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Abstract
We show that with high probability, a random subset of {1,...,n} of size @(nl_l/k)
contains two elements a and a + d*, where d is a positive integer. As a consequence, we
prove an analogue of the Sarkozy-Fiirstenberg theorem for a random subset of {1,...,n}.

1. Introduction

Let g be a general additive configuration, p = (a,a+ Pi(d),...,a+ Py_1(d)), where
P; € Z[d] and P;(0) = 0. Let [n] denote the set of positive integers up to n. A
natural question is:

Question 1. How is g distributed in [n]?

Roth’s theorem [6] says that for § > 0 and sufficiently large n, any subset of [n]
of size dn contains a nontrivial instance of p = (a,a + d,a + 2d) (here nontrivial
means d # 0). In 1975, Szemerédi [8] extended Roth’s theorem for general linear
configurations p = (a,a +d,...,a + (k — 1)d). For a configuration of type p =
(a,a + P(d)), Sarkozy [7] and Fiirstenberg [2] independently discovered a similar
phenomenon.

Theorem 2 (Sarkozy-Fiirstenberg theorem, quantitative version; [9, Theorem 3.2],
[4, Theorem 3.1]). Let § be a fized positive real number, and let P be a polynomial
of integer coefficients satisfying P(0) = 0. Then there exists an integer n = n(J, P)
and a positive constant c(6, P) with the following property. If n > n(6,P) and
A C [n] is any subset of cardinality at least én, then

e A contains a nontrivial instance of .
o A contains at least c(6, P)|A[*n'/ 48(P)=1 instances of p = (a,a + P(d)).

In 1996, Bergelson and Leibman [1] extended this result for all configurations
p=(a,a+ Pi(d),...,P;_1(d)), where P; € Z[d] and P;(0) = 0 for all s.

Following Question1, one may consider the distribution of p in a “pseudo-
random” set.

1This work was written while the author was supported by a DIMACS summer research fel-
lowship, 2008.
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Question 3. Does the set of primes contain a nontrivial instance of ¢ How is g
distributed in this set?

The famous Green—Tao theorem [3] says that any subset of positive upper density
of the set of primes contains a nontrivial instance of p = (a,a+d,...,a+ (k—1)d)
for any k. This phenomenon also holds for more general configurations (a,a +
Pi(d),...,a+ Py_1(d)), where P; € Z[d] and P;(0) = 0 for all ¢ (cf. [9]).

The main goal of this note is to consider a similar question.

Question 4. How is p distributed in a typical random subset of [n]?

Let p be an additive configuration and let § be a fixed positive real number.
We say that a set A is (4, p)-dense if any subset of cardinality at least §|A| of A
contains a nontrivial instance of p. In 1991, Kohayakawa—FLuczak-Rodl [5] showed
the following result.

Theorem 5. Almost every subset R of [n] of cardinality |R| = r 5 n'/? is (6, (a, a+
d,a + 2d))-dense.

The assumption 7 >; n'/2 is tight, up to a constant factor. Indeed, a typical
random subset R of [n] of cardinality r contains about ©(r3/n) three-term arith-
metic progressions. Hence, if (1 — &)r > r3/n, then there is a subset of R of
cardinality 7 which does not contain any nontrivial 3-term arithmetic progression.

Motivated by Theorem 5, Laba and Hamel [4] studied the distribution of p =
(a,a + d*) in a typical random subset of [n], as follows.

Theorem 6. Let k > 2 be an integer. Then there exists a positive real number (k)
with the following property. Let § be a fixed positive real number, then almost every
subset R of [n] of cardinality |R| =1 >5 n'=5() is (6, (a,a + d*))-dense.

It was shown that £(2) = 1/110, and £(3) > £(2), etc. Although the method
used in [4] is strong, it seems to fall short of obtaining relatively good estimates for
¢(k). On the other hand, one can show that e(k) < 1/k. Indeed, a typical random
subset of [n] of size r contains ©(n'*/*r2/n?) instances of (a,a + d*). Thus if
(1 —0)r > n'*/kr2 /n? (which implies 7 <5 n'~'/*) then there is a subset of size
dr of R which does not contain any nontrivial instance of (a,a + d*).

In this note we shall sharpen Theorem 6 by showing that e(k) = 1/k.

Theorem 7 (Main theorem). Almost every subset R of [n] of size |R| = r >
n*=1/* is (8, (a,a + d*))-dense.

Our method to prove Theorem 7 is elementary. We will invoke a combinatorial
lemma and the quantitative Sarkozy-Fiirstenberg theorem (Theorem 2). As the
reader will see later on, the method also works for more general configurations
(a,a+ P(d)), where P € Z[d] and P(0) = 0.
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2. A Combinatorial Lemma

Let G(X,Y) be a bipartite graph. We denote the number of edges going through X

and Y by e(X,Y). The average degree d(G) of G is defined to be e(X,Y) /(| X||Y]).

Lemma 8. Let {G = G([n],[n])}>2, be a sequence of bipartite graphs. Assume
that for any e > 0 there exist an integer n(e) and a number c(e) > 0 such that
e(A, A) > c(e)|Al2d(G)/n for all n > n(e) and all A C [n] satisfying |A| > en.
Then for any o > 0 there exist an integer n(a) and a number C(a) > 0 with
the following property. If one chooses a random subset S of [n] of cardinality s,
then the probability of G(S,S) being empty is at most o, providing that |S| = s >

C(a)n/d(G) and n > n(«).

Proof. For short we denote the ground set [n] by V. We shall view S as an ordered
random subset, whose elements will be chosen in order, v; first and vs last. We
shall verify the lemma within this probabilistic model. Deduction of the original
model follows easily.

For 1 < k <s—1, let N be the set of neighbors of the first k& chosen vertices,
ie, Ny = {v € V,(v;,v) € E(G) for some i < k}. Since G(S,S) is empty, we
have vgy1 ¢ Np. Next, let Briq be the set of possible choices for vgiq (from

V\{v1,...,ux}) such that Ni1\N, < c(e)ed(G), where ¢ will be chosen to be

small enough (¢ = a?/6 is fine) and c(¢) is the constant from Lemma 8. We observe
the following.

Claim 9. |Bj4+1] < €|V|.

To prove this claim, we assume for contradiction that |Byy1| > €|V| = en. Since
Br+1 N Ny = 0, we have e(Bk+1, Br+1) < e(Bra1, V\Ng) < C(&)SCZ(G”BkJ,_l‘ <
¢(€)|Br+1|?d(G)/n. This contradicts the property of G' assumed in Lemma 8, pro-
vided that n is large enough.

Thus we conclude that if G(S, S) is empty then |Byy1| <e|V|for 1 <k <s—1.

Now let s be sufficiently large, say s > 2(c(¢)e)"'n/d(G), and assume that the
vertices vy, ..., vs have been chosen. Let s be the number of vertices vgy1 that do

not belong to Bi41. Then we have

n> N> > Nk \Ni| > 8'e(e)ed(G).
Vi4+1¢Brt1
Hence, s’ < (c(g)e)tn/d(G) < s/2.
As aresult, there are s — s’ vertices vg 1 that belong to By41. But since |Bg41| <

en, we see that the number of subsets S of V' such that G(S, S) is empty is bounded
by
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> <5/> n* (en)*™" < (6)*n(n—1)...(n—s+1) <a'n(n—1)...(n—s+1),
s'<s/2

thereby completing the proof. O

3. Proof of Theorem 7

First, we define a bipartite graph G on [n] x [n] = V; x Va by connecting u € V; to
v € Vo if v — u = d* for some integer d € [1,n'/*]. Notice that d(G) ~ Cn'/* for
some absolute constant C'.

Let us restate the Sarkozy-Fiirstenberg theorem (Theorem 2, for P(d) = d*) in
terms of the graph G.

Theorem 10. Let € > 0 be a positive constant. Then there exists a positive integer
n(e, k) and a positive constant c(e, k) such that e(A, A) > c(e, k)|A[*n*/*=" for all
n > n(e, k) and all A C [n] satisfying |A| > en.

Now let S be a subset of [n] of size s. We call S bad if it does not contain any
nontrivial instance of (a,a + d*). In other words, S is bad if G(S,S) contains no
edges. By Lemma 8 and Theorem 10, the number of bad subsets of [n] is at most
a*("), provided that s > C(a)n/d(G). This condition is satisfied if we assume that

5> 2C(a)C Int 1k,

Next, let r = s/§ and consider a random subset R of [n] of size r. The probability
that R contains a bad subset of size s is at most

(M (Z)() = o

provided that o = () is small enough.

To finish the proof, we note that if R does not contain any bad subset of size dr,
then R is (9, (a,a + d*))-dense.
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