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Abstract
We show that 1, 2 and 3 are the only Fibonacci numbers whose Euler functions are
also Fibonacci numbers.

1. Introduction

The Fibonacci sequence (F},)n>0 is given by Fo =0, Fy =1 and F,40 = Foy1 + F,
for all n > 0. For a positive integer m we let ¢(m) be the Euler function of m. We
prove the following result:

Theorem 1. The only positive integers n such that ¢(F,) = F,, for some positive
integer m aren =1, 2, 3 or 4.
Recall that if we put o = (1 ++/5)/2 and 3 = (1 — v/5)/2, then
a — ﬂn
a—p
This is sometimes called the Binet formula. We also put (L, )n>0 for the companion

Lucas sequence of the Fibonacci sequence given by Ly = 2, L1 = 1 and Ly 42 =
L1+ Ly, for all n > 0. The Binet formula for the Lucas numbers is

F, = forn=0,1, ....

L,=a"4+ 3" forn=0,1, ....
There are many relations between the Fibonacci and the Lucas numbers, such as
Ly —5F; = 4(-1)", (1)

or Fy, = F,,L,, as well as several others which we will mention when they will be
needed. We refer the reader to Chapter 5 in [6], or to Ron Knott’s web-site on
Fibonacci numbers [5] for such formulae.

1During the preparation of this paper, F. L. was supported in part by Grant SEP-CONACyT
46755.
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2. A Bird’s-eye View to the Proof of Theorem 1

We start with a computation showing that there are no other solutions than the
obvious ones up to n < 256. Thus, we may assume that n > 256. Next we show
that any potential solution is very large, at least as large as 3 - 10°°. Let k be the
number of distinct prime factors of F,,. Then 2¥=1 | ¢(F,) = F,,,. Since the power
of 2 in a Fibonacci number is small, it follows that k is small. Since F;, does not have
too many prime factors, we get that n — m is small. This implies that ged(F),, Fiy,)
is also small. Next we bound iteratively the prime factors of Fj,. As a byproduct
of this calculation, we get a lower bound for k in terms of n. Since all odd prime
factors of Fj, are congruent to 1 modulo 4 when n is odd, this lower bound on &
compared with the fact that 4%—1 | F,, are sufficient to get a contradiction when n
is odd. Hence it suffices to deal with the case when n is even. Writing n = 2Mn/
with n’ odd, one proves that 2t | n — m, therefore the power of 2 in n is small.
Next, we bound ¢ = n — m. The bound on ¢ together with a recent calculation of
McIntosh and Roettger [10] dealing with a conjecture of Ward about the exponent
of apparition of a prime in the Fibonacci sequence shows that if one writes n = UV,
where U and V' are coprime, all primes dividing U divide m, and no prime dividing
V divides m, then U < . Thus, U is small. Next, we use sieve methods to show that
the minimal prime factor p; of V' is also small. McIntosh and Roettger’s calculation
together with the Primitive Divisor Theorem now implies that n’ = p;, therefore n
is a power of 2 times a small prime, and the upper bounds for n are lower than the
lower bounds for n obtained previously, which finishes the proof. The entire proof
is computer aided and several small calculations are involved at each step.

3. Proof of Theorem 1
We shall assume that n > 2 and we shall write
Fn :p(lll "'pzk7

where p; < --- < pg are distinct primes and ag, ..., qf are positive integers. Since
F, > 1, it follows that m < n.

3.1. The Small Values of n

A Mathematica code confirmed that the only solutions of the equation
Qb(Fn) = Fn (2)

in positive integers m < n < 256 have n € {1,2,3,4}. From now on, we assume
that n > 256. We next show that 4 | F,,. Assuming that this is not so, we would
get that 41 ¢(F,). Thus, F,, € {1,2,4,p",2p"} with some prime p = 3 (mod 4) and
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some positive integer . Since n > 257, it follows that F,, € {p”,2p"}. Results from
[2] and [3] show that v > 1 is impossible in this range for n. Let us now assume
that v = 1. If F,, = p, then

Fm:¢(Fn):¢(p):p_1:Fn_1a

which leads to 1 = F,, — F,,, > F,, — F,,_1 = F,,_o > F555, which is a contradiction.
If F,, = 2p, then

F = ¢(Fn) = ¢(2p) =p—1=(F, —2)/2,

therefore 2 = F,, —2F,,. f m=n—1, wethenget 2=F,—2F,, 1=F, o—F,_ 1=
—F,,_3 < 0, which is impossible, while if m < n — 2, we then get 2 = F,, — 2F},, >
F,—-2F, o = F,_ 1 — F,_o = F,_3 > Fs;4, which is again impossible. Hence,
4| Fy,. In particular, 6 | m. It follows from the results from [7] that ¢(F,) > Fy,)-
Thus

m > (n) > -
- ~ eYloglogn + 2.50637/ loglogn’

where the second inequality above is inequality (3.42) on page 72 in [13]. Here,
is Euler’s constant. Since €7 < 1.782, and the inequality

n

50
1.7821oglogn + 2.50637/ log log n >

holds for all n > 256, we get that m > 50. Put £ = n —m. Since m is even, we have
that ™ > 0, therefore

Fn n _ AQn n_1 1
A e Y B T (3)
am

Fm_amfﬁm am

where we used the fact that a=°° < 3.55319 x 10~!! < 10~!°. We distinguish the
following cases.
Case 1. ged(n,6) = 1.

In this case £ > 1, therefore inequality (3) gives

F,
F—" >a— 1071 > 1.61803.

m

For each positive integer s, let z(s) be the smallest positive integer ¢ such that s | F;.
It is known that this exists and s | F,, if and only if z(s) | n. This is also referred to
as the order of apparition of n in the Fibonacci sequence. Since n is coprime to 6,
it follows that Fj, is divisible only by primes p such that ged(z(p),6) = 1. Among
the first 1000 primes, there are precisely 212 of them with this property. They are

Py = {5, 13, 37, 73, ..., 7873, 7T901}.
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In our case, the following holds:

TM(-2) = 5o roisos
im1 Di _Fm . .

Writing g; for the jth prime number in P;, we checked with Mathematica that the
smallest s such that

s 1 —1
H <1 - —) > 1.61803
i=1 U

is s = 99. Thus, £ > 99. Since n is odd and every prime factor p of F,, is also
odd, reducing relation (1) modulo p, we get L2 = —4 (mod p) for all p = p; and
i=1,...,k. Thus, p; =1 (mod 4) for all i = 1,...,k. Hence, 4" | Hle(iﬂi -1
#(F,) = F,,, therefore 22¢ | F,,,. So, 2(2%*) | m. Since 2(2°) = 3-25"2 for all s > 3,
we get that 3-2%~2 | m. In particular,

n>3-2%72>3.219 5 3,105, (4)

Case 2. 2|ln and ged(n,3) = 1.
In this case, since m is also even, we have that £ = n — m is even. Hence, £ > 2,
and

F,
7> a? —10719 > 2.61803.

m

If p is any prime factor of F,,, then, as in Case 1 above, we get that z(p) is coprime
to 3 and is not a multiple of 4. There are 1235 primes p among the first 3000 of
them with this property. They are

P, = {5, 11, 13, 29, ..., 27397, 27431},

and

1\ ! F,
H (1 - —) =2.3756... < 2.61803 < —*.
quQ q m

This shows that & > 1235. Since p; is odd for all i = 1...,k, we get that 2% |
#(F,) = F,,, therefore z(2¥) | m. Thus,

n>m>3-282>3.2124 5 8. 1037, (5)

Case 3. 3| n and ged(n,2) = 1.
In this case, since 3 | m, we get that ¢ > 3, therefore

F,
7> a® — 10710 > 4.23606.
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All prime factors p of F,, have z(p) odd. There are 1005 primes among the first
3000 of them with this property. They are

Py ={2, 5, 13, 17, ..., 27397, 27437}

Since

1\t F,
H 1— = < 4.12239 < 4.23606 < o
q€P3 q m

we get that k& > 1006. Since p; is odd for all i = 2, ..., k, we get that 2°=1 | ¢(F},) |
F,,, therefore 2(28=1) | m. Thus,

n>m>3-283 >3.21008 5 9. 10302, (6)

Case 4. 4| n and ged(n,3) = 1.
Write n = 4ng. Since n > 256, it follows that ng > 64. Note that

F4n0 - FQnOLQnO == F’”OLTLOL27L0~

Since L2 —5F2 = +4, and Ly,, = L? =+ 2, it follows that the three numbers
Frys Ln,, and Loy, have disjoint sets of odd prime factors. The sequence (Ls)s>0
is periodic modulo 8 with period 12. Listing its first twelve members, one sees that
Ly is never a multiple of 8. Thus, there exist two distinct odd primes g1 | Ly, and
g2 | Lan,- A result of McDaniel [9] says that if s > 48, then F; has a prime factor
p=1 (mod 4). Let us give a quick proof of this fact. If s has a prime factor r > 5,
then F,. | Fs and every prime factor p of F,. is odd (because F, is even only when
3| 7). Reducing equation (1) with n = r modulo p, we get L? = —4 (mod p), so
p =1 (mod 4). Thus, it remains to deal with the case when s = 2¢ - 3® for some
nonnegative integers a and b. Since 4481 | Fgy, 769 | Fog, 17 | Fy, and 4481, 769,
and 17 are all primes congruent to 1 modulo 4, it follows easily that the largest s
such that Fs has no prime factor p =1 (mod 4) is

Fug=2%.32.7.23.47-1103.

Since ng > 64 > 48, it follows that F),, has a prime factor g3 = 1 (mod 4). Now
419293 | F,, therefore 16 | (g1 — 1)(g2 — 1)(g3 — 1) | ¢(F,) | F,, showing that
2(16) | m. Thus, 12 | m. Since we now know that both n and m are multiples of 4,
we get that ¢ > 4. Hence,

F,
F—" >at — 10710 > 6.8541.

The prime factors p of F;, have z(p) coprime to 3. There are 1856 such primes p
among the first 3000, and they are

Py =1{3,5, 7, 11, ..., 27431, 27449}.
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Since

1\ ! F,

H <1 - —> < 5.30404 < 6.8541 < —,
q F,

qEP3

we get that k > 1857. Since 2% | ¢(F},) = F,,,, we deduce that z(2¥) | m. Thus,
n>m>3-282 > 3. 21855 5 7.105%, (7)

Case 5. 6| n.
In this case, £ > 6, therefore

F,
7> a® —10719 > 17.9442.

m

If ¢; stands for the ith prime, then we checked that the smallest s such that

s 1 —1
H <1 - —_) > 17.9442

i=1 i
is s = 2624. Thus, k > 2624. We now get that 281 | ¢(F,) = F,,, therefore
n>m > z(2871) =3. 283 > 3. 22621 5 9. 10789, (8)

To summarize, from inequalities (4), (5), (6), (7) and (8), we have that n > 3-10°7.

3.2. Bounding / in Terms of n

We saw in the preceding section that & > 99. We start by bounding k& from above.
Since n is large, McDaniel’s result shows that F}, has at least one prime factor p = 1
(mod 4). Since at least k — 1 of the prime factors of F}, are odd, and at least one of
them is congruent to 1 modulo 4, we get that 2% | ¢(F,,) = F,,,. Thus, 3-2%=2 | m.
We now get that

n>m2>3-: ok _2,
therefore

k < k(n) = logn log 3

~ log2 log2’

Let g; be the jth prime number. Inequality (3.13) on page 69 in [13] shows that in
our range we have

ar < g(n) := k(n)(log k(n) + loglog k(n)).

Now clearly

% =11 (1 B pi) > 11 (1 B %) ~ logq(n) (1+ 1/<2<1ogq<n>>2>>’

2<p<q(n)
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where the last inequality is inequality (3.29) on page 70 in [13]. That inequality
is valid only for ¢(n) > 286, which is fulfilled for us since n > 3 - 10°°. Therefore,
k(n) > 197 and ¢g(n) > 1368 > 286. We thus get that

v Fn n _ An n_1

e o« I6] o « .

+ 2logq(n) > F, am—pgm am™

e’ logq(n)

In the above inequality, we used the fact that m is even, and therefore ™ > 0.
Thus,
e’(loggq(n))(1+6) > ™™,
where
0= 1 + ¢’ i
2(loggq(n))* ~ a™logq(n)
Since g(n) > 1368, m > 50 and e~ < 0.562, we get that § < 0.0096. Thus,

log(e?(1+6)) loglogg(n)
< + .
log log o

n—m

We now take a closer look at ¢(n). We show that
q(n) < (k(n) — 2 +1log3/log2)".
For this, it suffices that the inequality
k(n)(log k(n) + loglog k(n)) < (k(n) — 2 + log3/log2)**

holds in our range for n. We checked with Mathematica that the last inequality
above is fulfilled whenever k(n) > 90, which is true in our range for n. Since
k(n) — 24 log3/log2 = logn/log2, we deduce by taking logarithms above that

log g(n) < 1.4log(logn/log2),
leading to

loglogg(n) < logl.4 +log(loglogn — loglog2)

loglog 2
= log1.4 4+ logloglogn + log (1 _ oge= )
loglogn
loglog2
< logloglogn+log1.4_%’
loglogn

where in the above chain of inequalities we used the fact that the inequality log(1+
x) < z holds for all real numbers = > —1,z # 0. We thus get that

1 log log 2 log log1
n—m < —— (log(e”-1.0096)+ logl.4 — 08 08 08 08 08 11
log «v loglogn log v
log log1
< 2.0754 2808087
log o

where we used the fact that n > 3-10%2. We record this for future use as follows.
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Lemma 2. Ifn > 4, then n > 3-10°° and

log log 1
n—m < 2.075 4 2 08087
log o

3.3. Bounding the Primes p; for i =1,...,k
Here, we follow a similar plan of attack as the proof of Theorem 3 in [12]. Write
(!171 .

F, =p1-prA, where A = pJ S (9)

Clearly, A | ¢(F},), therefore A | F,. Since also A | F,,, we get that A | gcd(F,,, Fin)-
Now gcd(Fy, Fin) = Fyed(n,m) | Fn—m, because ged(n,m) | n —m. Since the in-
equality Fy < o*~! holds for all positive integers s, it follows that

A<F,_ <o ™1 <al0%oglogn, (10)

where the last inequality follows from Lemma 2. We next bound the primes p; for
1=1,..., k. We write

therefore

Using the inequality

1-(1—z)-Q—z5)<z1+--+z; validforalz; €[0,1], i=1,...,s, (11)

we get
k k
F,_s ( 1 ) 1 k
<1- 1-—) < — < —,
F, 1131 Di ; pi P
therefore .
p1<k< L ><3k, (12)
Fn72

where we used the fact that F,, < 3F,_5. (This last inequality is equivalent to
Fo 1+F, 2 <3F, g,0or Fy 1 <2F, o,0or F, o+ F, 3 <2F, o,or F, 3<F, o,
which is certainly true in our range for n.) We now show by induction on the index
i€ {l,...,k}, that if we put

i
U 1= H Pj,
Jj=1
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then ‘
u; < (20307 (log log ) k) ~1/2, (13)

For i = 1, this becomes

3.075(

p1 < 2« loglogn)k

which is implied by estimate (12) and the fact that for n > 3 - 105 we have the
estimate 20397 loglogn > 43 > 3. We now assume that i € {1,...,k — 1} and
that the estimate (13) is fulfilled, and we shall prove estimate (13) for ¢ replaced by
i+ 1. We have

k
AT o0 ) B D) e

which we rewrite as

k
1 L P Di ca™—pgm
L= H (1_P_j> = ! Pp1—1)---(pp—1) am—p"
a™((pr—1)---(pi — 1" —p1---p;)
(p1—=1)- (pi — (o™ = ")
Br(p1-pi =B " (p1—1)---(pi — 1))

(p1—1)---(pi — 1)(a™ — ")
= X+4Y,

where

a™((pr—1)--(pi = Do —p1-pi)
(p1—1) - (pi — 1)(a™ = B") 7
B pi =B — 1) (pi — 1))
(pr—1)--(pi — 1)(a® — ") '

Since m is even and || < 1, we see easily that Y > 0. Furthermore, since n—m > 0,
B = —a"', and no power of a with positive integer exponent is a rational number,
it follows that XY # 0. Thus, Y > 0. Let us suppose first that X < 0. Then

b 1 2p1 - - pi
1—j££1 (l—p—i) < Y< am(py —1)---(p; — 1)(am™ — ")
2F, 2
P(Fn)(am — fm)(an — 7)) 5F2

<
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Since the left hand side of the above inequality is a positive rational number
whose denominator divides p;y1---pr | Fy, it follows that this number is at least
as large as 1/F,,. Hence,

giving

Since the inequalities a*72 < F, < o~ ! hold for all s > 2, we get

2 2
2m—4<F2 <_Fn<_ n—1
@ Sfm s giesga
therefore lox(2/5
om < 3+ 08C0)
log «
Using Lemma 2, we have
log logl
m>n— 2.075_ 2810808
log «v

Combining these inequalities, we get

log(2
0g(2/5) n 2logloglogn <5254
log v log v log v

2loglogl
n< 715+ 2108708 08N

which is impossible in our range for n. Hence, the only chance is that X > 0. Since

also Y > 0, we get that
k
1
1— 1-——)>X.
H ( pj)

j=i+1
Now note that

(pr =1 (i =" ™™ =pr---pi)(pr = 1) -+ (pi = 1)B" ™ —p1---ps)

is a nonzero integer (by Galois theory since 8 is the conjugate of «), therefore its
absolute value is > 1. Since the absolute value of the second factor is certainly
< 2p1 -+ p; and the first factor is positive (because X > 0), we get that

1
D 71"'p¢7104n7m7p"~p'>7.
P =Dl =) Y

Hence,

a™ a™ — [gm F,,

k
1— 1-—)>X> > = ,
_11( pj> 2p1 - po)Plan = F") ~ 2ud(an — ) | 22F,
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which combined with inequality (11) leads to

F, b 1 o k
2U$—E1<1_H(1__><Z_< )

=it P;

Thus,
F,
Di+1 < 2ku? () .

However,
F
on < Oén_m+1 < a3.075 loglogm
F
by Lemma 2. Hence,
pit1 < (20*"Pkloglogn)u;,
and multiplying both sides of the above inequality by u; we get

uir1 < (2239 kloglogn)u?.

Using the induction hypothesis (13), we get

Uir1 < (20[3'07519log1ogn)1+3(3i*1)/2 = (2039 L log logn)(?’i’ﬂfl)m7

which is precisely inequality (13) with ¢ replaced by i+ 1. This finishes the induction
proof and shows that estimate (13) holds indeed for all i = 1,..., k. In particular,

P pk = w < (205K loglog n) & /2,

which together with formula (9) and estimate (10) gives
F, =p1-prA < (203K loglog n)1+(3k_1)/2 = (2a3'075klog log n)(3k+1)/2.

Since F,, > a™ 2, we get

(n—2)loga < log(2a*°™k loglog n).

(3% +1)
2
Assume first that k& < 2a3975 loglogn. We then get that
(’I’L _ 2) IOgOé < (32043'075 loglogn + 1) 1og(2a3.075 lOg IOg n)7

which implies that n < 10'6. This is false because n > 3 -10%°. Thus, k >
203975 log log n, therefore we get

(n —2)loga < (3" + 1) logk.
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We also have that
logn 5 log3 logn

k< k(n) < 052 T2 " log2 < Togz T 42
Hence 1
1> 1og(1o(g n_/ 1(3g(;g—|(—l 0.42)’
so that ) (n—2)loga
k> K(n) = log 3 log (log(log n/log 2g+ 0.42) B 1) '

3.4. The Case When n is Odd

Assume that n is odd. Then every odd prime factor p; of F,, is congruent to 1
modulo 4. Thus, 4*~! | ¢(F,,) = F,,,, therefore z(22*=2) | m. So

n>m > z(2267%) = 3. 224,

leading to

log(n/3)
< =24 =
k< Lin) =24 2005

Since also k > K(n), we get that

(n—2)log log(n/3)
1 -1 —_—
log 3 8 <log(log n/log2 4+ 0.42) <=t 2log 2

This inequality gives n < 5-10%, which is impossible since n > 3 - 10°%. This shows
that the case n > 4 and odd is impossible, therefore n has to be even. Returning
now to estimates (5), (7), and (8), we also get that n > 8- 10371,

3.5. Bounding /

We write n = 2*n/, where n’ is odd and A; > 1. We start by bounding ;. Clearly,
)\1 Z 1. If )\1 Z 2, then
F2/\1 = LQ e L2)\1—1.

The numbers Ly; are all odd for j =1,..., A1 — 1, and since Ly = Lgi,l + 2 holds
for all i > 2, it follows easily that Lyi = +2 (mod Ly ) for all 1 < j < 4. This shows
that ged(Lgi, Los) = 1 for all 1 < j < 4. In particular, Fy», is divisible by at least
A1 — 1 distinet primes which are all odd. So, 217! | ¢(F,) = F},,. Thus, assuming
that A\; > 3, we get that 3-2*=3 | m. Hence, 2"~ divides both m and n, so it
also divides n — m. This argument combined with Lemma 2 shows that,
M < 8(n —m) < 16.6 4 osloglogn

log a
and the last inequality above is true for A\; < 3 as well. In particular, if n’ = 1, we
then get that
8logloglogn

n=2" <16.6 + :
log o
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leading to n < 18, which is false. Thus n’ > 1, therefore n has odd prime factors.
We deduce more. Write m = 2Htm/, where m’ is odd. We have already seen that
p1 > k—22> K(n) — 2. We now show that g1 > A;. Assume that this is not so.
Then p; < Aq, therefore 21 | n — m. Hence,

< log(n —m) < log(2.075 + log log log n/ log a)

H1 >

3

log 2 log 2

where the last inequality follows from Lemma 2. We therefore get the inequality

log(2.075 + logloglog n/ log )
log 2

K(n)—-2<

)

leading to n < 258, which is impossible. Thus, @1 > A;. We next rework a bit the
relation ¢(F,) = F,, to deduce a certain inequality relating ¢ to the prime factors
of F,,. Write

p|F,
Note that
R e ()
Thus,

ElogaJrlog(laln) < 10g< ) Zlog(l+>
p|Fn
< Z (14)

pIF

where in the last inequality above we used the fact that log(l + ) < z holds for
x > 0. Next, we note that since the inequality log(l — ) > —2z holds for all
z € (0,1/2), we have that

1 2 —10
log(l—ﬁ>>—w>—10 .

Thus,

Cloga — 10~ <|; +1—|—S( n),
P
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where we put

plFy p>101
p<100
1 1
< — — —— ] +0.05
E p—1 p+ 1)
p|Fn
p<100

We distinguish three cases.

Case 1. 2|ln and ged(n,3) = 1.
Here, the prime factors of F;, belong to Ps and the only such below 100 are

5, 11, 13, 29, 37, 59, 71, 73, 89, 97.

It now follows that
S(n) < 0.168.

Hence,

1
21 —0.168 — 1071 < _
og o I;p—kl

Since ¢ > 2, and

llog o —0.168 — 10710 S 2loga — 0.168 — 10~10

> 0.82,

{log « 2log

we get that
1

0.82¢logar < » T (15)

p|Fn

Case 2. 4| n and ged(n,3) = 1.
In this case, if p | F},, then p € P4. There are 16 primes below 100 in Py, and
using them we get the upper bound

1 1
S(n) < E (— — —) + 0.05 < 0.463.
ol p—1 p+1
p<100

Since also 4 | m, we get that ¢ > 4. Hence,

1
21 —0.463—1071° < —
>

p|Fy
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and since ¢ > 4, and

llog o — 0.463 — 1010 S 4loga — 0.463 — 10~10

> 0.75,

Llog « 4log

we get that
1
0.75¢1 < o 16
o< (15)

Case 3. 6| n.
In this case,

1 1

p>2

and ¢ > 6. Thus,

1
llogar —1.15 — 10710 < e
: Z p+1
p|Fn
and since
_ _1p-10 _ _1n-10
lloga—1.15—-10 > 6loga —1.15—10 = 0.6,
lloga 6log o
we get that
1
0.641 —_ 17
oga < Yy ] (17)
p|Fy
From (15), (16) and (17), we get that
0.6¢1log o < Z L
. g P
plFn
We now write
n= H r;\’i,
i=1
where 2 =7y < --- < r, are prime numbers and Ay, ..., A, are positive integers.

We organize the prime factors of F;, according to their order of apparition in the
Fibonacci sequence. Clearly, for each p | F,, we have that z(p) = d for some divisor
d of n. Furthermore, d > 2, since F} = Fy = 1. If p is a prime with z(p) = d,
then p = £1 (mod d), except when p = d = 5. Let Q4 = {p : 2(p) = d} and let
5(1 = #Qd Then
d-1“< [[ p<Fa<a®,
pEQa
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therefore
(d—1)loga dloga

<
log(d — 1) logd
for all d > 3. Indeed, the last inequality above follows for d > 4 because the

function ¢/ logt is increasing for ¢ > 3, while for d = 3 it follows because ¢3 = 1 <
3(log @)/ log 3. Now note that

by <

(18)

1 1
p+1 _gpédpﬂ'
a>2

p|Fn

Since all primes p € Qg satisfy p = +1 (mod d) for all d # 5, we get easily that

=YLl y 1

pEQa p+1 < £ /2] +1

_ 2 1+/dloga/(210gd)+1 dr
= 4 . ]

< glo edloga+e
= 7%\ 2logd ’

for d # 5. Since the inequality

edlog o
2logd

<d

holds for all d > 5, we deduce that the inequality

2logd
d

Qa <
holds for all d > 6. The same inequality also holds for d € {3,4,5} since

1 2log3 1 2log4 1 2logh

= _ = - d = - .
QS 3< 3 5 Q4 4< 4 ) an Q5 6< 5

Hence,

1 logd
PESSRDOLIEE) Dh s
d|n d|n
a>2

plFn

Let us put log* z = max{logz,1}. We next show that the function defined on the
set of positive integers and given by f(a) = 2log*a for a > 1 and f(1) = 1 is
submultiplicative; i.e.,

f(ab) < f(a)f(b) holds for all positive integers a, b.
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The above inequality is clear if one of @ and b is 1. If both a, b are > 3, then
f(ab) = 2log(ab) = 2loga + 2logb < 4logalogb = f(a)f(b),

because both 2loga and 2logb exceed 2. Finally, assume that one of a and b is 2.
Say a = 2 and b > 2. Then the desired inequality is

f(ab) = 2log(2b) = 2log2 + 2logb < 4logb,
which is obviously true. Using the submultiplicativity of the function f, we have

0.64loga < Z@ < H 1+Z fgjf) .
d|n

r|n B>1

The contribution of the prime r = 2 in the last product above is

2  2log4  2log8 2 3
14 = o= 2—log2+4+(log2) (1+ =4+ -+
+2+ 1 + 3 + og +(0g)(+2+4+ >

= 2-—log2+4log2 =2+ 3log2 < 4.08.

The contribution of an odd prime number 7 in the above product is

2logr 2 3 2rlogr
1 1+4-+=+-- 1 .
+ ; (+r+r2+ >< +(r—1)2

Since 0.6/4.08 > 0.14, we get that

21
0.14¢logar < [ (1 + %) . (19)
o

Taking logarithms and using again the fact that log(1+ x) < z holds for all positive
real numbers x, we get

2r1 2r1
log £ +log(0.141log o) < Zlog (1 + (TT_OiTQ) < Z (TT_O§)7;~

rln r|n
r>2 r>2

Separating the prime 3 and using the fact that r/(r — 1)? < 1.6/r for r > 5, we get
that

3log3 logr
log ¢ + log(0.14 1 3.2 . 20
0g ¢ +log(0.14log ) < ——=— + > . (20)
r>5

We are now finally ready to bound f. Assume that ¢ > 108. Let w be the num-
ber of prime factors of £ and let g1 < g2 < - - - be the increasing sequence of all prime
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numbers. All prime factors r > 5 of n either divide ged(n, m), therefore ¢, or divide
n but not m. Thus,

log r log q log r
< = .
ylere oy bmn grler g, 2
rin 5<q<quw+2 rln
r>5 rtm

In what follows, we bound S; and Ss separately. To bound S7, note that in order
to maximize S as a function of ¢, we may assume that ¢ is not a multiple of 6. By
the Stirling formula, we then have

W+2>w+2

652(w+2)!>( .

leading to
(w+2)(log(w +2) — 1) < log(62).
Hence, 2(w + 2)(log(w + 2) — 1) < 2log(6¢). Assume first that
2(w+2)(log(w +2) — 1) < (w+ 2)(log(w + 2) + loglog(w + 2)).
Then
log(w +2) < 2+ loglog(w + 2),

leading to w < 21. In this case,

1
si< Y 2B oo
5<q<83
Assume next that w > 21. Then
21og(64) > 2(w + 2)(log(w + 2) — 1) > (w + 2)(log(w + 2) + loglog(w + 2)) > qut2,

where the last inequality is inequality (3.13) on page 69 in [13] (valid for all w > 6,
which is our case). Since £ > 10%, we have that 2log(6/) > 40 > 32, so formula
(3.23) on page 70 in [13] shows that

so< > e 3o

5<q<dqu+z 1 5<q<2log(6l)
log2 log3 1
log(2log(6¢)) — — — — — 1.33
< log(2log(66)) 2 3 + log(21log(6Y¢))

< loglog(6¢) — 1.07 < loglog(6¢) — 0.44,

where the last inequality is valid for £ > 108. Since loglog(6¢) — 0.44 > 2.56 holds
for ¢ > 108, it follows that in both cases we have

S1 < loglog(6¢) — 0.44. (22)
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We now bound Ss. For this, observe that if 5 | n, then 10 | n. Hence, 11 | 55 =
Fig | F,,. Thus, 10 | ¢(F,,) = Fy,, leading to 5 | F)y,, so 5 | m. This shows that the
smallest prime that can participate in Sy is > 7 (recall that 6|m). Let ¢ >3, and let
T; be the set of primes in the interval [2¢,2¢+1] that divide n but not m. Let n; be
the number of elements in Z;. Assume that n, > 1 for some ¢t. Let p be a prime in
Z;. Then n has at least 2"t~ ! squarefree divisors d, such that each one of them is a
multiple of p, and such that furthermore each one of them is divisible only by primes
q € I;. For each one of these divisors d, since 2d | n, we have that Ly | Faq | F.
Since d is odd and d > 7, we get, by the Primitive Divisor Theorem (see [4]), that
L4 has a primitive prime factor pg. Clearly, p; = £1 (mod d), so, in particular,
pa is odd. Reducing relation (1) modulo pg, we get that —5F7 = —4 (mod py),
therefore (5/pq) = 1. So, (pa/5) = 1 by the Quadratic Reciprocity Law. It now
follows that z(pg) = d | pa — 1, showing that p | d | pa — 1 | ¢(F,). Since the
primitive prime factors py are distinct as d runs over the divisors of n composed
only of primes ¢ € Ty, it follows that the exponent of p in ¢(F),) is at least 27¢~1.
On the other hand, since p 1 m, it follows that this exponent is at most the exponent
of pin F.,y. Now z(p) | p+n, where n € {£1}, because ¢ > 3. Hence, writing a,

for the exponent of p in F(,), we get that

p)
P | Exp) | Fprn = Fipimy 2 Lptny f2-
Relation (1) shows that ged(F(pir) 2, L(p4n)/2) | 2. Since p is odd, we get that

P | Fpimys2 ot 7 [ Lipiy 2
In the first case, we have that

PP < Fpppnyys < alP~/2,

therefore
—-1)1 1)1
a (p—1)loga _(p+1)loga (23)
2logp 2logp
In the second case, we arrive at the same conclusion in the following way. If n = —1,

then since L, < o*T! for all s > 1, we have
pap < L(pfl)/Z < a(p"rl)/Q’

leading again to estimate (23). When n = 1 and (p 4+ 1)/2 is odd, then

P < Lipiny)2 = aPT1)/2 +6(p+1)/2 < a(p+1)/27
leading again to estimate (23). Finally, assume that n =1 and (p+1)/2 is even. If
Lyy1y/2 # p°, then

1)/2
Lot o741 i

ap <
Pr="" 2
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leading again to (23). It remains to deal with the case L,;1)/2 = p®. Since p > 7,
it follows easily that L,,1)/2 > p. Hence, a; > 1, and therefore L, 1)/ is a perfect
power of exponent > 1, and this is impossible by the main result from [3]. Thus,
we have showed that estimate (23) holds for all p > 7. We thus get that

p+1)loga 2t og o
<

2774-1 <
= 2logp 2log(2tt1 — 1)’

(24)

where for the last inequality we used the fact that p < 2i+! — 1 together with the
fact that the function (s + 1)/(2logs) is increasing for s > 7. We now show that
ny < t—2. Indeed, if not, then n; > ¢t — 1, which together with inequality (24) leads

to 1
o 2+ log o

2log(2tt1 — 1)’

therefore

log(2* — 1) < 4log o,

which is false for ¢ > 3. Hence, n; < t — 2 holds for all £ > 3. Since the function
log s/s is decreasing for s > 3, we get that

log 7 t—2)log(2t) log7 t(t —2
Sz<—o;g +Z( )Qtog( )< Of +(log2) Y ( - ).
t>3 >3

One computes easily that

therefore log 7
Sy < % +log2. (25)

Estimates (20), (21), (22), and (25) lead to

logl¢ < 3.2loglog(6¢)
3log3
+( .

1
~log(0.141og @) + 3.2 ( °§7 +log2 — 0.44)) :

therefore
log ¢ < 3.2loglog(6¢) + 6.05.

The above inequality leads to ¢ < 4 - 106.
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3.6. Bounding ¢ Even Better

Now let us write

n=U-V, where U = H r;\", and V = H 7‘1’\1

1<i<u 1<i<u
ri|m rifm

Let i be such that r; | U. Put r := r; and A := A;. We have already seen that A | ¢
if i = 1 because r; = 2. So, assume that r is odd. Suppose first that » > 5. Then
L,s divides F,, for § = 1,2,...,\. Each of L,; has a primitive prime factor which
is congruent to 1 modulo r’. Thus ¢(F,) is divisible by r1+2+-+A = pARA+1/2,
Since r < 104, a calculation of McIntosh and Roettger (see [1] and [10]) shows that
r||F,(r in this range confirming thus a conjecture of Wall [14]. Thus, p**+1)/2-1
divides m. If A > 2, then A(A +1)/2 — 1 > ), showing that 7* | ged(n, m). This is
also obviously true if A = 1 as well. Hence, if r > 3, then r* | ged(n, m) | £. Assume
now that » = 3. Then L,s divides F;, and has a primitive prime factor congruent to
1 modulo r? for all § > 2. Tt now follows that 3*(*+1)/2=1 divides ¢(F,), therefore if
A > 2, then 3}(A1)/2-2 divides m. Now A(A+1)/2—2 > X holds for all A > 3. This
shows that 3* | £if A > 3. Thisis also true if A = 1. If A\ = 2 and there exists another
odd prime ¢ > 3 dividing n, then also L3, divides F;, and L34 has a primitive prime
divisor which is congruent to 1 modulo 3. Since 19 | Lg | F,,, we get that 3% divides
#(F,) = F,,, therefore 9 | m. Thus 3* | £ unless A = 2 and n’ = 9. In this last case
we have n = 2* .9 < 3¢ < 12 - 109, contradicting the fact that n > 8 -1037!. Thus,
in all cases U | £. Furthermore, since n > 8-103"* and ¢ < 4-10°, we get that V > 1.
We now look at V. Assume that V' has w primes in it with w > 1. Let p; > 7 be
the smallest prime factor of V. Then V has 2*~! odd divisors d all divisible by p;.
Since Lq | F,, for all such divisors d, and since for each one of these divisors d the
number Ly has a primitive divisor pg = 1 (mod d), we get that the power of p; in
B(F,) is at least 2*~1. Since p; { m, it follows that 2¥~! < a,,, where a,, is the
exponent of py in F,(, ). It was shown in the preceding section that the inequality
ap, < (p1+1)(loga)/(2logp1) < (p1 +1)/(4logp1) holds for all p; > 7 because
logaw < 1/2. This is also true for p; = 7 because a7 = 1 < (7+ 1)/(4log7). We
thus get that 2% < (p1 +1)/(2logp1), therefore

< log(p1 +1) —log(2log p1)
log 2 '

We now return to inequality (19) and use the observation that the function r logr/(r—

1)? is decreasing for r > 7, to get that

(1 . 2rlogr > (1 2p1 log p1 > (log(p1+1)—log(2logp1))/log2

0.14¢log o < H (r—1) (p1—1)2

r|e
r>2
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We can now give a better bound on ¢. The product of the first 8 primes is >
9-10% > ¢, and the function (rlogr)/(r — 1)? is decreasing for r > 3. Furthermore,
the maximum of the function

2, 1
<1+ p1 log p1

(log(p1+1)—log(2logp1))/log2
(p1 — 1)2>

as p; > 7 runs over primes is < 1.8. Thus,

2rlogr
0.14¢loga <[] (1 + W) 1.8 < 51.68,
3<q<17

leading to ¢ < 766. The product of the first five primes exceeds 766, so that

2rlogr
0.140loga < ] (1 + o 1)2> 1.8 < 16.82,
3<q<7

yielding ¢ < 248. Thus, U < ¢ < 248.

We can now see the light at the end of the tunnel. Namely, we shall show that
p1 < 10'%. Assume that we have proved that. Suppose that n is divisible by
p1q, where ¢ is some other prime factor (which might be p; itself). Since p; > 7,
it follows that both L, and L, , have primitive prime factors which are both
congruent to 1 modulo p;. This shows that p? | ¢(F},), so p? | F,,. By McIntosh’s
calculation, we get that p; | m, which is impossible. Thus n’ = p;, therefore
n = 2Mp; < fp; < 248 - 10!, contradicting the fact that n > 8- 10%7!. Thus it
remains to bound p;.

3.7. Bounding p;

Returning to inequality (14), we have

1 1
llogor — 10710 < Clog o + log (1> < —
am -1

Since U | ¢, a calculation with Mathematica shows that the inequality

1
Lloga—10710 = —— > .3145¢

p|Fu
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holds for all even ¢ < 248. Thus,

1
31450 < —.
= Z p—1

p‘Fn
ptFu

We now assume that p; > 10'* and we shall get a contradiction. Note that the

above sum is 1
P D S I

p|Fy di|U d2|V
piFu da>1

where, as in Section 3.5, we have

1
Qu= ) =7
PEQa

Since p = 1 (mod d), and d > p; > 10, it follows that p/(p — 1) < .3145/.3144
for all p | F}, but p{ Fyy. Thus we get that

31440< ) ) L (26)

d1|U da|V
da>1
Let d = dydy. We saw that the inequality {4 = #Q4 < dloga/logd holds for all
our d (see inequality (18)). Our primes p € Qg have the property that p = +1
(mod d). By the large sieve inequality of Montgomery and Vaughan [11], we have
that if we write m(¢;a,b) for the number of primes p = @ (mod b) which do not
exceed t, then the inequality

2t

m(t;a,0) < o(b) log(t/b)

holds uniformly for a < b < t, with coprime a and b. The calculation from Page 12
in [8], shows that

Z 1 < 4 n 4loglogd
L v eldlogd " 9(d)
3d<p<d?

For the remaining primes in Q4 but not in (3d, d?) we have that

Lo pTd—1d+12d—1 2d+1 3d—1 & " 34(d) ' dlogd
d
p¢(3d,d*)




INTEGERS: 9 (2009) 398

We thus get that

4loglogd 1 10 log
oF

o(d) ( + (logd)loglogd + 12loglogd + (log d) loglog d
5.02loglogd
¢(d)

Since d; | U, we get that d; < 248. Since dy > 1, we get that dy > p; > 104,
Hence, dyds < di? holds uniformly in d; and ds, therefore

5.021og(1.2log d2)

Qi < ) ()

Let 7(V) be the number of divisors dy of V. Of them, 7(V/p;) are multiples of p;,
and for each one of these, L4, has a primitive prime factor pg, which in particular is
congruent to 1 modulo p;. Hence, the exponent of p; in ¢(F},) is at least 7(V/py).
Since p; t m, we get that

T(V/p1) < ap, < (p1 +1)loga

2logp
leading to
(1 +1)loga
V) <2r(V <=1 2
(V) < 2 (V) < B
Now

1% 1 1 \W
— < 1+ > < <1 + )
o(V) }I_‘[/ ( p—1 p1—1

1 (p1+1) log o/ log p1
< (1 + 1) < 1.02,
=

where the last inequality holds because p; > 10**. Thus, the inequality

L ()L
d(d2) ~ \o(V)/) d2 = do

holds for all divisors do of V. We therefore get that

(5.02-1.02) log(1.21og d2) < 5.13log(1.2log d3)

Qa< Bd(dy) a2 (dy)

The function log(1.2log s)/s is decreasing for s > 104, showing that the inequality

5.131og(1.21og p1) 1
< .
Q1= P o(cr)
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holds for all divisors d of n which do not divide U. Thus,

Z 1 < 5.137(V) log(1.21og p1) Z 1
P P e ()
ptFu

5.13(p1 + 1)(log &) log(1.21og p1)
p1logpr

h(0),

where

Thus, comparing the last bound above with inequality (26), we get

p1logpy 5.13 - log v
(p1 + 1)log(1.21ogp1) 0.3144

The above inequality implies that p; < 910! < 10, which is the desired contra-
diction. Theorem 1 is therefore proved.
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