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CONJUGACY CLASSES AND CLASS NUMBER
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Abstract

It is shown that the conjugacy classes of integral matrices with a given
irreducible characteristic polynomial is in bijection with the class group of a
corresponding order in an algebraic number field.

1. Main Results

The classical work of Gauss on integral, positive-definite, binary quadratic forms
yields the class number of imaginary quadratic fields (see [3], [1]). For a general
algebraic number field K, the class group can be viewed in terms of the ideles of K
as a set of double cosets (see description below). However, the following simpler-
looking result asserting that one could easily relate the class numbers of fields with
the numbers of conjugacy classes in GLn(Z) with a given trace does not seem to
be well-known. We prove such a result here. The precise relation involves class
numbers of more general orders in number fields. We show that the ideal classes of
an order Z[α] correspond bijectively with the GLn(Z)-conjugacy classes of integral
matrices whose characteristic polynomial is the minimal polynomial of α. Before
stating the result, let us recall the basic definitions. Let K be a number field of
degree n over Q and let OK be its ring of integers.

Definitions (see [2], Chapter 1, section 12). O is an order of K if it is a subring
of OK which contains a Q-basis of K. Thus, K is the quotient field of O and the
ring OK is the unique maximal order. A fractional ideal of O is a finitely generated
non-zero O-submodule of K. A fractional ideal I is called invertible if there exists
a fractional ideal I ′ such that, II ′ = O. For the ring OK , all fractional ideals
are invertible and thus, they form a group under the operation of multiplication of
fractional ideals. Unfortunately, the fractional ideals of O do not form a group for a
general order O. However, if we consider only the invertible ideals of O, they form
a group. Let J(O) denote the set of invertible fractional ideals of O and let P (O)
denote the subset of principal ideals kO, k ∈ K∗ among them.
Definition The Picard group (or class group) Pic(O) of O is defined as the quotient
J(O)/P (O).
A basic result is that this is always finite; denote its order by h(O). Indeed, it can
be described in terms of the class group of OK , whose finiteness is a more standard
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result usually established in all textbooks on algebraic number theory. To describe
this relation, define the conductor f of O to be the largest ideal of OK contained
in O.

Proposition (see [2], 12.12) We have h(O) = h(OK)
[O∗

K :O∗]
|(OK/f)∗|
|(O/f)∗| .

The ideal class group of the maximal order OK can also be described as double
cosets in the so-called idele class group. The ideles IK of K are defined as the
elements (xv)v of the product

∏
v K∗

v of completions of K in which all but finitely
many components xv are in O∗

v. Then K∗ sits diagonally in IK and the quotient
CK := IK/K∗ is called the idele class group, which may be infinite. There is a
natural surjective map from CK to the class group ClK whose kernel is I∞K :=∏

v∈∞K∗
v ×

∏
v %∈∞O∗

v.
Our main result is :

Theorem. Let α be an algebraic integer whose minimal polynomial is of degree
n. The GLn(Z)-conjugacy classes of matrices in Mn(Z) which have α as an eigen-
value, are in one to one correspondence with the class group of the order Z[α]. In
particular, when α is a unit, the class group of Z[α] is in one to correspondence
with the conjugacy classes in GLn(Z) with α an eigenvalue.

For any g ∈ GLn(Q), let us recall its rational canonical form. This is obtained
as follows. If χg(X) is the characteristic polynomial of g, there are polynomials
f1, f2, · · · , fd where fi divides fi+1, where fd is the minimal polynomial of g and
where χg = f1f2 · · · fd. Recall that the companion matrix of a monic polynomial
p(X) =

∑r−1
i=0 aiXi + Xr is the r × r matrix

C(p) :=





0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
...

. . .
...

0 0 · · · 1 −ar−1




.

Note that this amounts to writing the matrix representing multiplication by X on
the ordered basis {1,X, · · · ,Xr−1} of Q[X]/(p(X)). Then, the rational canonical
form of g ∈ GLn(Q) which is a conjugate PgP−1 for some P ∈ GLn(Q), is the
block matrix





C(f1) 0 0 · · · 0
0 C(f2) 0 · · · 0
...

. . . . . . . . .
...

0 · · · · · · C(fd−1) 0
0 0 · · · 0 C(fd)




.

Let g ∈ GLn(Z) and let α be an eigenvalue of g; this is an algebraic integer whose
minimal polynomial is fd as above.
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Proof of theorem. The rational canonical form of g is

PgP−1 = C(χ) =





0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
...

. . .
...

0 0 · · · 1 −an−1





where χg(X) =
∑n−1

i=0 aiXi + Xn holds; that is, with respect to the ordered basis
{1,α, · · · ,αn−1} of Q(α), multiplication by α corresponds to the matrix PgP−1 on
the canonical ordered basis of Qn. Hence, Ig := Z-span of P−1 ( 1 α · · · αn−1 )t

is a Z[α]-submodule of Q(α) containing a Q-basis of the latter vector space.
Note that if g′ is conjugate to g in GLn(Z), then Ig′ , Ig are in the same equivalence

class in the class group. Thus, we have associated to a class [g] ∈ M2(Z) a unique
class [I] of the order Z[α] (when the characteristic polynomial of α is irreducible).

Conversely, consider an invertible fractional ideal I of the order Z[α]. Choose an
integral basis, say (bi)1≤i≤n, of I. Multiplication by α is a Q-linear transformation
from I to I. Let g be the matrix of this linear transformation with respect to the
above chosen basis of I. Clearly it is an integral matrix and α is an eigenvalue of
this matrix. If (b′i)1≤i≤n is some other integral basis of I, g would be changed to
a matrix conjugate to itself over Z. Also, if I ′ is another invertible fractional ideal
belonging to the class of I i.e., I ′ = γI for some γ, then the corresponding basis
will be (γbi)i=n

i=1 and g will be simply changed to a matrix similar to itself over Z.
So, we have a map from a class of the order Z[α] to a unique class in Mn(Z) which
has α as an eigenvalue. !

Remarks - a question. It would be interesting to deduce results about the Picard
group from the results about conjugacy classes. For instance, an interesting question
which arises is, whether the following result about the divisibility of class numbers
can be proved in this way; it is usually proved (see [4]) using the Hilbert class field:

TheoremIf m, n are natural numbers such that m|n, then the class number of
Q(ζm) divides that of Q(ζn).

This can be shown for example using the Hilbert class field (see [4]).

2. Some Examples

Example 1. Let α =
√
−5. The minimal polynomial of α is x2 +5. Any matrix in

M2(Z) whose characteristic polynomial is x2 +5 is GL2(Z)-conjugate to exactly one
of the two matrices :

A =
(

0 −5
1 0

)
and B =

(
−1 −3
2 1

)
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This is in harmony with the fact that the class group of Z[
√
−5] is two. Indeed,

by the theorem, A corresponds to the unit ideal and B corresponds to the ideal
generated by 2 and

√
−5.

Example 2. Let β = 1 +
√
−23/2. Then x2 − x + 6 is the minimal polynomial of

β. Any matrix in M2(Z) whose characteristic polynomial is x2 − x + 6 is GL2(Z)-
conjugate to exactly one of the three matrices :

P =
(

0 −6
1 1

)
, Q =

(
−1 −4
2 2

)
and R =

(
−1 −2
4 2

)
.

This again is in harmony with the fact that the class number of Z[β] is three. The
above matrices correspond by the theorem, respectively, to the three ideal classes
‘trivial’, [2, 1 + β] and [4, 1 + β].

In the case of quadratic number fields, a connection between the class group of the
quadratic forms and the class group emerges naturally via the theorem.
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