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Abstract
Let g(m, t) denote the minimum integer s such that for every 2-coloring of the
integers in the interval [1, s], there exist t subsets A1, A2, . . . , At, of size m satisfying:
(i) Ai for every i = 1, 2, . . . , t is monochromatic (not necessarily the same color)
(ii) max(Ai) ≤ min(Ai+1) for every i = 1, 2, . . . , t − 1, and (iii) either diam(Ai) ≤
diam(Ai+1) for every i = 1, 2, . . . , t − 1 or diam(Ai) ≥ diam(Ai+1) for every i =
1, 2, . . . , t− 1. We prove that 2(m− 1)(t + 1) + 1 ≤ g(m, t) ≤ [(t− 1)2 + 1](2m− 1)
for every integer m and t, where m ≥ 2 and t ≥ 3. Furthermore, we determine that
g(m, 3) = 8m− 5.

1. Introduction

This paper deals with Ramsey theory on the integers, see [8], where the classical
approach of looking at a system of equations has been modified to a system of
inequalities. Motivated by [4] and [1], the authors of [2] introduced the theme of
sets of non-decreasing diameter, in conjunction with generalizations in the sense of
the Erdős-Ginzbirg-Ziv theorem. Numerous papers have followed; see [5], [7], [6],
[11], [3], [9], [10].

For integers a and b, we use the closed interval notation [a, b] to denote the set
of integers x such that a ≤ x ≤ b. An r-coloring of [a, b] is a function ∆ : [a, b] →
{1, 2, . . . , r} and a subset X of [a, b] is called monochromatic if ∆(y) = ∆(w) for all
y,w ∈ X. For two sets of integers X and Y we use the notation X ≺ Y , if max(X)
< min(Y ). Furthermore, X and Y are said to be non-overlapping if either X ≺ Y
or Y ≺ X. Finally, the diameter of a set X is max(X) − min(X) and is denoted
by diam(X).

Let m, r, t be positive integers. We recall a definition from [2]. Let f(m, r, t) be
the minimum integer s such that for every r-coloring of [1, s], there are t pairwise
non-overlapping subsets of [1, s], say, A1, A2, . . . , At such that (i) |Ai| = m for
i = 1, 2, . . . , t, (ii) each Ai is monochromatic and

(iii) diam(A1) ≤ diam(A2) ≤ · · · ≤ diam(At).
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It was proved that f(m, 2, 2) = 5m − 3 for m ≥ 2 and f(m, 2, 3) = 8m −
5 +

⌈
2m−2

3

⌉
, for m ≥ 5, in [2] and [7], respectively. The proof in [7] is quite

intricate. The difficulty of the determination of f(m, r, t) suggests a relaxation of
condition (iii) above. We define g(m, r, t) similarly to f(m, r, t) where the condition
(iii) is modified as follows: Either diam(A1) ≤ diam(A2) ≤ · · · ≤ diam(At), or
diam(A1) ≥ diam(A2) ≥ · · · ≥ diam(At). As we assume throughout the paper that
r = 2, we will denote g(m, 2, t) by g(m, t). We prove that g(m, 3) = 8m − 5 and
provide upper and lower bounds for g(m, t) for all integers t greater than 3.

First, we show that the value of g(m, 2) is trivial.

Theorem 1. Let m ≥ 2 be an integer. Then g(m, 2) = 4m− 2.

Proof. The coloring of [1, 4m− 3] represented by the alternating string 1212 . . . 121
establishes that g(m, 2) ≥ 4m− 2 for m ≥ 2. Let ∆ be a 2-coloring of [1, 4m− 2].
Then there exist two monochromatic m-subsets of [1, 4m− 2], say A1 and A2, such
that A1 ⊂ [1, 2m− 1] and A2 ⊂ [2m, 4m− 2]. Now, either diam(A1) ≥ diam(A2) or
diam(A1) ≤ diam(A2), and in either case A1 and A2 have monotone diameters. !

2. Preliminaries

Lemma 2 Let m and x be positive integers satisfying m ≤ x + 1. If ∆ is a 2-
coloring of [1, x + m], then one of the following holds:

(i) there exists a monochromatic m-subset of [1, x + m], say A, satisfying the
inequality diam(A) ≥ x, or

(ii) there exists two monochromatic m-subsets of [1, x + m], say A1 and A2, sat-
isfying A1 ≺ A2 and diam(A1) = diam(A2) = m− 1.

Proof. If
∣∣∆−1(1)

∣∣ ≤ m− 1, then
∣∣∆−1(2)

∣∣ ≥ x, yielding an m-subset A of ∆−1(2)
which satisfies (i). Therefore we can assume that

∣∣∆−1(1)
∣∣ ≥ m and similarly we

can assume that
∣∣∆−1(2)

∣∣ ≥ m. Suppose, without loss of generality, that ∆(1) = 1
and let t be the largest integer satisfying ∆(t) = 1. If t > x, then there is a
monochromatic m-subset A of [1, t] which satisfies (i). Otherwise t ≤ x, hence
∆(v) = 2 for every v ∈ [x + 1, x + m]. Since ∆(x + m) = 2, by applying a
similar argument we obtain ∆(w) = 1 for every w ∈ [1,m]. Set A1 = [1,m] and
A2 = [x + 1, x + m]. We see that A1 and A2 are monochromatic m-subsets of
[1, x + m], and A1 ≺ A2 follows as long as m < x + 1, satisfying (ii). If m = x + 1
then the given interval is [1, 2m−1], and since we have assumed that

∣∣∆−1(i)
∣∣ ≥ m

for i = 1, 2, we get a contradiction and the proof is complete. !

Lemma 3 Let m ≥ 2 be an integer. If ∆ is a 2-coloring of [1, 4m− 3], then one of
the following holds:
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(i) There exist two monochromatic m-subsets of [1, 4m− 3], say A1 and A2, sat-
isfying A1 ⊂ [1, 2m− 1], A2 ⊂ [2m− 1, 4m− 3], and A1 ≺ A2, or

(ii)
∣∣∆−1(i) ∩ [1, 2m− 2]

∣∣ = m − 1 and
∣∣∆−1(i) ∩ [2m, 4m− 3]

∣∣ = m − 1 for i =
1, 2.

Proof. If (ii) does not hold, then, without loss of generality, we can assume that∣∣∆−1(1) ∩ [1, 2m− 2]
∣∣ ≥ m, and hence the interval [1, 2m−2] contains a monochro-

matic m-subset, say A1. Since the complement of [1, 2m − 2] in [1, 4m − 3] is
the interval [2m − 1, 4m − 3] having 2m − 1 integers, it follows that it contains a
monochromatic m-subset, say A2, and (i) follows. !

Lemma 4 Let m ≥ 2 be an integer. If ∆ is a 2-coloring of [1, 6m − 4] such
that [1,

⌊
5m−3

2

⌋
] contains a monochromatic m-subset, say B, satisfying 2m − 2 ≤

diam(B) ≤
⌊

5m−5
2

⌋
, then one of the following holds:

(i) there exists a monochromatic m-subset of [
⌊

5m−1
2

⌋
, 6m− 4], say A, satisfying

diam(A) ≥ diam(B), or

(ii) there exist two monochromatic m-subsets of [
⌊

5m−1
2

⌋
, 6m−4], say A1 and A2,

satisfying A1 ≺ A2 and diam(A1) = diam(A2) = m− 1.

Proof. Since the interval I = [
⌊

5m−1
2

⌋
, 6m− 4] is a translation of [1,

⌈
5m−5

2 + m
⌉
],

and since m ≤
⌈

5m−5
2

⌉
, we can apply Lemma 2.1 to I with x =

⌈
5m−5

2

⌉
to obtain

that either I contains a monochromatic m-subset, say A, satisfying diam(A) ≥⌈
5m−5

2

⌉
≥

⌊
5m−5

2

⌋
≥ diam(B) yielding (i) or it contains two monochromatic m-

subsets, say A1 and A2, satisfying A1 ≺ A2 and diam(A1) = diam(A2) = m − 1,
yielding (ii). !

3. Evaluation of g(m,3)

Theorem 5 Let m ≥ 2 be an integer. Then g(m, 3) = 8m− 5.

Proof. The equality g(2, 3) = 11 can be checked separately. The coloring of [1, 8m−
6] represented by the string 12m−11m−12m−112m−22m−11m−12m−11 establishes that
g(m, 3) ≥ 8m− 5 for m ≥ 2. Let ∆ be a 2-coloring of [1, 8m− 5]. In order to prove
that g(m, 3) ≤ 8m − 5 for m ≥ 3, we begin with a claim and proceed with a
case-analysis of two cases.

Claim. If there exists a monochromatic m-subset of [2m, 6m−4], say A, satisfying
diam(A) = 2m− 2, then the conclusion of Theorem 5 follows.

Proof of Claim. Let A be the subset of [2m, 6m − 4] stated in the claim. Since
diam(A) = 2m−2, either min(A) > 3m−2 or max(A) < 5m−2. First suppose that
min(A) > 3m−2. Then there exists a monochromatic m-subset of [6m−3, 8m−5],
say C, satisfying diam(C) ≤ 2m − 2. In addition, by applying Lemma 2 with
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x = 2m − 2 to the interval [1, 3m − 2] we obtain one of two cases. If conclusion
(i) of Lemma 2 holds, then there exists a monochromatic m-subset of [1, 3m − 2],
say B, satisfying diam(B) ≥ 2m − 2. The sets B, A, and C satisfy diam(B) ≥
diam(A) ≥ diam(C), hence satisfy the conclusion of Theorem 5. If conclusion (ii)
of Lemma 2 holds, then there exist two m-subsets of [1, 3m − 2], say B1 and B2,
satisfying B1 ≺ B2 and diam(B1) = diam(B2) = m − 1. The sets B1, B2, and A
satisfy diam(B1) ≤ diam(B2) ≤ diam(A), hence satisfy the conclusion of Theorem
5. Next, suppose that max(A) < 5m − 2. The proof proceeds in a similar fashion
to the previous case. Thus the proof of the claim is complete. )

There exist monochromatic m-subsets A1 ⊂ [1, 2m− 1] and A4 ⊂ [6m− 3, 8m− 5]
with diam(A1) ≤ 2m− 2 and diam(A4) ≤ 2m− 2. We consider [2m, 6m− 4] as a
translation of [1, 4m−3] and proceed by considering the two cases in the conclusion
of Lemma 3:

Case 1: Conclusion (i) of Lemma 3 holds.
Let the two resulting sets be A2 and A3, with A2 ⊂ [2m, 4m−2] and A3 ⊂ [4m−

2, 6m−4]. Next we consider the cases for which of the sets Ai, for i ∈ {1, 2, 3, 4} has
the largest diameter. The case maxi∈{1,2,3,4}diam(Ai) = diam(A1) is symmetric to
the case maxi∈{1,2,3,4}diam(Ai) = diam(A4), and the case maxi∈{1,2,3,4}diam(Ai) =
diam(A2) is symmetric to the case maxi∈{1,2,3,4}diam(Ai) = diam(A3). Hence we
will consider only two cases:

Subcase 1.1: maxi∈{1,2,3,4} diam(Ai) = diam(A1).
Either there exists an i ∈ {2, 3} such that diam(Ai) ≥ diam(Ai+1) yielding

diam(A1) ≥ diam(Ai) ≥ diam(Ai+1) or diam(A2) ≤ diam(A3) ≤ diam(A4). In
either case the proof is complete.

Subcase 1.2: maxi∈{1,2,3,4} diam(Ai) = diam(A2).
By Lemma 2, the interval [4m − 1, 7m − 3] contains either two monochromatic

m-subsets B1, B2 satisfying diam(B1) = diam(B2) = m− 1 and B1 ≺ B2, yielding
diam(A1) ≥ diam(B1) ≥ diam(B2), or the interval [4m − 1, 7m − 3] contains a
monochromatic m-subset B with diam(B) ≥ 2m−2. Recall that A2 ⊂ [2m, 4m−2]
hence diam(A2) ≤ 2m−2. Thus diam(A1) ≤ diam(A2) ≤ diam(B), completing the
proof of case 1.

Case 2: Conclusion (ii) of Lemma 3 holds.
By Lemma 3,

∣∣∆−1(i) ∩ [2m, 4m− 3]
∣∣ = m−1 and

∣∣∆−1(i) ∩ [4m− 1, 6m− 4]
∣∣ =

m− 1 for i = 1, 2. Assume, without loss of generality, that ∆(2m) = 1. If ∆(4m−
2) = 1, then

∣∣∆−1(1) ∩ [2m, 4m− 2]
∣∣ = m, yielding a monochromatic m-subset of

[2m, 4m − 2], say A, with diam(A) = 2m − 2, completing the proof in view of the
claim. Thus, we assume that ∆(4m − 2) = 2. If ∆(6m − 4) = 2, then

∣∣∆−1(2)∩
[4m− 2, 6m− 4]| = m, yielding a monochromatic m-subset of [4m − 2, 6m − 4],
say A, with diam(A) = 2m − 2, completing the proof in view of the claim. Thus
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we assume that ∆(6m − 4) = 1. Consequently, ∆(2m) = ∆(6m − 4) = 1, and
∆(4m− 2) = 2.

Suppose there exists a set B ⊂ [2m,
⌊

9m−5
2

⌋
] satisfying 2m − 2 ≤ diam(B) ≤⌊

5m−5
2

⌋
. Replacing [1, 6m−4] by [2m, 8m−5] the hypotheses of Lemma 4 hold and

one of the conlusions follows. If conclusion (i) of Lemma 4 follows, then there exists
a monochromatic m-subset of [

⌊
9m−3

2

⌋
, 8m− 5], say A, with diam(A) ≥ diam(B).

Hence we obtain m-subsets A1, A, and B of [1, 8m − 5] satisfying diam(A1) ≤
diam(A) ≤ diam(B) and A1 ≺ A ≺ B, completing the proof. Otherwise, conclu-
sion (ii) of Lemma 4 follows. Hence there exist two monochromatic m-subsets of
[
⌊

9m−3
2

⌋
, 8m − 5], say B1 and B2, with diam(B1) = diam(B2) = m − 1, yielding

diam(A1) ≥ diam(B1) ≥ diam(B2) and A1 ≺ B1 ≺ B2, completing the proof.
Hence we can assume that [2m,

⌊
9m−5

2

⌋
] does not contain a monochromatic m-

subset B satisfying 2m − 2 ≤ diam(B) ≤ 5m−5
2 . Since ∆(2m) = 1 and since∣∣∆−1(1) ∩ [2m, 4m− 3]

∣∣ = m − 1, it follows that ∆(v) = 2 for every v ∈ [4m −
2,

⌊
9m−5

2

⌋
], as otherwise there exists a w ∈ [4m − 2,

⌊
9m−5

2

⌋
] with ∆(w) = 1 and

∆−1(1)∩[2m, 4m−3]∪{w} is a monochromatic m-subset, say B, satisfying 2m−2 ≤
diam(B) ≤

⌊
5m−5

2

⌋
.

Similarly, Let [1, 6m−4] represent a reversal of the interval [1, 6m−4] in Lemma
4 - that is, 1 is represented by 6m − 4 and vice versa. Applying Lemma 4 to the
reversed interval, it follows that either the proof is complete as before, or ∆(v) = 2
for every v ∈ [

⌈
7m−3

2

⌉
, 4m− 2]. Thus, assume the following:

∆(v) = 2 for every v ∈ [4m− 2− α, 4m− 2 + α],
(1)

where α =
⌊

9m− 5
2

⌋
− (4m− 2)

It can be seen that α > 0 for m ≥ 3 and that |[4m− 2− α, 4m− 2 + α]| ≥ m−2.
Since

∣∣∆−1(2) ∩ [2m, 4m− 3]
∣∣ = m−1, define β to be the smallest integer satisfying

β ∈ [2m + 1, 4m− 3] and ∆(β) = 2. Similarly, since
∣∣∆−1(2) ∩ [4m− 1, 6m− 4]

∣∣ =
m−1 define γ to be the largest integer satisfying γ ∈ [4m−1, 6m−5] and ∆(γ) = 2.
We consider three cases:

Subcase 2.1: β ∈ [2m + 1, 2m + α]. As can be seen from (1), we get ∆(β) = 2
and ∆(β + 2m − 2) = 2. Let A = ∆−1(2) ∩ [2m, 4m − 2] ∪ {β + 2m − 2}, and
since

∣∣∆−1(2) ∩ [2m, 4m− 2]
∣∣ = m, we get |A| = m + 1. Deleting any element of

A excluding the minimum and maximum, we get a monochromatic m-subset A
′
of

[2m, 6m − 4] satisfying diam(A
′
) = 2m − 2, completing the proof in view of the

claim.

Subcase 2.2: γ ∈ [6m− 4−α, 6m− 5]. As can be seen from (1), we get ∆(γ) = 2
and ∆(γ− (2m− 2)) = 2. Let A = ∆−1(2)∩ [4m− 2, 6m− 4]∪ {γ− (2m− 2)}, and
since

∣∣∆−1(2) ∩ [4m− 2, 6m− 4]
∣∣ = m, we get |A| = m + 1. Deleting any element

of A excluding the minimum and maximum, we get a monochromatic m-subset A
′

of [2m, 6m− 4] satisfying diam(A
′
) = 2m− 2, completing the proof in view of the

claim.
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Subcase 2.3: β /∈ [2m + 1, 2m + α] and γ /∈ [6m − 4 − α, 6m − 5]. Let S1 =
[2m + α + 1, 4m − α − 3] and S2 = [4m + α − 1, 6m − α − 5] and consider S =
S1 ∪ S2. We have, by previous arguments, that ∆−1(1) ∩ S = 2m − 2α − 4 and
∆−1(2) ∩ S = 2m − 2α − 2. If x ∈ S1 then x + (2m − 2) ∈ S2. Hence we cannot
have ∆(x) = ∆(x + 2m− 2) = 2; indeed, if they were then we are done by the fact
that the interval in (1) has at least m− 1 integers, completing the proof in view of
the claim. Thus ∆−1(1) ∩ S ≥ ∆−1(2) ∩ S, contradicting the deduced number of
integers of each color. !

4. Upper and Lower Bounds for g(m, t)

Theorem 6. If t ≥ 3, then 2(m− 1)(t + 1) + 1 ≤ g(m, t) ≤ [(t− 1)2 + 1](2m− 1).

Proof. The upper bound follows from the Erdős-Szekeres Theorem, which states
that a sequence of (n−1)2+1 integers has either a decreasing subsequence of length
n or an increasing subsequence of length n. Since every interval of 2m− 1 integers
must contain a monochromatic m-subset, we get g(m, t) ≤ [(t− 1)2 + 1](2m− 1).

Denote X = 1m−1 and Y = 2m−1. To prove that g(m, t) ≥ 2(m− 1)(t + 1) + 1,
we consider separate cases for t even and odd:

If t ≥ 3 is odd, then let t = 2a+1. It can be verified that the coloring of [1, 2(m−
1)(t + 1)] represented by the string Y (XY )aXX(Y X)aY contains no monotone
sequences with length t of diameters of monochromatic m-subsets.

If t ≥ 4 is even, then let t = 2a. The coloring of [1, 2(m−1)(t+1)] represented by
the string Y (XY )a−1X2Y 2(XY )a−1X contains no monotone sequences with length
t of diameters of monochromatic m-subsets. !

5. Concluding Remarks

The solution of the following related conjecture would make the proof of g(m, 3) =
8m− 5 trivial.

Conjecture. Let m ≥ 2 be an integer. If ∆ is a 2-coloring of [1, 6m−4], then there
exist two non-overlapping monochromatic m-subsets of [1, 6m− 4], say A1 and A2,
satisfying diam(A1) = diam(A2).

The conjecture has been proven true for m ≤ 5 by computer search. The coloring
of [1, 6m− 5] represented by the string (12)2m−21(12)m−1 proves that there exists
a 2-coloring of [1, 6m− 5] avoiding two non-overlapping monochromatic m-subsets,
say A1 and A2, satisfying diam(A1) = diam(A2).
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[2] A. Bialostocki, P. Erdős, H. Lefmann, Monochromatic and zero-sum sets of nondecreasing
diameter. Discrete Math. 137 (1995), no. 1-3, 19-34.
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