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Abstract
We give another short and simple proof of
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1. The Main Result
For positive integers j, consider
1 2n —1 1
S 1) = B —— _
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This quantity arose in [4] and was subsequently evaluated in [3]. Further proofs
of the final formula
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were given in [2, 1]. Here, we give another short and simple proof.
For our analysis, it is better to consider
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so that
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It will be advantageous to treat the sum
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First we will give a representation of the sum » ;" ! )m, with m € Z,
2

as a curve integral in the complex plane.

Lemma 1 We have
2n—1
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where the curve I' is the upper half of the unit circle in the complex plane starting
from —1 and ending at 1, i.e., T' = {cos(m —t) + isin(m —¢) : t € [0, 7]}.

Proof. We have
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Thus we get
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and further
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Next we consider, for j € N and v € I, the series

Qj(u) := Z m(u%*l _ u72j71) (1 ;—uu )271 1.

Lemma 2 The series ij(ap) = Q; (") converges uniformly for ¢ € [0, 7], i.e.,

~ o 1 1+ cosp
Q;j(p) = ie™"sin(2jp) log T cosg’ (2)

Proof. Substituting u = €*?, with ¢ € [0, 7], we can write

~ i P, 1 e¥iP 720 ,el¥ 4 TP\ 2n-1
Qj(p) = Q;(e"?) =ie szn_l 2 ( 2 )
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sm (25¢)(cos )21,

= je ¥ E

n>1

Since we have —_—
2" 1 1+2
= -log——, f <1, 3
;271—1 plog T, for |2 (3)

we obtain the pointwise convergence of the series @j (p), for ¢ € (0,7), to the
function given in (2).

Obviously we also have @j (0) = @j (m) = 0, which shows convergence of @j(tp),
for all ¢ € [0,7]. Since (3) converges uniformly for all z, with |z| < ¢ < 1,
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we obtain immediately that @j (p) converges uniformly for all ¢ € [0, 7 — 0], for
arbitrary 0 < ¢ < 5. But since for all j € N

T 1+cosyp

| 2jp)log ———— =0,
w:rrgsm( i) log 1—cosyp

which can easily be shown, we obtain that for all € > 0 there exists a § > 0, such
that
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for all 0 < ¢ < g and for all N € N. This, together with the obvious relation
Qj(m — ¢) = —Qj(p), shows that Q;(¢) converges even uniformly for all ¢ €
[Ovﬂ]' O

After back-substitution, we obtain that the series Q;(u) converges uniformly for
all w € T to the function
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Thus in equation (1) we can interchange summation and integration and obtain the
integral representation
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Remark Using the substitution u = €*¥ one obtains the following representation
of the sum Tj as a real integral:

1 /™ 14 cosp
T; = 5/0 sin(2jp) log ——

1—cosp
but it seems more involved to evaluate this integral.

We use now that, for u € I":
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and the correct determination of the (multi-valued) logarithm function is obtained
when considering the real analogue of this equation:

1 1+ cosp cos £
=1 =1 2 f € (0,m).
2Og1—cosg0 % sne ¥ (0,m)

2
Then equation (4) gives
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since obviously the first integral vanishes.
In order to proceed we consider, for j € N and u € T, the series
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Lemma 3 There is uniform convergence of the series R;(u), for u € T', to the
function

fi(u) = (u2j_1 — u_Qj_l)%log<ii—Z). (6)

Proof. 1t is well-known that equation (3) even holds, with the exception of z = 1
and z = —1, for all complex z with |z| = 1, which proves pointwise convergence of
R;(u) to fj(u) for u e T'\ {—1,1}.

Obviously we also have R;(—1) = R;(1) = 0, which shows convergence of R;(u),
for all v € I'. Furthermore, since

- j w2 4j Y 2m—
Ri(w) == > 2(m+J D D ey Ty e A
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as can be shown easily, we obtain by simple majorization arguments that R;(u)
converges even uniformly for all u € T' to the function f;(u). O

Thus in equation (5) we can replace f;(u) by the series R;(u) and interchange
summation and integration and get
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which can be evaluated easily:
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