset of cardinality at least δn, then

• A contains a nontrivial instance of ℘.

• A contains at least c(δ, P )|A|2n1/ deg(P )−1 instances of ℘ = (a, a + P (d)).

In 1996, Bergelson and Leibman [1] extended this result for all configurations
℘ = (a, a + P1(d), . . . , Pk−1(d)), where Pi ∈ Z[d] and Pi(0) = 0 for all i.

Following Question1, one may consider the distribution of ℘ in a “pseudo-
random” set.

1This work was written while the author was supported by a DIMACS summer research fel-
lowship, 2008.
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Question 3. Does the set of primes contain a nontrivial instance of ℘? How is ℘
distributed in this set?

The famous Green–Tao theorem [3] says that any subset of positive upper density
of the set of primes contains a nontrivial instance of ℘ = (a, a + d, . . . , a + (k− 1)d)
for any k. This phenomenon also holds for more general configurations (a, a +
P1(d), . . . , a + Pk−1(d)), where Pi ∈ Z[d] and Pi(0) = 0 for all i (cf. [9]).

The main goal of this note is to consider a similar question.

Question 4. How is ℘ distributed in a typical random subset of [n]?

Let ℘ be an additive configuration and let δ be a fixed positive real number.
We say that a set A is (δ,℘)-dense if any subset of cardinality at least δ|A| of A
contains a nontrivial instance of ℘. In 1991, Kohayakawa–#Luczak–Rödl [5] showed
the following result.

Theorem 5. Almost every subset R of [n] of cardinality |R| = r &δ n1/2 is (δ, (a, a+
d, a + 2d))-dense.

The assumption r &δ n1/2 is tight, up to a constant factor. Indeed, a typical
random subset R of [n] of cardinality r contains about Θ(r3/n) three-term arith-
metic progressions. Hence, if (1 − δ)r & r3/n, then there is a subset of R of
cardinality δr which does not contain any nontrivial 3-term arithmetic progression.

Motivated by Theorem 5, #Laba and Hamel [4] studied the distribution of ℘ =
(a, a + dk) in a typical random subset of [n], as follows.

Theorem 6. Let k ≥ 2 be an integer. Then there exists a positive real number ε(k)
with the following property. Let δ be a fixed positive real number, then almost every
subset R of [n] of cardinality |R| = r &δ n1−ε(k) is (δ, (a, a + dk))-dense.

It was shown that ε(2) = 1/110, and ε(3) & ε(2), etc. Although the method
used in [4] is strong, it seems to fall short of obtaining relatively good estimates for
ε(k). On the other hand, one can show that ε(k) ≤ 1/k. Indeed, a typical random
subset of [n] of size r contains Θ(n1+1/kr2/n2) instances of (a, a + dk). Thus if
(1− δ)r & n1+1/kr2/n2 (which implies r (δ n1−1/k) then there is a subset of size
δr of R which does not contain any nontrivial instance of (a, a + dk).

In this note we shall sharpen Theorem 6 by showing that ε(k) = 1/k.

Theorem 7 (Main theorem). Almost every subset R of [n] of size |R| = r &δ

n1−1/k is (δ, (a, a + dk))-dense.

Our method to prove Theorem 7 is elementary. We will invoke a combinatorial
lemma and the quantitative Sárközy-Fürstenberg theorem (Theorem 2). As the
reader will see later on, the method also works for more general configurations
(a, a + P (d)), where P ∈ Z[d] and P (0) = 0.
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2. A Combinatorial Lemma

Let G(X,Y ) be a bipartite graph. We denote the number of edges going through X
and Y by e(X,Y ). The average degree d̄(G) of G is defined to be e(X,Y )/(|X||Y |).

Lemma 8. Let {G = G([n], [n])}∞n=1 be a sequence of bipartite graphs. Assume
that for any ε > 0 there exist an integer n(ε) and a number c(ε) > 0 such that
e(A,A) ≥ c(ε)|A|2d̄(G)/n for all n ≥ n(ε) and all A ⊂ [n] satisfying |A| ≥ εn.
Then for any α > 0 there exist an integer n(α) and a number C(α) > 0 with
the following property. If one chooses a random subset S of [n] of cardinality s,
then the probability of G(S, S) being empty is at most αs, providing that |S| = s ≥
C(α)n/d̄(G) and n ≥ n(α).

Proof. For short we denote the ground set [n] by V . We shall view S as an ordered
random subset, whose elements will be chosen in order, v1 first and vs last. We
shall verify the lemma within this probabilistic model. Deduction of the original
model follows easily.

For 1 ≤ k ≤ s − 1, let Nk be the set of neighbors of the first k chosen vertices,
i.e., Nk = {v ∈ V, (vi, v) ∈ E(G) for some i ≤ k}. Since G(S, S) is empty, we
have vk+1 /∈ Nk. Next, let Bk+1 be the set of possible choices for vk+1 (from
V \{v1, . . . , vk}) such that Nk+1\Nk ≤ c(ε)εd̄(G), where ε will be chosen to be
small enough (ε = α2/6 is fine) and c(ε) is the constant from Lemma 8. We observe
the following.

Claim 9. |Bk+1| ≤ ε|V |.

To prove this claim, we assume for contradiction that |Bk+1| ≥ ε|V | = εn. Since
Bk+1 ∩ Nk = ∅, we have e(Bk+1, Bk+1) ≤ e(Bk+1, V \Nk) ≤ c(ε)εd̄(G)|Bk+1| <
c(ε)|Bk+1|2d̄(G)/n. This contradicts the property of G assumed in Lemma 8, pro-
vided that n is large enough.

Thus we conclude that if G(S, S) is empty then |Bk+1| ≤ ε|V | for 1 ≤ k ≤ s− 1.
Now let s be sufficiently large, say s ≥ 2(c(ε)ε)−1n/d̄(G), and assume that the

vertices v1, . . . , vs have been chosen. Let s′ be the number of vertices vk+1 that do
not belong to Bk+1. Then we have

n ≥ |Ns| ≥
∑

vk+1 /∈Bk+1

|Nk+1\Nk| ≥ s′c(ε)εd̄(G).

Hence, s′ ≤ (c(ε)ε)−1n/d̄(G) ≤ s/2.
As a result, there are s−s′ vertices vk+1 that belong to Bk+1. But since |Bk+1| ≤

εn, we see that the number of subsets S of V such that G(S, S) is empty is bounded
by
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∑

s′≤s/2

(
s

s′

)
ns′

(εn)s−s′
≤ (6ε)s/2n(n− 1) . . . (n− s + 1) ≤ αsn(n− 1) . . . (n− s + 1),

thereby completing the proof. !

3. Proof of Theorem 7

First, we define a bipartite graph G on [n]× [n] = V1 × V2 by connecting u ∈ V1 to
v ∈ V2 if v − u = dk for some integer d ∈ [1, n1/k]. Notice that d̄(G) ≈ Cn1/k for
some absolute constant C.

Let us restate the Sárközy-Fürstenberg theorem (Theorem 2, for P (d) = dk) in
terms of the graph G.

Theorem 10. Let ε > 0 be a positive constant. Then there exists a positive integer
n(ε, k) and a positive constant c(ε, k) such that e(A,A) ≥ c(ε, k)|A|2n1/k−1 for all
n ≥ n(ε, k) and all A ⊂ [n] satisfying |A| ≥ εn.

Now let S be a subset of [n] of size s. We call S bad if it does not contain any
nontrivial instance of (a, a + dk). In other words, S is bad if G(S, S) contains no
edges. By Lemma 8 and Theorem 10, the number of bad subsets of [n] is at most
αs

(n
s

)
, provided that s ≥ C(α)n/d̄(G). This condition is satisfied if we assume that

s ≥ 2C(α)C−1n1−1/k.

Next, let r = s/δ and consider a random subset R of [n] of size r. The probability
that R contains a bad subset of size s is at most

αs

(
n

s

)(
n− s

r − s

)
/

(
n

r

)
= o(1),

provided that α = α(δ) is small enough.
To finish the proof, we note that if R does not contain any bad subset of size δr,

then R is (δ, (a, a + dk))-dense.
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