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Abstract
We discuss the asymptotic expansions of certain products of Bernoulli numbers and fac-

torials, e.g.,
n∏

ν=1

|B2ν | and

n∏

ν=1

(kν)! νr

as n →∞

for integers k ≥ 1 and r ≥ 0. Our main interest is to determine exact expressions, in

terms of known constants, for the asymptotic constants of these expansions and to show

some relations among them.

1. Introduction

Let Bn be the nth Bernoulli number. These numbers are defined by

z

ez − 1
=

∞∑

n=0

Bn
zn

n!
, |z| < 2π

where Bn = 0 for odd n > 1. The Riemann zeta function ζ(s) is defined by

ζ(s) =
∞∑

ν=1

ν−s =
∏

p

(1− p−s)−1, s ∈ C, Re s > 1. (1)

By Euler’s formula we have for even positive integers n that

ζ(n) = −1
2

(2πi)n

n!
Bn. (2)

Products of Bernoulli numbers occur in certain contexts in number theory. For
example, the Minkowski–Siegel mass formula states that, for positive integers n
with 8 | n,

M(n) =
|Bk|
2k

k−1∏

ν=1

|B2ν |
4ν

, n = 2k,
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which describes the mass of the genus of even unimodular positive definite n × n
matrices (for details see [12, p. 252]). We introduce the following constants which
we shall need further on.

Lemma 1. There exist the constants

C1 =
∞∏

ν=2

ζ(ν) = 2.2948565916... ,

C2 =
∞∏

ν=1

ζ(2ν) = 1.8210174514... ,

C3 =
∞∏

ν=1

ζ(2ν + 1) = 1.2602057107... .

Proof. We have log(1 + x) < x for real x > 0. Then

log
∞∏

ν=1

ζ(2ν) =
∞∑

ν=1

log ζ(2ν) <
∞∑

ν=1

(ζ(2ν)− 1) =
3
4
. (3)

The last sum of (3) is well known and follows by rearranging in geometric series,
since we have absolute convergence. We then obtain that π2/6 < C2 < e3/4, ζ(3) <
C3 < C2, and C1 = C2C3. !

To compute the infinite products above within a given precision, one can use the
following arguments. A standard estimate for the partial sum of ζ(s) is given by

ζ(s)−
N∑

ν=1

ν−s <
N1−s

s− 1
, s ∈ R, s > 1.

This follows by comparing the sum of ν−s and the integral of x−s in the interval
(N,∞). Now, one can estimate the number N depending on s and the needed
precision. However, we use a computer algebra system, that computes ζ(s) to
a given precision with already accelerated built-in algorithms. Since ζ(s) → 1
monotonically as s → ∞, we next have to determine a finite product that suffices
the precision. From above, we obtain

ζ(s)− 1 < 2−s

(
1 +

2
s− 1

)
, s ∈ R, s > 1. (4)

According to (3) and (4), we then get an estimate for the remainder of the infinite
product by

log
∏

ν>N ′

ζ(ν) < 2−N ′+ε

where we can take ε = 3/N ′; the choice of ε follows by 2x ≥ 1 + x log 2 and (4).
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We give the following example where the constant C1 plays an important role;
see Finch [8]. Let a(n) be the number of non-isomorphic abelian groups of order n.
The constant C1 equals the average of the numbers a(n) by taking the limit. Thus,
we have

C1 = lim
N→∞

1
N

N∑

n=1

a(n).

By definition the constant C2 is connected with values of the Riemann zeta func-
tion on the positive real axis. Moreover, this constant is also connected with values
of the Dedekind eta function

η(τ) = eπiτ/12
∞∏

ν=1

(1− e2πiντ ), τ ∈ C, Im τ > 0

on the upper imaginary axis.

Lemma 2. The constant C2 is given by

1/C2 =
∏

p

p
1
12 η

(
i
log p

π

)

where the product runs over all primes.

Proof. By Lemma 1 and the Euler product (1) of ζ(s), we obtain

C2 =
∞∏

ν=1

∏

p

(1− p−2ν)−1 =
∏

p

∞∏

ν=1

(1− p−2ν)−1

where we can change the order of the products because of absolute convergence.
Rewriting p−2ν = e2πiντ with τ = i log p /π yields the result. !

We used Mathematica [17] to compute all numerical values in this paper. The
values were checked again by increasing the needed precision to 10 more digits.

2. Preliminaries

We use the notation f ∼ g for real-valued functions when limx→∞ f(x)/g(x) = 1.
As usual, O(·) denotes Landau’s symbol. We write log f for log(f(x)).

Definition 3. Define the linear function spaces

Ωn = span
0≤ν≤n

{xν , xν log x}, n ≥ 0



INTEGERS: 9 (2009) 86

over R where f ∈ Ωn is a function f : R+ → R. Let

Ω∞ =
⋃

n≥0

Ωn.

Define the linear map ψ : Ω∞ → R which gives the constant term of any f ∈ Ω∞.
For the class of functions

F (x) = f(x) + O(x−δ), f ∈ Ωn, n ≥ 0, δ > 0 (5)

define the linear operator [ ] : C(R+; R) → Ω∞ such that [F ] = f and [F ] ∈ Ωn.
Then ψ([F ]) is defined to be the asymptotic constant of F .

We shall examine functions h : N → R which grow exponentially; in particular
these functions are represented by certain products. Our problem is to find an
asymptotic function h̃ : R+ → R where h ∼ h̃. If F = log h̃ satisfies (5), then we
have [log h̃] ∈ Ωn for a suitable n and we identify [log h̃] = [log h] ∈ Ωn in that case.

Lemma 4. Let f ∈ Ωn where

f(x) =
n∑

ν=0

(αν xν + βν xν log x)

with coefficients αν ,βν ∈ R. Let g(x) = f(λx) with a fixed λ ∈ R+. Then g ∈ Ωn

and ψ(g) = ψ(f) + β0 log λ.

Proof. Since g(x) = f(λx) we obtain

g(x) =
n∑

ν=0

(αν (λx)ν + βν (λx)ν(log λ + log x)).

This shows that g ∈ Ωn. The constant terms are α0 and β0 log λ, and thus ψ(g) =
ψ(f) + β0 log λ. !

Definition 5. For a function f : R+ → R we introduce the notation

f(x) =
∑

ν≥1

′ fν(x)

with functions fν : R+ → R in case f has a divergent series expansion such that

f(x) =
m−1∑

ν=1

fν(x) + θm(x)fm(x), θm(x) ∈ (0, 1), m ≥ Nf ,

where Nf is a suitable constant depending on f .
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Next we need some well-known facts which we state without proof (see [10]).

Proposition 6. Let

H0 = 0, Hn =
n∑

ν=1

1
ν

, n ≥ 1

be the nth harmonic number. These numbers satisfy Hn = γ+log n+O(n−1), n ≥ 1,
where γ = 0.5772156649... is Euler’s constant.

Proposition 7. (Stirling’s series) The Gamma function Γ(x) has the divergent se-
ries expansion

log Γ(x + 1) =
1
2

log(2π) +
(

x +
1
2

)
log x− x +

∑

ν≥1

′ B2ν

2ν(2ν − 1)
x−(2ν−1), x > 0.

Remark 8. When evaluating the divergent series given above, we have to choose a
suitable index m such that

∑

ν≥1

′ B2ν

2ν(2ν − 1)
x−(2ν−1) =

m−1∑

ν=1

B2ν

2ν(2ν − 1)
x−(2ν−1) + θm(x)Rm(x)

and the remainder |θm(x)Rm(x)| is as small as possible. Since θm(x) ∈ (0, 1) is not
effectively computable in general, we have to use |Rm(x)| instead as an error bound.
Schäfke and Finsterer [15], among others, showed that the so-called Lindelöf error
bound L = 1 for the estimate L ≥ θm(x) is best possible for positive real x.

Proposition 9. If α ∈ R with 0 ≤ α < 1, then
n∏

ν=1

(ν − α) =
Γ(n + 1− α)

Γ(1− α)
∼

√
2π

Γ(1− α)

(n

e

)n
n

1
2−α as n →∞.

Euler’s formula for the Gamma function states the following.

Proposition 10. (Euler) Let Γ(x) be the Gamma function. Then
n−1∏

ν=1

Γ
(ν

n

)
=

(2π)
n−1

2
√

n
.

Proposition 11. (Glaisher [9], Kinkelin [11]) As n →∞,
n∏

ν=1

νν ∼ A n
1
2 n(n+1)+ 1

12 e−
n2
4 ,

where A = 1.2824271291... is the Glaisher–Kinkelin constant, which is given by

logA =
1
12
− ζ ′(−1) =

γ

12
+

1
12

log(2π)− ζ ′(2)
2π2

.
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Numerous digits of the decimal expansion of the Glaisher–Kinkelin constant A
are recorded as sequence A074962 in OEIS [16].

3. Products of Factorials

In this section we consider products of factorials and determine their asymptotic
expansions and constants. For these asymptotic constants we derive a divergent
series representation as well as a closed formula.

Theorem 12. Let k be a positive integer. Asymptotically, we have

n∏

ν=1

(kν)! ∼ Fk Ak (2π)
1
4

(
k n

e3/2

) k
2 n(n+1)(

2πkek/2−1 n
)n

2
n

1
4+ k

12+ 1
12k as n →∞

with certain constants Fk which satisfy

logFk =
γ

12k
+

∑

j≥2

′ B2j ζ(2j − 1)
2j(2j − 1) k2j−1

.

Moreover, the constants have the asymptotic behavior that

lim
k→∞

Fk = 1, lim
k→∞

Fk
k = eγ/12, and

n∏

k=1

Fk ∼ F∞ nγ/12 as n →∞

with
logF∞ =

γ2

12
+

∑

j≥2

′ B2j ζ(2j − 1)2

2j(2j − 1)
.

Theorem 13. If k is a positive integer, then

logFk = −
(

k +
1
k

)
logA +

1
12k

− 1
12k

log k +
k

4
log(2π)−

k−1∑

ν=1

ν

k
log Γ

(ν

k

)
.

We will prove Theorem 13 later, since we shall need several preliminaries.
Proof of Theorem 12. Let k ≥ 1 be fixed. By Stirling’s approximation, see Propo-
sition 7, we have

log(kν)! =
1
2

log(2π) +
(

kν +
1
2

)
log(kν)− kν + f(kν) (6)

where we can write the remaining divergent sum as

f(kν) =
1

12kν
+

∑

j≥2

′ B2j

2j(2j − 1) (kν)2j−1
.
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Define S(n) = 1 + · · · + n = n(n + 1)/2. By summation we obtain
n∑

ν=1

log(kν)! =
n

2
log(2πk) +

1
2

log n!− kS(n) + kS(n) log k

+ k
n∑

ν=1

ν log ν +
n∑

ν=1

f(kν).

The term 1
2 log n! is evaluated again by (6). Proposition 11 provides that

k
n∑

ν=1

ν log ν = k logA + kS(n) log n +
k

12
log n− k

2

(
S(n)− n

2

)
+ O(n−δ)

with some δ > 0. Since limn→∞Hn − log n = γ, we asymptotically obtain for the
remaining sum that

lim
n→∞

(
n∑

ν=1

f(kν)− 1
12k

log n

)
=

γ

12k
+

∑

j≥2

′ B2j ζ(2j − 1)
2j(2j − 1) k2j−1

=: logFk. (7)

Here we have used the following arguments. We choose a fixed index m > 2 for the
remainder of the divergent sum. Then

lim
n→∞

n∑

ν=1

θm(kν)
B2m

2m(2m− 1) (kν)2m−1
= ηm

B2m ζ(2m− 1)
2m(2m− 1) k2m−1

(8)

with some ηm ∈ (0, 1), since θm(kν) ∈ (0, 1) for all ν ≥ 1. Thus, we can write (7)
as an asymptotic series again. Collecting all terms, we finally get the asymptotic
formula

n∑

ν=1

log(kν)! = logFk + k logA +
1
4

log(2π) + kS(n)
(
−3

2
+ log(kn)

)

+
n

2

(
log(2πk) +

k

2
− 1 + log n

)

+
(

1
4

+
k

12
+

1
12k

)
log n + O(n−δ′)

with some δ′ > 0. Note that the exact value of δ′ does not play a role here. Now,
let k be an arbitrary positive integer. From (7) we deduce that

logFk =
γ

12k
+ O(k−3) and k logFk =

γ

12
+ O(k−2). (9)

The summation of (7) yields
n∑

k=1

logFk =
γ

12
Hn +

n∑

k=1

∑

j≥2

′ B2j ζ(2j − 1)
2j(2j − 1) k2j−1

. (10)
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Similar to (7) and (8), we can write again:

lim
n→∞

(
n∑

k=1

logFk −
γ

12
log n

)
=

γ2

12
+

∑

j≥2

′ B2j ζ(2j − 1)2

2j(2j − 1)
=: logF∞. (11)

!

The case k = 1 of Theorem 12 is related to the so-called Barnes G-function (see
[2]). Now we shall determine exact expressions for the constants Fk. For k ≥ 2 this
is more complicated.

Lemma 14. We have F1 = (2π) 1
4 e

1
12 /A2.

Proof. Writing down the product of n! repeatedly in n + 1 rows, one observes by
counting in rows and columns that

n!n+1 =
n∏

ν=1

ν!
n∏

ν=1

νν . (12)

From Proposition 7 we have

(n + 1) log n! =
n + 1

2
log(2π)− n(n + 1) + (n + 1)

(
n +

1
2

)
log n +

1
12

+ O(n−1).

Comparing the asymptotic constants of both sides of (12) when n →∞, we obtain

(2π)
1
2 e

1
12 = F1 A (2π)

1
4 · A

where the right side follows by Theorem 12 and Proposition 11. !

Proposition 15. Let k, l be integers with k ≥ 1. Define

Fk,l(n) :=
n∏

ν=1

(kν − l)! for 0 ≤ l < k.

Then [log Fk,l] ∈ Ω2 and Fk,0(n) · · ·Fk,k−1(n) = F1,0(kn). Moreover

Fk,l(n)/Fk,l+1(n) = kn
n∏

ν=1

(
ν − l

k

)
for 0 ≤ l < k − 1

and [log(Fk,l/Fk,l+1)] = [log Fk,l]− [log Fk,l+1] ∈ Ω1.

Proof. We deduce the proposed products from (kν− l)!/(kν− (l+1))! = kν− l and

n∏

ν=1

(kν)!(kν − 1)! · · · (kν − (k − 1))! =
kn∏

ν=1

ν!. (13)
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Proposition 9 shows that [log(Fk,l/Fk,l+1)] ∈ Ω1. Since the operator [ ] is linear, it
follows that

[log(Fk,l/Fk,l+1)] = [log Fk,l − log Fk,l+1] = [log Fk,l]− [log Fk,l+1] ∈ Ω1. (14)

From Theorem 12 we have [log Fk,0] ∈ Ω2. By induction on l and using (14) we
derive that [log Fk,l] ∈ Ω2 for 0 < l < k. !

Lemma 16. Let k be an integer with k ≥ 2. Define the k × k matrix

Mk :=





1 −1
1 −1

. . . . . .
1 −1

1 1 · · · 1 1





where all other entries are zero. Then detMk = k and the matrix inverse is given
by M−1

k = 1
kM̃k with

M̃k =





k − 1 k − 2 k − 3 · · · 2 1 1
−1 k − 2 k − 3 · · · 2 1 1
−1 −2 k − 3 · · · 2 1 1
...

...
...

...
...

...
−1 −2 −3 · · · 2 1 1
−1 −2 −3 · · · −(k − 2) 1 1
−1 −2 −3 · · · −(k − 2) −(k − 1) 1





.

Proof. We have detM2 = 2. Let k ≥ 3. We recursively deduce by the Laplacian
determinant expansion by minors on the first column that

detMk = (−1)1+1 detMk−1 + (−1)1+k detTk−1

where the latter matrix Tk−1 is a lower triangular matrix having −1 in its diagonal.
Therefore

detMk = detMk−1 + (−1)1+k · (−1)k−1 = k − 1 + 1 = k

by induction on k. Let Ik be the k×k identity matrix. The equation Mk ·M̃k = k Ik

is easily verified by direct calculation, since Mk has a simple form. !

Proof of Theorem 13. The case k = 1 agrees with Lemma 14. For now, let k ≥ 2.
We use the relations between the functions Fk,l, resp. log Fk,l, given in Proposition
15. Since [log Fk,l] ∈ Ω2, we can work in Ω2. The matrix Mk defined in Lemma 16
mainly describes the relations given in (13) and (14). Furthermore we can reduce
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our equations to R by applying the linear map ψ, since we are only interested in
the asymptotic constants. We obtain the linear system of equations

Mk · x = b , x, b ∈ Rk

where
x = (ψ([log Fk,0]), . . . ,ψ([log Fk,k−1]))

T

and b = (b1, . . . , bk)T with

bl+1 = ψ([log(Fk,l/Fk,l+1)]) =
1
2

log(2π)− log Γ
(

1− l

k

)
for l = 0, . . . , k − 2

using Proposition 9. The last element bk is given by Theorem 12, Lemma 14, and
Lemma 4:

bk = ψ([log(F1,0(kn))]) =
1
4

log(2π) + logF1 + logA +
5
12

log k

=
1
2

log(2π)− logA +
1
12

+
5
12

log k.

By Lemma 16 we can solve the linear system directly with

x =
1
k

M̃k · b.

The first row yields

x1 =
1
k

bk +
1
k

k−1∑

ν=1

(k − ν) bν .

On the other side, we have

x1 = ψ([log Fk,0]) = logFk +
1
4

log(2π) + k logA.

This provides

logFk =−
(

k +
1
k

)
logA +

(
k

4
+

1
2k
− 1

2

)
log(2π)

+
5

12k
log k +

1
12k

−
k−1∑

ν=2

ν − 1
k

log Γ
(ν

k

) (15)

after some rearranging of terms. By Euler’s formula, see Proposition 10, we have

1
k

k−1∑

ν=1

log Γ
(ν

k

)
=

(
1
2
− 1

2k

)
log(2π)− 1

2k
log k. (16)

Finally, substituting (16) into (15) yields the result. !
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Remark 17. Although the formula for Fk has an elegant short form, one might
also use (15) instead, since this formula omits the value Γ(1/k). Thus we easily
obtain the value of F2 from (15) at once: F2 = (2π) 1

4 2 5
24 e

1
24 /A 5

2 .

Corollary 18. Asymptotically, we have

n−1∏

ν=1

Γ
(ν

n

)ν
∼ e

1−γ
12

A

(
(2π) 1

4

A

)n2
/

n
1
12 as n →∞

with the constants e
1−γ
12 /A = 0.8077340270... and (2π) 1

4 /A = 1.2345601953....

Proof. On the one hand, we have by (9) that

n logFn =
γ

12
+ O(n−2).

On the other hand, Theorem 13 provides that

n logFn = −
(
n2 + 1

)
logA +

1
12
− 1

12
log n +

n2

4
log(2π)−

n−1∑

ν=1

ν log Γ
(ν

n

)
.

Combining both formulas easily gives the result. !

Since we have derived exact expressions for the constants Fk, we can improve the
calculation of F∞. The divergent sum of F∞, given in Theorem 12, is not suitable
to determine a value within a given precision, but we can use this sum in a modified
way. Note that we cannot use the limit formula

logF∞ = lim
n→∞

(
n∑

k=1

logFk −
γ

12
log n

)

without a very extensive calculation, because the sequence γn = Hn−log n converges
too slowly. Moreover, the computation of Fk involves the computation of the values
Γ(ν/k). This becomes more difficult for larger k.

Proposition 19. Let m,n be positive integers. Assume that m > 2 and the con-
stants Fk are given by exact expressions for k = 1, . . . , n. Define the computable
values ηk ∈ (0, 1) implicitly by

logFk =
γ

12k
+

m−1∑

j=2

B2j ζ(2j − 1)
2j(2j − 1) k2j−1

+ ηk
B2m ζ(2m− 1)

2m(2m− 1) k2m−1
.
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Then

logF∞ =
γ2

12
+

m−1∑

j=2

B2j ζ(2j − 1)2

2j(2j − 1)
+ θn,m

B2m ζ(2m− 1)2

2m(2m− 1)

with θn,m ∈ (θmin
n,m, θmax

n,m) ⊂ (0, 1) where

θmin
n,m = ζ(2m− 1)−1

n∑

k=1

ηk

k2m−1
, θmax

n,m = 1 + ζ(2m− 1)−1
n∑

k=1

ηk − 1
k2m−1

.

The error bound for the remainder of the divergent sum of logF∞ is given by

θerr
n,m =

(
1− ζ(2m− 1)−1

n∑

k=1

1
k2m−1

)
|B2m| ζ(2m− 1)2

2m(2m− 1)
.

Proof. Let n ≥ 1 and m > 2 be fixed integers. The divergent sums for logFk and
logF∞ are given by Theorem 12. Since we require exact expressions for Fk, we can
compute the values ηk for k = 1, . . . , n. We define

ηm,k = η′m,k = ηk for k = 1, . . . , n

and
ηm,k = 0, η′m,k = 1 for k > n.

We use (10) and (11) to derive the bounds:

θmin
n,m = ζ(2m− 1)−1

∞∑

k=1

ηm,k

k2m−1
< θn,m < ζ(2m− 1)−1

∞∑

k=1

η′m,k

k2m−1
= θmax

n,m .

We obtain the suggested formulas for θmin
n,m and θmax

n,m by evaluating the sums with
ηm,k = 0, resp. η′m,k = 1, for k > n. The error bound is given by the difference of
the absolute values of the minimal and maximal remainder. Therefore

θerr
n,m = (θmax

n,m − θmin
n,m)R =

(
1− ζ(2m− 1)−1

n∑

k=1

1
k2m−1

)
R

with R = |B2m|ζ(2m− 1)2/2m(2m− 1). !

Result 20. Exact expressions for Fk:

F1 = (2π)
1
4 e

1
12 /A2, F2 = (2π)

1
4 2

5
24 e

1
24 /A 5

2 ,

F3 = (2π)
5
12 3

5
36 e

1
36 /A 10

3 Γ
(

2
3

) 1
3 , F4 = (2π)

1
2 2

1
3 e

1
48 /A 17

4 Γ
(

3
4

) 1
2 .

We have computed the constants Fk by their exact expression. Moreover, we
have determined the index m of the smallest remainder of their asymptotic divergent
series and the resulting error bound given by Theorem 12.
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Constant Value m Error bound
F1 1.04633506677050318098... 4 6.000 · 10−4

F2 1.02393741163711840157... 7 7.826 · 10−7

F3 1.01604053706462099128... 10 1.198 · 10−9

F4 1.01204589802394464624... 13 1.948 · 10−12

F5 1.00963997283647705086... 16 3.272 · 10−15

F6 1.00803362724207326544... 20 5.552 · 10−18

The weak interval of F∞ is given by Theorem 12. The second value is derived
by Proposition 19 with parameters m = 17 and n = 7. Thus, exact expressions of
F1, . . . ,F7 are needed to compute F∞ within the given precision.

Constant Value / Interval m Error bound
F∞ (1.02428, 1.02491) 4 6.050 · 10−4

F∞ 1.02460688265559721480... 17 6.321 · 10−22

4. Products of Bernoulli Numbers

Using results of the previous sections, we are now able to consider several products
of Bernoulli numbers and to derive their asymptotic expansions and constants.

Theorem 21. Asymptotically, we have

n∏

ν=1

|B2ν | ∼ B1

( n

πe3/2

)n(n+1)
(16πn)

n
2 n

11
24 as n →∞,

n∏

ν=1

|B2ν |
2ν

∼ B2

( n

πe3/2

)n2 (
4n
πe

)n
2 /

n
1
24 as n →∞

with the constants

B1 = C2F2A2(2π) 1
4 = C2 (2π) 1

2 2 5
24 e

1
24 /A 1

2 ,
B2 = C2F2A2/(2π) 1

4 = C2 2 5
24 e

1
24 /A 1

2 .

Proof. By Euler’s formula (2) for ζ(2ν) and Lemma 1 we obtain

n∏

ν=1

|B2ν | ∼ C2

n∏

ν=1

2 · (2ν)!
(2π)2ν

∼ C2 2n(2π)−n(n+1)
n∏

ν=1

(2ν)! as n →∞.

Theorem 12 states for k = 2 that
n∏

ν=1

(2ν)! ∼ F2 A2 (2π)
1
4

(
2n
e3/2

)n(n+1)

(4πn)
n
2 n

11
24 as n →∞.
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The expression for F2 is given in Remark 17. Combining both asymptotic formulas
above gives the first suggested formula. It remains to evaluate the following product:

n∏

ν=1

(2ν) = 2n n! ∼ (2π)
1
2

(
2n
e

)n

n
1
2 as n →∞.

After some rearranging of terms we then obtain the second suggested formula. !

Remark 22. Milnor and Husemoller [14, pp. 49–50] give the following asymptotic
formula without proof:

n∏

ν=1

|B2ν | ∼ B′ n! 2n+1 F (2n + 1) as n →∞ (17)

where

F (n) =
( n

2πe3/2

)n2
4

(
8πe

n

)n
4 /

n
1
24 (18)

and B′ ≈ 0.705 is a certain constant. This constant is related to the constant B2.

Proposition 23. The constant B′ is given by

B′ = 2
1
24 2−

3
2 B2 = C2 e

1
24 /2

5
4A 1

2 = 0.7048648734... .

Proof. By Theorem 21 we have

n∏

ν=1

|B2ν |
2ν

∼ B2 G(n) as n →∞ (19)

with

G(n) =
( n

πe3/2

)n2 (
4n
πe

)n
2 /

n
1
24 .

We observe that (17) and (19) are equivalent so that

2B′F (2n + 1) ∼ B2 G(n) as n →∞.

We rewrite (18) in the suitable form

F (2n + 1) =
(

n + 1
2

πe3/2

)n2+n+ 1
4 (

4πe

n + 1
2

)n
2 + 1

4 /
2

1
24

(
n +

1
2

) 1
24

.

Hence, we easily deduce that

G(n)/F (2n + 1) =
(

1 +
1
2n

)−n2−n
2 + 1

24

e
n
2 2

1
24

(
e1/2

4

) 1
4

.
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It is well known that

lim
n→∞

(
1 +

x

n

)n
= ex and lim

n→∞
e−xn

(
1 +

x

n

)n2

= e−
x2
2 .

Evaluating the asymptotic terms, we get

2B′/B2 ∼ G(n)/F (2n + 1) ∼ e
1
8 e−

1
4 2

1
24 e

1
8 2−

1
2 as n →∞,

which finally yields B′ = 2 1
24 2− 3

2 B2. !

Theorem 24. The Minkowski–Siegel mass formula asymptotically states for positive
integers n with 4 | n that

M(2n) =
|Bn|
2n

n−1∏

ν=1

|B2ν |
4ν

∼ B3

( n

πe3/2

)n2 / (
4n
πe

)n
2

n
1
24 as n →∞

with B3 =
√

2B2.

Proof. Let n always be even. By Proposition 7 and (2) we have

2−n

∣∣∣∣
Bn/n

B2n/2n

∣∣∣∣ = 2
ζ(n)
ζ(2n)

πn n!
(2n)!

∼
√

2
(

4n
πe

)−n

as n →∞,

since ζ(n)/ζ(2n) ∼ 1 and

log
(

n!
(2n)!

)
∼ n− n log n−

(
2n +

1
2

)
log 2 as n →∞.

We finally use Theorem 21 and (19) to obtain

M(2n) = 2−n

∣∣∣∣
Bn/n

B2n/2n

∣∣∣∣
n∏

ν=1

|B2ν |
2ν

∼
√

2B2

(
4n
πe

)−n

G(n) as n →∞,

which gives the result. !

Result 25. The constants B′, Bν (ν = 1, 2, 3) mainly depend on the constant C2

and the Glaisher–Kinkelin constant A.

Constant Expression Value
A 1.28242712910062263687...
C2 1.82101745149929239040...
B1 C2(2π) 1

2 2 5
24 e

1
24 /A 1

2 4.85509664652226751252...
B2 C22

5
24 e

1
24 /A 1

2 1.93690332773294192068...
B3 C22

17
24 e

1
24 /A 1

2 2.73919495508550621998...
B′ C2 e

1
24 /2 5

4A 1
2 0.70486487346802031057...
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5. Generalizations

In this section we derive a generalization of Theorem 12. The results show the struc-
ture of the constants Fk and the generalized constants Fr,k, which we shall define
later, in a wider context. For simplification we introduce the following definitions
which arise from the Euler-Maclaurin summation formula.

The sum of consecutive integer powers is given by the well-known formula

n−1∑

ν=0

νr =
Br+1(n)−Br+1

r + 1
=

r∑

j=0

(
r

j

)
Br−j

nj+1

j + 1
, r ≥ 0

where Bm(x) is the mth Bernoulli polynomial. Now, the Bernoulli number B1 = −1
2

is responsible for omitting the last power nr in the summation above. Because we
further need the summation up to nr, we change the sign of B1 in the sum as
follows:

Sr(n) =
n∑

ν=1

νr =
r∑

j=0

(
r

j

)
(−1)r−jBr−j

nj+1

j + 1
, r ≥ 0.

This modification also coincides with

ζ(−n) = (−1)n+1 Bn+1

n + 1

for nonnegative integers n. We define the extended sum

Sr(n; f(,)) =
r∑

j=0

(
r

j

)
(−1)r−jBr−j

nj+1f(j + 1)
j + 1

, r ≥ 0

where the symbol , is replaced by the index j +1 in the sum. Note that Sr is linear
in the second parameter, i.e.,

Sr(n;α + βf(,)) = αSr(n) + βSr(n; f(,)).

Finally we define

Dk(x) =
∑

j≥1

′ B̂2j,k x−(2j−1) where B̂m,k =
Bm

m(m− 1)km−1
.

Theorem 26. Let r be a nonnegative integer. Then

n∏

ν=1

ν νr

∼ Ar Qr(n) as n →∞,
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where Ar is the generalized Glaisher–Kinkelin constant defined by

logAr = −ζ(−r)Hr − ζ ′(−r).

Moreover, log Qr ∈ Ωr+1 with

log Qr(n) = (Sr(n)− ζ(−r)) log n + Sr(n;Hr −H').

Proof. This formula and the constants easily follow from a more general formula
for real r > −1 given in [10, 9.28, p. 595] and after some rearranging of terms. !

Remark 27. The case r = 0 reduces to Stirling’s approximation of n! with A0 =√
2π. The case r = 1 gives the usual Glaisher–Kinkelin constant A1 = A. The

expression Sr(n;Hr −H') does not depend on the definition of B1, since the term
with B1 is cancelled in the sum. Graham, Knuth, and Patashnik [10, 9.28, p. 595]
notice that the constant −ζ ′(−r) has been determined in a book of de Bruijn [7,
§3.7] in 1970. The theorem above has a long history. In 1894 Alexeiewsky [3] gave
the identity

n∏

ν=1

ν νr

= exp (ζ ′(−r, n + 1)− ζ ′(−r))

where ζ ′(s, a) is the partial derivative of the Hurwitz zeta function with respect to
the first variable. Between 1903 and 1913, Ramanujan recorded in his notebooks
[5, Entry 27, pp. 273–276] (the first part was published and edited by Berndt [5]
in 1985) an asymptotic expansion for real r > −1 and an analytic expression for
the constant Cr = −ζ ′(−r). However, Ramanujan only derived closed expressions
for C0 and C2r (r ≥ 1) in terms of ζ(2r + 1); see (28) below. In 1933 Bendersky
[4] showed that there exist certain constants Ar. Since 1980, several others have
investigate the asymptotic formula, including MacLeod [13], Choudhury [6], and
Adamchik [1, 2].

Theorem 28. Let k, r be integers with k ≥ 1 and r ≥ 0, then

n∏

ν=1

(kν)! νr

∼ Fr,k A
1
2
r Ak

r+1 Pr,k(n)Qr(n)
1
2 Qr+1(n)k as n →∞.

The constants Fr,k and functions Pr,k satisfy that lim
k→∞

Fr,k = 1 and log Pr,k ∈ Ωr+2

where
log Pr,k(n) =

1
2
Sr(n) log(2πk) + k Sr+1(n) log(k/e)

+ B̂r+2,k log n +
( r+1

2 )∑

j=1

B̂2j,k Sr+1−2j(n).

The constants Ar and functions Qr are defined as in Theorem 26.
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The determination of exact expressions for the constants Fr,k seems to be a very
complicated and extensive task in the case r > 0. The next theorem gives a partial
result for k = 1 and r ≥ 0.

Theorem 29. Let r be a nonnegative integer, then

logFr,1 =
1
2

logAr − logAr+1 + Sr(1; B̂1+',1 − logA').

Case r = 0:
logFr,1 =

1
12

+
1
2

logA0 − 2 logA1.

Case r > 0:

logFr,1 = αr,0 +
r+1∑

j=1

αr,j logAj

where

αr,j =






Br+1
2r(r+1) , r -≡ j (mod 2), j = 0;

r∑
j=0

(r
j

) Br−j Bj+2
(j+1)2(j+2) , r ≡ j (mod 2), j = 0;

−δr+1,j −
(r+1

j

)Br+1−j

r+1 , r -≡ j (mod 2), j > 0;

0, r ≡ j (mod 2), j > 0

and δi,j is Kronecker’s delta.

Proof of Theorem 28. Let k and r be fixed. We extend the proof of Theorem 12.
From (6) we have

log(kν)! =
1
2

log(2πk) + kν log
(

k

e

)
+

(
kν +

1
2

)
log ν + Dk(ν). (20)

The summation yields

n∑

ν=1

νr log(kν)! = F1(n) + F2(n) + F3(n)

where
F1(n) =

1
2
Sr(n) log(2πk) + kSr+1(n) log(k/e),

F2(n) = k
n∑

ν=1

νr+1 log ν +
1
2

n∑

ν=1

νr log ν,

F3(n) =
n∑

ν=1

νrDk(ν).
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Theorem 26 provides

F2(n) = k (logAr+1 + log Qr+1(n)) +
1
2

(logAr + log Qr(n)) + O(n−δ)

with some δ > 0. Let R = / r+1
2 0. By definition we have

xrDk(x) =
R∑

j=1

B̂2j,k xr+1−2j +
∑

j>R

′ B̂2j,k xr+1−2j =: E1(x) + E2(x).

Therewith we obtain that

F3(n) =
R∑

j=1

B̂2j,k Sr+1−2j(n) +
n∑

ν=1

E2(ν).

For the second sum above we consider two cases. We use similar arguments which
we have applied to (7) and (8). If r is odd, then

lim
n→∞

n∑

ν=1

E2(ν) =
∑

j>R

′ B̂2j,k ζ(2j − (r + 1)). (21)

Note that B̂r+2,k = 0 in that case. If r is even, then we have to take care of the
term ν−1. This gives

lim
n→∞

(
n∑

ν=1

E2(ν)− B̂r+2,k log n

)
= γ B̂r+2,k +

∑

j>R+1

′ B̂2j,k ζ(2j − (r + 1)). (22)

The right hand side of (21), resp. (22), defines the constant logFr,k. Finally we have
to collect all results for F1, F2, and F3. This gives the constants and the function
Pr,k. It remains to show that limk→∞ logFr,k = 0. This follows by B̂2j,k → 0 as
k →∞. !

The following lemma gives a generalization of Equation (12) in Lemma 14. After
that we can give a proof of Theorem 29.

Lemma 30. Let n, r be integers with n ≥ 1 and r ≥ 0. Then

n!Sr(n)
n∏

ν=1

ν νr

=
n∏

ν=1

ν! νr
n∏

ν=1

νSr(ν). (23)
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Proof. We regard the following enumeration scheme which can be easily extended
to n rows and n columns:

11r
21r

31r

12r
22r

32r

13r
23r

33r

The product of all elements, resp. non-framed elements, in the νth row equals n! νr
,

resp. ν! νr
. The product of the framed elements in the νth column equals νSr(ν−1).

Thus

n!Sr(n) =
n∏

ν=1

ν! νr
n∏

ν=1

νSr(ν)−νr

.

!

Proof of Theorem 29. Let r ≥ 0. We take the logarithm of (23) to obtain

F1(n) + F2(n) = F3(n) + F4(n) (24)

where

F1(n) = Sr(n) log n!, F2(n) =
n∑

ν=1

νr log ν,

F3(n) =
n∑

ν=1

νr log ν!, F4(n) =
n∑

ν=1

Sr(ν) log ν.

Next we consider the asymptotic expansions F̃j of the functions Fj (j = 1, . . . , 4)
when n →∞. We further reduce the functions F̃j via the maps

C(R+; R)
[ ]−→ Ω∞

ψ−→ R

to the constant terms which are the asymptotic constants of [F̃j ] in Ω∞. Conse-
quently (24) turns into

ψ([F̃1]) + ψ([F̃2]) = ψ([F̃3]) + ψ([F̃4]). (25)

We know from Theorem 26 and Theorem 28 that

ψ([F̃2]) = logAr and ψ([F̃3]) = logFr,1 +
1
2

logAr + logAr+1.

For F̃4 we derive the expression

ψ([F̃4]) = Sr(1; logA'), (26)

since each term sjνj in Sr(ν) produces the term sj logAj . It remains to evaluate F̃1.
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According to (20) we have

log n! =
1
2

log(2π)− n +
(

n +
1
2

)
log n + D1(n) =: E(n) + D1(n).

Thus

F̃1(x) = Sr(x)E(x) + Sr(x)D1(x).

Since SrE ∈ Ω∞ has no constant term, we deduce that

ψ([F̃1]) = ψ([SrD1]) = Sr(1; B̂1+',1).

The latter equation is derived as was(26), except that we regard the constant terms
of the product of the polynomial Sr and the Laurent series D1. From (25) we finally
obtain

logFr,1 =
1
2

logAr − logAr+1 + Sr(1; B̂1+',1 − logA').

Now, we shall evaluate the expression above. For r = 0 we get

logF0,1 =
1
12

+
1
2

logA0 − 2 logA1,

since
S0(1; B̂1+',1 − logA') = B̂2,1 − logA1 =

1
12
− logA1.

For now, let r > 0. We may represent logFr,1 in terms of logAj as follows:

logFr,1 = αr,0 +
r+1∑

j=1

αr,j logAj .

The term αr,0 is given by

αr,0 = Sr(1; B̂1+',1) =
r∑

j=0

(
r

j

)
(−1)r−jBr−j

B̂j+2,1

j + 1

where the sum runs over even j, since B̂j+2,1 = 0 for odd j. If r is odd, then the
sum simplifies to the term Br+1/2r(r + 1). Otherwise we derive for even r that

αr,0 =
r∑

j=0

(
r

j

)
Br−j Bj+2

(j + 1)2(j + 2)
.

It remains to determine the coefficients αr,j for r + 1 ≥ j ≥ 1. Since 1
2xr − xr+1 −

Sr(x) is an odd, resp. even, polynomial for even, resp. odd, r > 0, this property
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transfers in a similar way to 1
2 logAr − logAr+1 − Sr(1; logA'), such that αr,j = 0

when 2 | r − j. Otherwise we get

αr,j = −
(

r

j − 1

)
Br−(j−1)

j
− δr+1,j = −

(
r + 1

j

)
Br+1−j

r + 1
− δr+1,j (27)

for 2 ! r − j, where the term − logAr+1 is represented by −δr+1,j . !

Corollary 31. Let r be an odd positive integer, then

logFr,1 = − r!
(2πi)r+1



ζ(r + 1)
r

+

r−1
2∑

j=1

ζ(r + 1− 2j)ζ(2j + 1)− (r + 2)ζ(r + 2)
2





= (−1)
r−1
2

r!
2



 |Br+1|
r(r + 1)!

+

r−1
2∑

j=1

|Br+1−2j | ζ(2j + 1)
(r + 1− 2j)! (2π)2j

− (r + 2)ζ(r + 2)
(2π)r+1



 .

Proof. As a consequence of the functional equation of ζ(s) and its derivative, we
have for even positive integers n that

logAn = −ζ ′(−n) = −1
2

n!
(2πi)n

ζ(n + 1) (28)

where the left hand side of (28) follows by definition [5, p. 276]. Theorem 29 provides

logFr,1 =
Br+1

2r(r + 1)
+

r+1
2∑

j=1

αr,2j logA2j .

Combining (27) and (28) gives the second equation above. By Euler’s formula (2)
we finally derive the first equation. !

Remark 32. For the sake of completeness, we give an analogue of (28) for odd
integers. From the logarithmic derivatives of Γ(s) and the functional equation of
ζ(s), see [5, pp. 183, 276], it follows for even positive integers n, that

logAn−1 =
Bn

n
Hn−1 − ζ ′(1− n) =

Bn

n
(γ + log(2π)) + 2

(n− 1)!
(2πi)n

ζ ′(n)

where

ζ ′(n) = −
∞∑

ν=2

log(ν) ν−n.

However, Mathematica is able to compute values of ζ ′ for positive and negative
argument values to any given precision.
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Result 33. Exact expressions for Fr,1 in terms of Aj :

Constant Expression Value

F0,1 e
1
12A

1
2
0 A

−2
1 1.04633506677050318098...

F1,1 e
1
24A−

3
2

2 0.99600199446870605433...
F2,1 e

7
540A−

1
6

1 A−
4
3

3 0.99904614418135586848...
F3,1 e−

1
720A−

1
4

2 A−
5
4

4 1.00097924030236153773...
F4,1 e−

67
18900A

1
30
1 A−

1
3

3 A−
6
5

5 1.00007169725554110099...
F5,1 e

1
2520A

1
12
2 A−

5
12

4 A−
7
6

6 0.99937792615674804266...

Exact expressions for Fr,1 in terms of ζ(2j + 1):

F1,1 = exp
(

1
24
− 3ζ(3)

8π2

)
,

F3,1 = exp
(
− 1

720
− ζ(3)

16π2
+

15ζ(5)
16π4

)
,

F5,1 = exp
(

1
2520

+
ζ(3)
48π2

+
5ζ(5)
16π4

− 105ζ(7)
16π6

)
.

For the first 15 constants Fr,1 (r = 0, . . . , 14) we find that

max
0≤r≤14

|Fr,1 − 1| < 0.05,

but, e.g., F19,1 ≈ 371.61 and F20,1 ≈ 1.16 · 10−7.
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