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Abstract
We introduce the idea of a conjugate Durfee square and use it to answer a

combinatorial question regarding a finite form of the Heine transformation posed
by G. E. Andrews in a recent paper.

1. Introduction

In a recent publication [3], Andrews gave the following finite version of the Heine
transformation:

Theorem 1. (Andrews) For any n, we have
n∑

k=0

(q−n)k(α)k(β)k

(q)k(γ)k(q1−n/τ)k
qk =

(β)n(ατ)n

(γ)n(τ)n

n∑

k=0

(q−n)k(γ/β)k(τ)k

(q)k(ατ)k(q1−n/β)k
qk. (1)

(The q-shifted factorial (a)n is defined in Equation (3) in Section 2.) In [3]
Andrews asked for a combinatorial proof of Theorem 1 along the lines of his proof
of Heine’s 2φ1 transformation formula when n tends to infinity [1]. This paper
provides such a proof.

2. Conjugate Durfee Squares and Preliminary Results

We define a partition of a positive integer n as a sequence of nonnegative integers
λ = (λ1, . . . ,λk) such that λ1 + · · · + λk = n with λi ≥ λi+1. We refer to each λi

as a part of our partition and denote by |λ| the sum of its parts. We denote the
number of non-zero parts of λ as '(λ). For example, there are 7 partitions of 5,
namely

(5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1).

To each partition we can associate a Ferrers diagram. Each part of the partition is
given as a row of boxes, each row aligned and put in descending order. Figure 1
represents the Ferrers diagram of (4, 2, 1).
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Figure 1: The Ferrers diagram of (4, 2, 1).

For a partition λ into at most m parts less than or equal to n, we define the
(m,n)-conjugate Durfee square as the largest square that can fit with the Ferrers
diagram of λ inside of a m × n rectangle without the two overlapping. Figure 2
illustrates the (m,n)-conjugate Durfee square. It is simple to see that for a given
partition, the (m,n)-conjugate Durfee square is unique.

n

m
d

d

λ

Figure 2: The (m,n)-conjugate Durfee square with side d.

The q-binomial coefficient is defined by

[
n
k

]
:=

[
n
k

]

q

:=






(q)n

(q)k(q)n−k
, if 0 ≤ k ≤ n,

0, otherwise,

where

(a)0 : = (a; q)0 = 1, (2)
(a)n : = (a; q)n := (1− a)(1− aq) · · · (1− aqn−1), n ≥ 1. (3)

A partition theoretic interpretation of the q-binomial coefficient is as follows:
[
M + N

M

]
=

∑

λ

q|λ|,

where the sum is over all partitions λ whose Ferrers diagram can fit inside an M×N
rectangle.
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For more information on partitions, Ferrers diagrams or the q-binomial coeffi-
cient, see [2].

We prove the following lemma combinatorially, which is well known in the liter-
ature.

Lemma 2. We have
[
n
k

] [
n− k

j

]
=

[
n
j

] [
n− j

k

]

Proof. Note that the q-binomial coefficient
[
n
k

]
counts many interesting combinato-

rial objects including the partitions with Ferrers diagram fitting inside an (n−k)×k
rectangle. Here, we use inversions of permutations, namely,

[
n
k

]
=

∑

w∈Per(0k,1n−k)

qinv(w),

where Per(0k, 1n−k) is the set of permutations of k 0’s and (n− k) 1’s, and inv(w)
is the number of inversions in w. Adopting this interpretation, we see that

[
n
k

] [
n− k

j

]
=

∑

w∈Per(0k,1n−k−j ,2j)

qinv(w),

where
[
n
k

]
accounts for the inversions between k 0’s and (n − k) 1 or 2’s, and

[
n− k

j

]
accounts for the inversions between (n− k − j) 1’s and j 2’s. By counting

the inversions between 2’s and 0 or 1’s first, and then the inversions between 0’s
and 1’s, we obtain

[
n
j

] [
n− j

k

]
,

which completes the proof.

It should be noted that one can combinatorially interchange the partition inter-
pretation and the permutation interpretation of the q-binomial coefficient. Suppose
we are given the partition λ = (λ1,λ2, . . .) where λ1 ≤ n− k and l(λ) ≤ k. We can
obtain the permutation w ∈ Per(0k, 1n−k) by first considering

(0 · · · 0︸ ︷︷ ︸
k

1 · · · 1︸ ︷︷ ︸
n−k

). (4)

We move the rightmost 0 to the right past λ1 1’s, the rightmost unmoved 0 to the
right past λ2 1’s, and so on. It should be clear that |λ| = inv(w). We can consider an
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example with n = 8, k = 3 and λ = (4, 2, 1). The corresponding permutation is
(10101101). More can be found on this correspondence in [2].

We review a bijection that was first introduced by the second author in [5] to
establish a combinatorial proof for Ramanujan’s 1ψ1 summation formula. Recall
the q-binomial theorem [4]:

∞∑

n=0

(−a; q)n

(q; q)n
(zq)n =

(−azq; q)∞
(zq; q)∞

. (5)

Yee’s bijection. For a positive integer n, let π be a partition into nonnegative
distinct parts less than n and σ a partition into exactly n parts. We define µ by

µi = σn−πi + πi, for all 1 ≤ i ≤ '(π), (6)

and let ν be the partition consisting of the remaining n− '(π) parts of σ. Then, it
can be easily seen that µ has distinct parts. It also follows from the construction
that µ and ν are uniquely determined by π and σ. Thus, this map is reversible. The
left-hand side of (5) generates the pairs of (π,σ) and the right-hand side generates
the pairs of (µ, ν). The map is a bijection between the two sets of such pairs of
partitions.

3. The Finite Heine Transformation

In this section, we will demonstrate a combinatorial proof of Theorem 1 along the
lines of Andrews’s proof of Heine’s 2φ1 transformation formula. We start by proving
a special case of Theorem 1. By replacing α, τ, γ by −α, τq, γβ, respectively, and
letting β approach 0 in (1), we obtain the following lemma.

Lemma 3. We have
n∑

k=0

[
n
k

]
(−α)k

(τqn−k+1)k
(τq)k =

(−ατq)n

(τq)n
. (7)

Proof. Let µ be a partition into distinct parts less than or equal to n and ν be
a partition into parts less than or equal to n. Then the right-hand side of (7)
generates such pairs of partitions, namely

(−ατq)n

(τq)n
=

∑

µ,ν

τ $(µ)+$(ν)α$(µ)q|µ|+|ν|.

Let m = '(µ)+'(ν). We apply the reverse map of Yee’s bijection to µ and ν and de-
note the resulting partitions by π and σ, where π is a partition into '(µ) nonnegative
distinct parts and σ is a partition into exactly m parts less than or equal to n. We
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n + 1
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k

k

σ

Figure 3: The (m,n + 1)-conjugate Durfee square of σ with side k.

find the (m,n + 1)-conjugate Durfee square of σ and denote its side as k. Figure 3
illustrates the conjugate Durfee square of σ. Note that the k parts of σ below the
dashed line are less than or equal to n − k + 1; the other parts above the dashed
line are larger than or equal to n − k + 1, and less than or equal to n. Thus, the
generating function of σ is

∑

σ

τ $(σ)q|σ| =
[
n
k

]
(τq)k

(τqn−k+1)k
.

Furthermore, our process ensures that π has no part exceeding k− 1. Suppose that
π1 ≥ k. Then, by Yee’s bijection (6), we see that

µ1 = σm−πi + π1 ≥ σm−k + k ≥ n + 1− k + k = n + 1,

which is a contradiction to the fact that µ has parts less than or equal to n. Thus,
the generating function of π is (−α)k. Therefore, summing over all possible values
of π and σ, we obtain

∑

π,σ

τ $(σ)α$(π)q|π|+|σ| =
n∑

k=0

[
n
k

]
(−α)k

(τqn−k+1)k
(τq)k,

which completes the proof.

We now prove Theorem 1 combinatorially. We first make some change of vari-
ables. Allowing α, τ, γ → −α, τq,−γβ followed by β → βq in Theorem 1 yields the
equivalent identity,

n∑

k=0

[
n
k

]
(−α)k

(τqn−k+1)k
(τq)k (−γβqk+1)n−k

(βqk+1)n−k

(8)

=
n∑

k=0

[
n
k

]
(−γ)k

(βqn−k+1)k
(βq)k (−ατqk+1)n−k

(τqk+1)n−k
.
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Theorem 4. Equation (8) is valid.

Proof. We start by interpreting the left-hand side of (8). We will show that the
left- and right-hand side of (8) generate 7-tuples of partitions. We first note that
the term

(−γβqk+1)n−k

(βqk+1)n−k

on the left-hand side of (8) can be interpreted as a strict partition µ with all parts
exceeding k and no part exceeding n, and a partition ν with all parts exceeding k
and no part exceeding n. As we did in the proof of Lemma 3, we apply the reverse
map of Yee’s bijection to µ and ν to obtain a pair of partitions π and σ, where
π is a partition with nonnegative distinct parts and σ is a partition with all parts
exceeding k and no part exceeding n. Let j be the side of the ('(σ), n+1)-conjugate
Durfee square of σ. Then, all the parts of π are less than j. Thus, using Lemma 3,
we can see that

n∑

k=0

[
n
k

]
(−α)k

(τqn−k+1)k
(τq)k (−γβqk+1)n−k

(βqk+1)n−k

=
n∑

k=0

n−k∑

j=0

[
n
k

]
(−α)k

(τqn−k+1)k
(τq)k

[
n− k

j

]
(−γ)j

(βqn−j+1)j
(βqk+1)j .

The interpretation is the same for the right-hand side of (8), namely

n∑

j=0

[
n
j

]
(−γ)j

(βqn−j+1)j
(βq)j (−ατqj+1)n−j

(τqj+1)n−j

=
n∑

j=0

n−j∑

k=0

[
n
j

]
(−γ)j

(βqn−j+1)j
(βq)j

[
n− j

k

]
(−α)k

(τqn−k+1)k
(τqj+1)k.

We can now see that the left-hand side of (8) generates 7-tuples of partitions

(λ1,λ2,λ3,λ4,λ5,λ6,λ7),

where λ1,λ2,λ3,λ4,λ5,λ6 and λ7 are generated by
[
n
k

]
, (τq)k(βqk+1)j , (−α)k,

1/(τqn−k+1)k,
[
n− k

j

]
, (−γ)j , 1/(βqn−j+1)j , respectively; while the right-hand side

generates 7-tuples of partitions (µ1, µ2, µ3, µ4, µ5, µ6, µ7), where µ1, µ2, µ3, µ4, µ5, µ6

and µ7 are generated by
[
n
j

]
, (βq)j(τqj+1)k, (−γ)j , 1/(βqn−j+1)j ,

[
n− j

k

]
, (−α)k,

1/(τqn−k+1)k, respectively.
To show (8), given λ3,λ4,λ6 and λ7, we take µ3 = λ6, µ4 = λ7, µ6 = λ3 and µ7 =

λ4. To construct a bijection between (λ1,λ5) and (µ1, µ5) we apply Lemma 2, not-
ing that we can combinatorially interchange between partitions and permutations
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as seen in Section 2. Lastly, we must construct the bijection between λ2 and µ2.
We note that λ2 is a partition with k 1’s each marked with a τ and j k + 1’s each
marked with a β. We subtract k from each of the j parts of size k + 1 and add j
to each of the k parts of size 1. Thus, we have a partition with j 1’s each marked
with a β and k j + 1’s each marked with a τ . It is easy to see this is µ2.

4. Conclusion

We see as n → ∞ that our conjugate Durfee square gets pushed further to the
right, eliminating all of the parts which lie above it and reducing our proof down
to a proof similar to Andrews’. In terms of Ferrers diagrams, the integral part of
Andrews’ proof of the Heine transformation is removing a rectangle, flipping it on
its diagonal and reinserting it. We can see this in our proof when we show the
bijection from λ2 to µ2.

It should be noted that Theorem 1 does not directly follow from Sears 3φ2 trans-
formation [4, Appendix (III.11)] nor its iterate, but can be deduced from the ter-
minating 3φ2 transformation in [4, Appendix (III.13)] in the following way: The
left-hand side of the transformation [4, Appendix (III.13)] is clearly symmetric in
b, c and in d, e, i.e., (b, c, d, e) can be replaced by (c, b, e, d). Therefore, the right-
hand side of [4, Appendix (III.13)] must satisfy the same symmetry, and we obtain
an identity by equating it with its (b, c, d, e)→ (c, b, e, d) case. This turns out to be
(up to a substitution of parameters) exactly Theorem 1.
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