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Abstract
Let p be a prime, n be an integer, k | pn − 1, and γ(k, pn) be the minimal value of
s such that every number in Fpn is a sum of s kth powers. A known upper bound
is improved to γ(k, pn) " nk1/n and generalizations of Heilbronn’s conjectures are
proven for an arbitrary finite field.

1. Introduction

Let p be a prime, n be a positive integer, q = pn, and Fq be the field of q elements.
The smallest s (should it exist) such that

xk
1 + xk

2 + · · · + xk
s = α (1)

has a solution for all α ∈ Fq is called Waring’s number, denoted γ(k, q). We will
assume throughout that Waring’s number exits. It is easy to show that γ(k, q) =
γ(gcd(k, q− 1), q); thus, we will assume that k | q− 1. Similarly we define δ(k, q) to
be the smallest s (should it exist) such that every element of Fq can be represented
as sums or differences of s kth powers. Note that δ(k, q) exists if and only if γ(k, q)
exists.

Let Ak := {xk : x ∈ Fq}, A′
k := Ak ∩ Fp. Note that A∗

k := Ak \ {0} and
(A′

k)∗ := (A′
k) \ {0} are multiplicative subgroups of F∗q . For any subset A in an

additive group and s ∈ N, we set sA := {a1 + a2 + · · · + as : ai ∈ A, 1 ≤ i ≤ s}.
Tornheim shows [11, Lemma 1] that the collection of all possible sums of kth

powers in Fq forms a subfield of Fq. Bhaskaran shows [1, Theorem G] that this
subfield is proper if and only if there exists d | n, d &= n, such that pn−1

pd−1 | k. Hence,
to ensure the existence of γ(k, q), we must have pn−1

pd−1 ! k for all d | n, d &= n.
Winterhof has shown in [13] that, provided γ(k, q) exists,

γ(k, q) ≤ 6.2n(2k)1/n ln(k). (2)

Winterhof and van de Woestijne prove in [14] that for p and r primes with p

a primitive root (mod r) we have γ
(

pr−1−1
r , pr−1

)
= (r−1)(p−1)

2 . Thus, with k =



INTEGERS: 9 (2009) 436

pr−1−1
r and n = r − 1 one has the bounds:

n

2
(k1/n − 1) ≤ γ(k, pn) ≤ n(k + 1)1/n. (3)

In light of inequality (3), we see that nk1/n is essentially the best possible order
of magnitude for Waring’s number without further restrictions. In this paper, by
using some results of [5], we show the ln k factor in Winterhof’s bound (2) can be
dropped.

Theorem 1 If γ(k, q) exists, then

γ(k, q) ≤ 8n
⌈

(k + 1)1/n − 1
|A′

k|− 1

⌉
.

Furthermore, if |A′
k| ≥ 3, then

γ(k, q) ≤ 4n
⌈

(k + 1)1/n − 1
|A′

k|− 1
+ 2

⌉
.

Under more stringent conditions on the number of kth powers falling in the base
field we can improve the exponent 1/n at the cost of increasing the constant.

Theorem 2 If γ(k, q) exists, then

γ(k, q) " n(k + 1)
log(4)

n log |A′
k
| log log(k).

Furthermore, if

|A′
k|

⌈
log( 8

3 (k+1)1/n)

log |A′
k
| +8/7

⌉

≤ p− 1
2

,

then
γ(k, p) " n(k + 1)

log 4
n log |A′

k
| .

In the case when q is prime, Heilbronn conjectured in [7] (and Konyagin proved
in [8]) that for any ε > 0 we have γ(k, p) "ε kε for |Ak| > c(ε). It is interesting to
note that in this case Ak = A′

k. By placing the size condition on A′
k instead of Ak,

we extend Heilbronn’s conjecture to a general finite field.

Theorem 3 For any ε > 0, if |A′
k| ≥ 4 2

εn , then γ(k, q) "ε kε.

Heilbronn further conjectured that γ(k, p) " k1/2 for p−1
k > 2. This was estab-

lished in [2, Theorem 1] and [3] gives an explicit constant: γ(k, p) ≤ 83k1/2. For
n ≥ 2 we obtain here:

Theorem 4 • If n = 2 and γ(k, p2) exists, then γ(k, p2) ≤ 16
√

k + 1.

• If n ≥ 3 and γ(k, q) exists, then γ(k, q) ≤ 10
√

k + 1.
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2. Preliminaries

Definition 5 A subset A ⊂ Fq is said to be symmetric if A = −A, where −A =
{−a : a ∈ A}, and antisymmetric if A ∩ (−A) = ∅.

Note that A∗
k := Ak\{0} is either symmetric or antisymmetric depending on whether

−1 ∈ Ak or not.
The next lemma is a result of Glibichuk [5, Theorems 7,8 and 9].

Lemma 6 Let A ⊂ Fq and B ⊂ Fq with |A||B| > q. Then 16AB = Fq. Moreover,
if B is symmetric or antisymmetric, then 8AB = Fq.

Glibichuk [4, Corollary 4] noted that if A is a subgroup of F∗q with |A| >
√

q,
then 8A = Fq. This is an immediate consequence of Lemma 6 with A = B, because
multiplicative subgroups are either symmetric or antisymmetric.

Corollary 7 If γ(k, q) exists and k <
√

q then γ(k, q) ≤ 8.

Proof. The statement is trivial for q ≤ 5, and so we may assume that q ≥ 6. We
apply Lemma 6 with A = Ak, B = A∗

k. If k ≤ √
q, then |Ak||A∗

k| > q provided that(
q−1√

q + 1
)(

q−1√
q

)
> q, that is, q3/2 > 2q +√

q − 1. The latter holds for q ≥ 6. !

Corollary 8 If γ(k, q) exists and |sAk| ≥ k + 1 for some s ∈ N, then γ(k, q) ≤ 8s.

Proof. We use Lemma 6, with A = sAk and B = A∗
k. Note that (sAk)A∗

k = sAk

and |A∗
k||sAk| ≥ q−1

k (k + 1) = q − 1 + q−1
k > q. !

The next three statements are useful for estimating the growth of additive sets
in Fp. The first is a reformulation of the classical result due to Cauchy and Daven-
port. The second is a sharpening of Cauchy–Davenport for multiplication groups
from Nathanson’s book [9], and the third is a recent lemma due to Glibichuk and
Konyagin in [6].

Lemma 9 (Cauchy–Davenport) For any A ⊂ Fp we have

|lA| ≥ min(l(|A|− 1) + 1, p).

Lemma 10 ([9, Theorem 2.8]) For any A := {xk : x ∈ Fp} ⊂ Fp with 1 <
gcd(k, p− 1) < p−1

2 ,

|lA| ≥ min((2l − 1)(|A|− 1) + 1, p).

Lemma 11 ([6, Lemmas 5.2 and 5.3]) Let Nl = 5
244l− 1

3 . If A ⊂ Fp, then |NlAl−
NlAl| ≥ 3

8 min(|A|l, (p − 1)/2). Furthermore, if 2 ≤ l ≤ 1 + log((p−1)/2)
log |A| , then

|NlAl| ≥ 3
8 |A|l−8/7.
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Lemma 12 is a well-known corollary of Rusza’s triangle inequality [9, Lemma 7.4]
(|S + T | ≥ |S|1/2|T − T |1/2), while Lemma 13 is a consequence of the pigeonhole
principle.

Lemma 12 [3, Equation 2.2] For any subset S of an abelian group and any positive
integer j, |jS| ≥ |S − S|1−

1
2j . The inequality is strict for |S| > 1.

Lemma 13 If A is a subset of an abelian group G such that |A| > |G|/2, then
A + A = G.

The next lemma generalizes [3, Theorem 4.1c] from Fp to Fq.

Lemma 14 We have γ(k, q) ≤ 2+log log(q),δ(k, q).

Proof. Let j ≥ log log(q) be an integer. By Lemma 12 with S = δ(k, q)Ak, we have
|jδ(k, q)Ak| > |δ(k, q)Ak − δ(k, q)Ak|1−

1
2j = q1− 1

2j ≥ q/2. Hence by Lemma 13 we
have 2jδ(k, q)A = Fq. !

3. Proofs of Theorems 1 and 2

Let {b1, b2, ..., bn} be a basis of Fq over Fp consisting of kth powers in Fq. Then
the set Bl := {a1b1 + · · · + anbn : aj ∈ lA′

k} is a subset of (nl)(Ak) with |Bl| ≥
|l(A′

k)|n.
To prove Theorem 1, we first take l ≥ (k+1)1/n−1

|A′
k|−1 , giving (by Cauchy-Davenport)

that |lA′
k| ≥ min

(
(k + 1)1/n, p

)
. In either case |(nl)Ak| ≥ k + 1 and Corollary

8 yields the first result of Theorem 1. Now Taking l ≥ (k+1)1/n−1
2(|A′

k|−1) + 1
2 gives (by

Lemma 10) that |lA′
k| ≥ min

(
(k + 1)1/n, p

)
. Again in either case |(nl)Ak| ≥ k + 1

and Corollary 8 yields the second result of Theorem 1.
To prove Theorem 2, we first note that Corollary 7 lets us restrict our attention

to k >
√

q. Now set l =
⌈

log( 8
3 (k+1)1/n)

log(|A′
k|) + 8

7

⌉
and let Nl be as in Lemma 11.

Case 1: If |A′
k|l ≥

p−1
2 then we use the first part of Lemma 11 with the result that

|NlA′
k−NlA′

k| ≥ 3
16 (p−1). By Lemma 9, |48(NlA′

k−NlA′
k)| ≥ min(9p−56, p) = p

for p ≥ 7. If p < 7 we use the fact that |A′
k| ≥ 2 ≥ p−1

2 and p ≥ |48(NlA′
k−NlA′

k)| ≥
|4A′

k| = p to establish |48(NlA′
k − NlA′

k)| = p. We now have an upper bound on
δ(k, q) and hence on γ(k, q):

γ(k, q) " log log(q)δ(k, q) " log log(q)nNl " n(k + 1)
log 4

n log |A′
k
| log log(k).
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Case 2: If |A′
k|l ≤

p−1
2 then we use the second part of Lemma 11 with the result

that |NlA′
k| ≥ (k + 1)1/n. Hence

γ(k, q) ≤ 8nNl = 8n

⌈
5
32 15

7 4
log 8

3
log |A′

k
| (k + 1)

log 4
n log |A′

k
| − 1/3

⌉
" n(k + 1)

log 4
n log |A′

k
|

" n(k + 1)
log 4

n log |A′
k
| log log(k).

Alone this case gives the second part of the theorem. Combined with Case 1, we
have the first part of the theorem.

4. Proofs of Theorems 3 and 4

Corollary 7 permits us to restrict our attention to k >
√

q. To prove Theorem 3 we
make the further assumption: |A′

k| > 42/nε. Then, n " log(k). Using Theorem 2,
we see that

γ(k, q) " n(k + 1)
log 4

n log |A′
k
| log log(k) " (log(k))2(k)

log 4
n log |A′

k
| " (log(k))2kε/2.

The first part of Theorem 4 is easily derived from Theorem 1. For the second
part of Theorem 4, we first note that for k ≤ 396 the result follows from the bound
γ(k, q) ≤ k

2 +1 (for p = 2 see [12, Theorem 3], for p &= 2 see [10, Theorem 1]). Thus
we may assume k ≥ 396. Corollary 7 lets us also assume k >

√
q. In particular,

k > 2n/2. By Theorem 1, we have, for n ≥ 18,

γ(k, q)√
k + 1

≤ 8n(k + 1)1/n−1/2 ≤ 8n2
n
2 ( 1

n−
1
2 ) =

8
√

2n
2n/4

≤ 10.

For 3 ≤ n ≤ 17, we have

γ(k, q)√
k + 1

≤ 8n(k + 1)1/n−1/2 ≤ 8n
3961/2−1/n

≤ 10.
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