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Abstract
Let p be a prime, n be an integer, k | p” — 1, and y(k,p™) be the minimal value of
s such that every number in Fy» is a sum of s k'™ powers. A known upper bound
is improved to y(k, p™) < nk!/™ and generalizations of Heilbronn’s conjectures are
proven for an arbitrary finite field.

1. Introduction

Let p be a prime, n be a positive integer, ¢ = p”, and I, be the field of ¢ elements.
The smallest s (should it exist) such that

ok +4ah=a (1)

has a solution for all a € F, is called Waring’s number, denoted v(k,q). We will
assume throughout that Waring’s number exits. It is easy to show that v(k,q) =
~v(ged(k,q— 1), q); thus, we will assume that k | ¢ — 1. Similarly we define §(k, ¢) to
be the smallest s (should it exist) such that every element of F, can be represented
as sums or differences of s k' powers. Note that d(k, q) exists if and only if y(k, q)
exists.

Let Ay := {z* : © € F,}, A, := Ay NF,. Note that A} := Ay \ {0} and
(A3)* = (A}) \ {0} are multiplicative subgroups of F;. For any subset A in an
additive group and s € N, we set sA:={a; +as+ -+ +as:a;, € A, 1 <i<s}

Tornheim shows [11, Lemma 1] that the collection of all possible sums of '}
powers in F, forms a subfield of F,. Bhaskaran shows [1, Theorem G| that this
subfield is proper if and only if there exists d | n, d # n, such that f):j | k. Hence,
to ensure the existence of v(k, ¢), we must have ZZ:% tk for all d | n, d # n.

Winterhof has shown in [13] that, provided ~(k, q) exists,

v(k,q) < 6.2n(2k)/™ In(k). (2)

Winterhof and van de Woestijne prove in [14] that for p and r primes with p
a primitive root (mod r) we have v (”T_Ti,pT*) = (r_l)?ﬁ. Thus, with & =
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Pl and n = r — 1 one has the bounds:

SR 1) <k, p") < mlk+ 1)1, (3)

In light of inequality (3), we see that nk'/™ is essentially the best possible order
of magnitude for Waring’s number without further restrictions. In this paper, by
using some results of [5], we show the Ink factor in Winterhof’s bound (2) can be
dropped.

Theorem 1 If y(k,q) exists, then

(k+1)1/"—1w

<
v(k,q)_8n{ 1

Furthermore, if |A},| > 3, then

(k4+ 1)V —1 w

<4
v(k,q) < n{ A =1

Under more stringent conditions on the number of k" powers falling in the base
field we can improve the exponent 1/n at the cost of increasing the constant.

Theorem 2 If v(k,q) exists, then

log(4)

v(k,q) < n(k +1)"= "l loglog(k).

Furthermore, if
log(§ (k+1)1/™)

IA;M Lo e _p—1

then

log 4

(k. p) < n(k +1) "=

In the case when g is prime, Heilbronn conjectured in [7] (and Konyagin proved
in [8]) that for any € > 0 we have y(k, p) <. k® for |Ax| > c(e). It is interesting to
note that in this case Ay = Aj. By placing the size condition on A}, instead of Ay,
we extend Heilbronn’s conjecture to a general finite field.

Theorem 3 For any e > 0, if |A},| > 475, then v(k,q) < k°.

Heilbronn further conjectured that y(k, p) < k'/2 for 221 > 2. This was estab-
lished in [2, Theorem 1] and [3] gives an explicit constant: v(k,p) < 83k'/2. For
n > 2 we obtain here:

Theorem 4 o Ifn =2 and v(k,p?) exists, then ~v(k,p?) < 16k + 1.

e Ifn >3 and y(k,q) exists, then y(k,q) < 10vk + 1.
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2. Preliminaries

Definition 5 A subset A C I, is said to be symmetric if A = —A, where —A4 =
{—a:a € A}, and antisymmetric if AN (—A) = 0.

Note that A}, := A \{0} is either symmetric or antisymmetric depending on whether
—1 € Ay, or not.
The next lemma is a result of Glibichuk [5, Theorems 7,8 and 9].

Lemma 6 Let A C F, and B C F, with |A||B| > q. Then 16AB =F,. Moreover,
if B is symmetric or antisymmetric, then 8AB = F,.

Glibichuk [4, Corollary 4] noted that if A is a subgroup of F; with [A] > /g,
then 84 = F,. This is an immediate consequence of Lemma 6 with A = B, because
multiplicative subgroups are either symmetric or antisymmetric.

Corollary 7 If v(k,q) exists and k < \/q then v(k,q) < 8.

Proof. The statement is trivial for ¢ < 5, and so we may assume that ¢ > 6. We
apply Lemma 6 with A = Ay, B = A}. If k < /g, then |Ay||Af| > ¢ provided that

(% n 1) (%) > g, that is, ¢3/% > 2 + /g — 1. The latter holds for ¢ > 6. O

Corollary 8 If~v(k,q) exists and |sAg| > k+ 1 for some s € N, then vy(k,q) < 8s.

Proof. We use Lemma 6, with A = sA; and B = A}. Note that (sAy)A; = sAg
and |Af||sAp| > GE(k+1)=q -1+ 5 > q. O

The next three statements are useful for estimating the growth of additive sets
in Fp,. The first is a reformulation of the classical result due to Cauchy and Daven-
port. The second is a sharpening of Cauchy—-Davenport for multiplication groups
from Nathanson’s book [9], and the third is a recent lemma due to Glibichuk and
Konyagin in [6].

Lemma 9 (Cauchy-Davenport) For any A C F,, we have

[lA] > min(I(|A] — 1) + 1,p).

Lemma 10 ([9, Theorem 2.8]) For any A := {2* : 2 € F,} C F, with 1 <
ng(kap - 1) < p;17

1A] > min((20 — 1)(JA] — 1) + 1, p).

Lemma 11 ([6, Lemmas 5.2 and 5.3]) Let Ny = 4! — 2. If A C Fy, then [N Al —
NA! > Zmin((Al', (p — 1)/2). Furthermore, if 2 < 1 < 1+ 5(@0/2 then
N > 2]



INTEGERS: 9 (2009) 438

Lemma 12 is a well-known corollary of Rusza’s triangle inequality [9, Lemma 7.4]
(IS +T| > |S|*?|T — T|'/?), while Lemma 13 is a consequence of the pigeonhole
principle.

Lemma 12 [3, Equation 2.2] For any subset S of an abelian group and any positive
1
integer j, |jS| > |S — S|' 727 . The inequality is strict for |S] > 1.

Lemma 13 If A is a subset of an abelian group G such that |A| > |G|/2, then
A+A=G.

The next lemma generalizes 3, Theorem 4.1c| from F, to F,.

Lemma 14 We have v(k, q) < 2[loglog(q)1d(k, q).

Proof. Let j > loglog(q) be an integer. By Lemma 12 with S = §(k, ¢) Ak, we have
l76(k, @) Ak| > 0(k, q) Ak — 5(k,q)Ak|17§ =q¢"v > q/2. Hence by Lemma 13 we
have 2j6(k,q)A =T,. |

3. Proofs of Theorems 1 and 2

Let {b1,ba,...,b,} be a basis of F, over F, consisting of k" powers in F,. Then
the set By := {a1b1 + -+ + apb, : a; € lAL} is a subset of (nl)(Ay) with |B;| >
(A"

To prove Theorem 1, we first take [ > %, giving (by Cauchy-Davenport)
that |lA}| > min ((k+1)/",p). In either case |(nl)Ax| > k + 1 and Corollary
8 yields the first result of Theorem 1. Now Taking [ > % + % gives (by
Lemma 10) that |lA}| > min ((k 4+ 1)'/",p). Again in either case |(nl)Ax| > k + 1
and Corollary 8 yields the second result of Theorem 1.

To prove Theorem 2, we first note that Corollary 7 lets us restrict our attention

to k> ,/q. Now set [ = [% + %w and let N; be as in Lemma 11.
Case 1: If [A}|' > 251 then we use the first part of Lemma 11 with the result that
|NjAj, — NjAj| > 3 (p—1). By Lemma 9, [48(N; A} — N;A},)| > min(9p — 56,p) = p
for p > 7. If p < 7 we use the fact that |A}| > 2 > 712;1 and p > |48(N;A;, —N;A}L)| >
|4A}.| = p to establish [48(N; A}, — N;A})| = p. We now have an upper bound on
0(k,q) and hence on v(k, q):

log 4

v(k, q) < loglog(q)d(k,q) < loglog(q)nN; < n(k + 1) "'¢14k! loglog(k).
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Case 2: If |[A,]' < p—;l then we use the second part of Lemma 11 with the result

that |N;A}| > (k +1)Y/". Hence

log % log 4 log 4

v(k,q) < 8nN; = 8n | 327405141 (k4 1) s 4T — 1/3| < n(k + 1) " °s 44

log 4

< n(k 4+ 1)1k loglog (k).

Alone this case gives the second part of the theorem. Combined with Case 1, we
have the first part of the theorem.

4. Proofs of Theorems 3 and 4

Corollary 7 permits us to restrict our attention to k > ,/q. To prove Theorem 3 we
make the further assumption: |A/| > 42", Then, n < log(k). Using Theorem 2,
we see that

log4 log4

7(k, g) <€ n(k + 1) 7= T log log (k) < (log(k))? (k) 7™ 11 < (log(k))%k</2.

The first part of Theorem 4 is easily derived from Theorem 1. For the second
part of Theorem 4, we first note that for k£ < 396 the result follows from the bound
~v(k,q) < §—|—1 (for p = 2 see [12, Theorem 3], for p # 2 see [10, Theorem 1]). Thus
we may assume k > 396. Corollary 7 lets us also assume k > ,/g. In particular,
k > 27/2. By Theorem 1, we have, for n > 18,

v(k,q) 1/n—1/2 n(l_1y 8v/2n
For 3 <n <17, we have
v(k,q) 1/n—1/2 8n
=L <sn(k+1) < oo < 10.
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