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Abstract
It is well-known that the Bell numbers { B(n)}52, have exponential generating func-
tion > B(n)% = exp(e® — 1), which satisfies the differential equation - g(z) =
e®g(z). In this paper, we investigate certain sequences {G(n)}>2, whose exponen-

tial generating functions satisfy a modified form of the above differential equation,

namely, the functional differential equation % g(z) = e*®g(ax). For the main result

of this paper, we show that when a = —1 and b € R, the sequence {G(n)}>2, obeys
the simple second-order linear recurrence G(n + 2) = bG(n + 1) — G(n). The proof
is based on a well-known binomial series inversion formula.

1. Introduction

The Bell numbers may be defined by the linear binomial recurrence
B(n+1) = n)B , 1
=3 (1) 5 )
with initial condition B(0) = 1. These numbers 1,1,2, 5,15, 52,203, 877, 4140,
21147, ... have been extensively studied (see [1]). It is Sequence No. A000110 in
Neil J. A. Sloane’s Online Encyclopedia of Integer Sequences (OEIS). The numbers

may also be defined by the exponential generating function

> B(n)% = exp(e® — 1). (2)
n=0

The exponential generating function satisfies the differential equation

d x
@) = e f (@) 3)

Similarly, the Rao Uppuluri-Carpenter numbers obey the following recurrence,

D+ 1) = -0 (1) Do) 0

k=0
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with the initial condition that D(0) = 1. The numbers generated by (4) are 1,1,0,
-1,1,2,-9,9,50,—267,413, 2180, —17731,50533,110176, ..., and are listed as Se-
quence No. A000587 in the OEIS. They satisfy the exponential generating function

oo n

Z D(n)% =exp(l—e ™). (5)

n=0

Notice that the exponential generating function satisfies the differential equation

d —T
— fl@) = e (@) (6)

Motivated by the similarities between (3) and (6), we observe that they are special

cases of the general functional differential equation

2 gla) = P glaz). (7)

Setting
o0 l‘/n‘
gr) = > 6% (®)
n=0
we find that G(n) satisfies the recurrence relation

Gln+1) = - (" a" "G (k). (9)
> (i)

This allows us to think of the previously mentioned sequences as all belonging to a
single general class of sequences. This is like the situation studied in [4]. We call
any sequence that satisfies Equation (9) a wvariant sequence. In particular, when
a =1 and b =1 in Equation (9), we obtained the Bell numbers B(n). When a =1
and b = —1, we obtained the Uppuluri-Carpenter numbers D(n).

As it stands, any variant sequence satisfies the n*® order difference equation pro-
vided by Equation (9). The main result of this paper states that certain variant
sequences obey a lower order recurrence. In particular, if a = —1 and b is any
nonzero real number, the variant sequence obeys a second-order linear recurrence.
This main result is Theorem 2.1. We then use the remaining two sections to dis-
cuss the properties of two specific variant sequences, namely the sequence given by
a=—1and b= 1, and the sequence given by a = —1 and b = —1.

2. Variant Sequences and Second-Order Difference Equations

We now assume that a = —1 and b is any nonzero real number. The goal is to prove
that the associated variant sequence obeys a second-order recurrence. In order to

prove this claim, we first need the following lemma.
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Lemma 1 Letn be a nonnegative integer. Let b be any nonzero real number. Define

{G(n)}olo by

Gln+1) = (-1)* (Z) bR G (k). (10)
k=0
Then,
_ S k(T n—k
G(n) =Y (-1) <k)b G(k+1). (11)
k=0

Proof. Lemma, 2.1 is an immediate consequence of the following well-known binomial

inversion pair. Given any two sequences {f(n)}52, and {g(n)}5>,

ot = S0 ) 100 (12)

k=0

if and only if

) =31+ ()t (13)
k=0
In our particular situation, we let f(k) = b=*G(k) and g(n) = b="G(n). O

With Lemma 2.1 in place, we now prove that a variant sequence with a = —1

and b nonzero obeys a second-order linear recurrence.

Theorem 2 Let n be a nonnegative integer. Let b be any nonzero real number.
Define {G(n)};2o by

G(n+1) = n (=% )errG(k). (14)
()
Then G(n) satisfies
G(n+2)=bG(n+1)—G(n). (15)

Proof. Using Lemma 2.1, we find that

bG(n +1) — G(n)

= bi(—l)k (’;) bvEG(E) — é(—nk (Z) VRG(E 4 1)
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n+1 n+1
_ k(T nt1—k k[T n+l—k
=Y (-1 (k)b G(k)+ > (-1) (k B 1>b G(k)
k=0 k=0
n+1 n n
— _1 k n+1l—k
0 (1) + (1) o
n+1
=S (") )erem)
k=0
=G(n+2).
O
Remark 3 If we define the general functional differential equation by
T () = gfaz) (16)
dxrg - g 9
we find the general recurrence is
Gn+r)= (Z) a"b" R G(k), (17)
k=0

which is a slightly more general relation using the parameter r. This provides a
unification of Bell numbers, Fibonacci numbers, Uppuluri-Carpenter numbers, and

the more general class of variant sequences.

3. The Variant Sequence witha =-1,b =1

Define {F(n)}52, to be the variant sequence associated with ¢ = —1 and b = 1.

Then, Equation (9) becomes
Pt )= 310 () o (18)
k=0

with the assumption that F'(0) = 1. The sequence so generated is 1,1,0,—1,—1,0, 1,
1,0,—1,-1,0,1,1,... and is listed in the OEIS as Sequence No. A010892.
Theorem 2.1 states that {F(n)}S2, obeys the second-order linear recurrence

provided by Corollary 3.1.
Corollary 4 (Recurrence Relation for F(n)) For n > 0,
F(n+1)— F(n)=F(n+2). (19)

Corollary 3.1 shows that {F'(n)}22, is actually a Fibonacci type sequence where

each term is the difference of the two immediately previous terms.
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Theorem 5 (Definition of F(n) by its recurrence relation) The recurrence relation
F(n+2) =F(n+1)— F(n), together with the initial values F'(0) = 1, F(1) = 1,

determines the sequence uniquely.

It is remarkable that the sequence {F(n)}22, originally defined by a high-order
recurrence, also satisfies a second-order recurrence. We wish next to show the
converse, in the sense that Equation (18) can be derived using (19). In particular,

by iterating Recurrence (19), and using induction, we can prove the following result.

Lemma 6 For any integer n > 0,

Fln+r)=3Y (1) ( ; ) F(n—k). (20)

We can also extend Recurrence (19) backwards to prove

Lemma 7 (Extension of meaning of F(n) to negative n) Let n be any integer. Then
F(n) as defined by (19) satisfies

F(n)=F(1—n). (21)

Combining Lemmas 3.1 and 3.2, we are able to obtain the desired converse since,

by letting n = 1 in Equation (20), we obtain

Fir+1)=> (-1)* ( ]’; > F(1-k). (22)

k=0

By Lemma 3.2, the right-hand side of (22) becomes

Fir+1)=> (-1)* ( A ) F(k), (23)

k=0

which establishes (18).
Recurrence (19) may be solved easily using the roots of the characteristic equation
22 —x+1=0 to yield

Theorem 8 (First Formula for F'(n)) Let n be any integer. Then

Flm) = 3—iv3 <1+z\/§>"+ 3+iv3 (1—1'\/3)”.

6 2 6 2 (24)

However, we may avoid the use of complex numbers. It is easy to show a floor

function formula, that satisfies (19), with the same initial values.
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Theorem 9 (Second Formula for F(n)) Let n be a nonnegative integer. Then

EENE IR o
Fn) = & 2<U . (25)

Equation (25) is a very useful formula. Replacing n by n + 6, we have an al-
most immediate proof that F(n + 6) = F(n) so that the pattern 1,1,0,—1,—1,0
repeats forever. It is clear also that (—1)"F(n) has period 3, being the sequence
1,-1,0,1,—1,0,....The periodicity is also apparent from recurrence (19). It is not

difficult to show a binomial summation that also satisfies Recurrence (19).

Theorem 10 (Third Formula for F'(n)) Let n be a nonnegative integer. Then

F(n) = (nk(”;k). (26)

Remark 11 The equality of Equations (25) and (26) is tabulated as binomial iden-
tity (1.75) in Gould’s book [2].

Finally, we provide an alternative formula, involving linear combinations of the floor

function that satisfies Recurrence (19).
Theorem 12 (Fourth Formula for F'(n)) Let n be any integer. Then
4
F(n) = n+6| |n+ 4 n+7 |n+9 '
6 6 6 6
Remark 13 In the OEIS, where the sequence 1,1,0,—1,—1,0,1,1,... is tabu-

lated, Equations (25) and (26) are mentioned, but our initial definition (18) of the

sequence F'(n) is not mentioned. However, it is mentioned that F(n) is the same as

the Chebychev polynomial U(n, %) Also the sequence is listed under the heading
“Inverse of 6th cyclotomic polynomial.”

3.1. Generating Functions Associated with F(n)

From Equation (19), it is easy to show that the ordinary generating function for
F(n) is

DA —— (27)
n=0

T 1zt

We should also recall that Equation (7) implies that f(z), the exponential gener-

ating function for F'(n), satisfies

d X
T f(@) = e (), (28)
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By differentiating Equation (28), we obtain
(@) =e"f(-z) —e"f'(~2).
Substituting (28) into the right-hand side of the previous line, we obtain

f(@) = f'(x) — e f'(—x). (29)

Clearly, Equation (28) implies f'(—xz) = e~ f(z). Thus, the previous equation may

be rewritten as

f(@) = f'(z) = f(2). (30)

Note that Equation (30) is a linear homogeneous second-order differential equation

which has the following general solution:

flz) = crez? 008(731') +026%$sin(§m). (31)

4. The Variant Sequence with a = -1, b = -1

Define {H(n)}5, to be the variant sequence associated with ¢ = —1 and b = —1.

Then, Equation (9) becomes
Hn+1)=(-1)"Y_ ( L ) H(k), (32)
k=0

with the initial condition H(0) = 1. The sequence generated by (32), namely, 1, 1,
-2,1,1,-2, 1,1, -2, . . . appears in the OEIS as the simple order three periodic
sequence No. A061347.

Once again, Theorem 2.1 implies that {H(n)}, obeys the second-order linear

recurrence given as follows.

Corollary 14 (Recurrence relation for H(n)) Forn >0,
H(n+2) = —Hn+1)— Hn). (33)

Once again, {H(n)}52, like {F(n)}22,, is a sequence that, although originally
defined by a higher order recurrence, satisfies a simple second-order recurrence.
As can be expected, a converse to Corollary 4.1 exists. In other words, Equation
(33) implies (32). The proof of this converse parallels the proof of the converse to
Corollary 3.1, and hence will be omitted.

Recurrence (32) may be solved easily using the roots of the characteristic equation
2?2+ 2 +1 =0 to yield
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Theorem 15 (First Formula for H(n)) Let n be any integer. Then

_-1+iv3 <—1+i\/§>n+3—i\/§ (—1—z\/§>".

H
(n) 2 2 2 2

(34)

By using Equation (34), it is easy to show that H(n) = H(n + 3).
However, we may avoid the use of complex numbers and instead use the floor

function to define H(n). The following two theorems show how this can be done.

Theorem 16 (Second Formula for H(n)) Let n be any nonnegative integer. Define
{H(n)}oZo by

X (5] 43—l

Then, for 0 <i <2, H(6n+ i) = H(3n +1).

Theorem 17 (Third Formula for H(n)) Let n be any integer. Then

H(n)=3£J —3{”31 1. (35)

4.1. Generating Functions Associated with H(n)

From Equation (33), it is easy to show that the ordinary generating function for
H(n) is

o0
142z
H [ — 36
S = (30

Next, we recall that Equation (7) implies h(z), the exponential generating function
for H(n), satisfies

d —x
%h(x) =e "h(—z). (37)

Following, with appropriate changes, the calculations given in Section 3.1, it is easy
to show that

h(z) =cre=® cos(Tgm) t e T sin(73x). (38)
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