CONGRUENCES FOR HYPER M-ARY OVERPARTITION FUNCTIONS

Lin Ma
School of Mathematical Science, Xuzhou Normal University, Xuzhou , P.R. China
malin6292@163.com

Qing-Lin Lu ${ }^{1}$
School of Mathematical Science, Xuzhou Normal University, Xuzhou, P.R. China
qllu@xznu.edu.cn

Received: 12/2/08, Revised: 10/27/09, Accepted: 10/30/09, Published: 3/5/10

Abstract

We discuss a new restricted m-ary overpartition function $\bar{h}_{m}(n)$, which is the number of hyper m-ary overpartitions of n, such that each power of m is allowed to be used at most m times as a non-overlined part. In this note we use generating function dissections to prove the following family of congruences for all $n \geq 0, m \geq 4$, $j \geq 0,3 \leq k \leq m-1$, and $t \geq 1$: $$
\bar{h}_{m}\left(m^{j+t} n+m^{j+t-1} k+\cdots+m^{j} k\right) \equiv 0\left(\bmod 2^{t}\left(2^{j+1}-1\right)\right) .
$$

1. Introduction

Numerous functions which enumerate partitions into powers of a fixed number m (Here m is assumed to be bigger than 1) have been studied by Churchhouse [2], Rødseth [10], Andrews [1], Gupta [8] in the late 1960s and early 1970s, and Dirdal $[5,6]$ in the mid-1970s. For more recent work see $[7,11,9]$.

Presently there are a lot of activities in the study of the objects named overpartitions by Corteel and Lovejoy [3]. Rødseth [12] discussed divisibility properties of the number of m-ary overpartitions of a natural number. Courtright and Sellers [4] gave arithmetic properties for hyper m-ary partition functions. In this note, we define $\bar{h}_{m}(n)$ to be the number of hyper m-ary overpartitions of n. A hyper m-ary overpartion of n is a non-increasing sequence of non-negative integral powers of m whose sum is n, and where the first occurrence (equivalently, the final occurrence) of a power of m may be overlined, such that each power of m is allowed to be used at most m times as a non-overlined part. We denote the number of hyper m-ary overpartitions of n by $\bar{h}_{m}(n)\left(\bar{h}_{m}(n)=0\right.$ for all negative integers $\left.n\right)$. The overlined parts form an m-ary partition into distinct parts, and the non-overlined parts

[^0]form a hyper m-ary partition. Thus, putting $\bar{h}_{m}(0)=1$, we have the generating function
$$
\bar{H}_{m}(q):=\sum_{n \geq 0} \bar{h}_{m}(n) q^{n}=\prod_{i \geq 0}\left(1+q^{m^{i}}\right) \sum_{k=0}^{m} q^{k \cdot m^{i}}
$$

For example, for $m=2$ we find

$$
\sum_{n \geq 0} \bar{h}_{2}(n) q^{n}=1+2 q+4 q^{2}+5 q^{3}+8 q^{4}+10 q^{5}+13 q^{6}+\cdots
$$

where the 10 hyper binary overpartitions of 5 are

$$
\begin{gathered}
4+1, \overline{4}+1,4+\overline{1}, \overline{4}+\overline{1}, 2+2+1, \overline{2}+2+1 \\
2+2+\overline{1}, \overline{2}+2+\overline{1}, 2+\overline{1}+1+1, \overline{2}+\overline{1}+1+1
\end{gathered}
$$

From the generating function of $\bar{h}_{m}(n)$, we have

$$
\begin{equation*}
\bar{H}_{m}(q)=(1+q)\left(1+q+\cdots+q^{m}\right) \bar{H}_{m}\left(q^{m}\right) \tag{1}
\end{equation*}
$$

from which we obtain the following recurrences:

$$
\begin{gather*}
\bar{h}_{m}(m n)=\bar{h}_{m}(n)+2 \bar{h}_{m}(n-1), \tag{2}\\
\bar{h}_{m}(m n+1)=2 \bar{h}_{m}(n)+\bar{h}_{m}(n-1), \tag{3}\\
\bar{h}_{m}(m n+k)=2 \bar{h}_{m}(n) \quad \text { for } \quad 2 \leq k \leq m-1 . \tag{4}
\end{gather*}
$$

The main object of this note is to prove the following family of congruences for all $n \geq 0, m \geq 4, j \geq 0, t \geq 1$, and k satisfying $3 \leq k \leq m-1$,

$$
\bar{h}_{m}\left(m^{j+t} n+m^{j+t-1} k+\cdots+m^{j} k\right) \equiv 0\left(\bmod 2^{t}\left(2^{j+1}-1\right)\right)
$$

2. Congruences for Hyper Binary and Trinary Overpartitions

We now focus our attention on the function $\bar{h}_{2}(n)$.
Lemma 1 For all $n \geq 0$, we have

$$
\bar{h}_{2}(3 n+1) \equiv 0(\bmod 2), \quad \bar{h}_{2}(3 n+2) \equiv 0(\bmod 2)
$$

Proof. We prove this lemma via induction on n. First, the lemma holds for the case $n=0$ since $\bar{h}_{2}(1)=2 \equiv 0(\bmod 2), \quad \bar{h}_{2}(2)=4 \equiv 0(\bmod 2)$. Now, we assume the lemma is true for all $n \leq k$. Then we consider the case $n=k+1$.

Case 1. $k=2 j$ for some integer $j<k$. Then from (2), (3) and induction hypothesis we have

$$
\begin{aligned}
\bar{h}_{2}(3(k+1)+1) & =\bar{h}_{2}(2(3 j+2)) \\
& =\bar{h}_{2}(3 j+2)+2 \bar{h}_{2}(3 j+1) \equiv 0(\bmod 2), \\
\bar{h}_{2}(3(k+1)+2) & =\bar{h}_{2}(2(3 j+2)+1) \\
& =2 \bar{h}_{2}(3 j+2)+\bar{h}_{2}(3 j+1) \equiv 0(\bmod 2) .
\end{aligned}
$$

Case 2. $k=2 j+1$ for some integer $j<k$. We also have

$$
\begin{aligned}
\bar{h}_{2}(3(k+1)+1) & =\bar{h}_{2}(2(3 j+3)+1) \\
& =2 \bar{h}_{2}(3 j+3)+\bar{h}_{2}(3 j+2) \equiv 0(\bmod 2), \\
\bar{h}_{2}(3(k+1)+2) & =\bar{h}_{2}(2(3 j+4)) \\
& =\bar{h}_{2}(3 j+4)+2 \bar{h}_{2}(3 j+3) \equiv 0(\bmod 2) .
\end{aligned}
$$

So the lemma is true for the case $n=k+1$ and the proof is completed.
By the lemma and similar techniques we can prove the following theorem:
Theorem 2 For all $n \geq 0$, we have

$$
\bar{h}_{2}(n) \equiv 0(\bmod 2) \text { if and only if } n \equiv 1,2(\bmod 3)
$$

Proof. The sufficiency is handled in Lemma 2.1. We now prove the necessity. We need only to prove $\bar{h}_{2}(3 n) \equiv 1(\bmod 2)$ by induction on n. First, the case $n=0$ is clear. Now, we assume the result is true for all $n \leq k$. Then we consider the case $n=k+1$.

Case 1. $k=2 j$ for some integer $j<k$. Then from (2), (3), and the induction hypothesis we have

$$
\bar{h}_{2}(3(k+1))=\bar{h}_{2}(2(3 j+1)+1)=2 \bar{h}_{2}(3 j+1)+\bar{h}_{2}(3 j) \equiv 1(\bmod 2) .
$$

Case 2. $k=2 j+1$ for some integer $j<k$. We also have

$$
\bar{h}_{2}(3(k+1))=\bar{h}_{2}(2(3 j+3))=\bar{h}_{2}(3 j+3)+2 \bar{h}_{2}(3 j+2) \equiv 1(\bmod 2) .
$$

So the case $n=k+1$ is true. This completes the proof.

From the proof of Theorem 2.2 and $\bar{h}_{2}(3) \equiv 1(\bmod 4)$, we have

Corollary 3 For all $n \geq 0$, we have $\bar{h}_{2}(3 n) \equiv 1(\bmod 4)$.

Lemma 4 For all $k \geq 0$, we have

$$
\begin{aligned}
\bar{h}_{2}\left(2^{k}\right)-\bar{h}_{2}\left(2^{k}-1\right) & =k+1, \\
\bar{h}_{2}\left(2^{k}-1\right)-\bar{h}_{2}\left(2^{k}-2\right) & =1, \\
\bar{h}_{2}\left(2^{k}-2\right)-\bar{h}_{2}\left(2^{k}-3\right) & =k .
\end{aligned}
$$

Proof. We prove this lemma by induction on k. First the case $k=0$ is clear. Now, we assume the result is true for $k=n$ and we consider the case $k=n+1$. By the recurrences (2) and (3), we have

$$
\begin{aligned}
& \bar{h}_{2}\left(2^{n+1}\right)-\bar{h}_{2}\left(2^{n+1}-1\right) \\
& \quad=\bar{h}_{2}\left(2 \cdot 2^{n}\right)-\bar{h}_{2}\left(2\left(2^{n}-1\right)+1\right) \\
& \quad=\bar{h}_{2}\left(2^{n}\right)+2 \bar{h}_{2}\left(2^{n}-1\right)-\left(2 \bar{h}_{2}\left(2^{n}-1\right)+\bar{h}_{2}\left(2^{n}-2\right)\right) \\
& \quad=\bar{h}_{2}\left(2^{n}\right)-\bar{h}_{2}\left(2^{n}-1\right)+\left(\bar{h}_{2}\left(2^{n}-1\right)-\bar{h}_{2}\left(2^{n}-2\right)\right) \\
& \quad=(n+1)+1=n+2 . \\
& \\
& \bar{h}_{2}\left(2^{n+1}-1\right)-\bar{h}_{2}\left(2^{n+1}-2\right) \\
& \quad=\bar{h}_{2}\left(2\left(2^{n}-1\right)+1\right)-\bar{h}_{2}\left(2\left(2^{n}-1\right)\right) \\
& \quad=2 \bar{h}_{2}\left(2^{n}-1\right)+\bar{h}_{2}\left(2^{n}-2\right)-\left(\bar{h}_{2}\left(2^{n}-1\right)+2 \bar{h}_{2}\left(2^{n}-2\right)\right) \\
& \quad=\bar{h}_{2}\left(2^{n}-1\right)-\bar{h}_{2}\left(2^{n}-2\right)=1 . \\
& \bar{h}_{2}\left(2^{n+1}-2\right)-\bar{h}_{2}\left(2^{n+1}-3\right) \\
& \quad=\bar{h}_{2}\left(2\left(2^{n}-1\right)\right)-\bar{h}_{2}\left(2\left(2^{n}-2\right)+1\right) \\
& \quad=\bar{h}_{2}\left(2^{n}-1\right)+2 \bar{h}_{2}\left(2^{n}-2\right)-\left(2 \bar{h}_{2}\left(2^{n}-2\right)+\bar{h}_{2}\left(2^{n}-3\right)\right) \\
& \quad=\left(\bar{h}_{2}\left(2^{n}-1\right)-\bar{h}_{2}\left(2^{n}-2\right)\right)+\left(\bar{h}_{2}\left(2^{n}-2\right)-\bar{h}_{2}\left(2^{n}-3\right)\right) \\
& \quad=1+n=n+1 .
\end{aligned}
$$

So the lemma is true for the case $k=n+1$ and the proof is completed.

By Lemma 4 and induction on n, we can prove
Theorem 5 For all $n \geq 0$, we have

$$
\bar{h}_{2}\left(2^{n}\right)=\frac{1}{2}\left(3^{n}+1\right)+n+1, \quad \bar{h}_{2}\left(2^{n}-1\right)=\frac{1}{2}\left(3^{n}+1\right) .
$$

Proof. We prove this theorem by induction on n. By Lemma 2.4, we need only to prove the first formula. First, the formula is true for $n=0$. Now, we assume the formula is true for $n=k$. Then we have

$$
\begin{aligned}
\bar{h}_{2}\left(2^{k+1}\right) & =\bar{h}_{2}\left(2^{k}\right)+2 \bar{h}_{2}\left(2^{k}-1\right) \\
& =3 \bar{h}_{2}\left(2^{k}\right)-2\left(\bar{h}_{2}\left(2^{k}\right)-\bar{h}_{2}\left(2^{k}-1\right)\right) \\
& =\frac{3}{2}\left(3^{k}+1\right)+3(k+1)-2(k+1)
\end{aligned}
$$

(by induction hypothesis and Lemma 4)
$=\frac{1}{2}\left(3^{k+1}+1\right)+k+2$.
So the theorem is true for the case $n=k+1$ and the proof is completed.

From Theorem 5 and Lemma 4 we can easily obtain
Corollary 6 For all $n \geq 1$, we have

$$
\bar{h}_{2}\left(2^{n}-2\right)=\frac{1}{2}\left(3^{n}-1\right), \quad \bar{h}_{2}\left(2^{n}-3\right)=\frac{1}{2}\left(3^{n}-1\right)-n .
$$

Now, we consider the function $\bar{h}_{3}(n)$.
Theorem 7 For all $n \geq 0$, we have

$$
n \equiv 1,2,3(\bmod 4) \text { implies } \bar{h}_{3}(n) \equiv 0(\bmod 2)
$$

Proof. We prove this theorem by induction on n. First the theorem is true for the case $n=0$ since

$$
\bar{h}_{3}(1)=2, \quad \bar{h}_{3}(2)=2, \quad \bar{h}_{3}(3)=4 .
$$

Now we assume the lemma is true for all $n \leq k$ and we consider the case $n=k+1$.

Case 1. $k=3 j$ for some integer $j<k$. Then from (2), (3), (4) and the induction hypothesis we have

$$
\begin{aligned}
\bar{h}_{3}(4(k+1)+1) & =\bar{h}_{3}(3(4 j+1)+2) \\
& =2 \bar{h}_{3}(4 j+1) \equiv 0(\bmod 2) \\
\bar{h}_{3}(4(k+1)+2) & =\bar{h}_{3}(3(4 j+2)) \\
& =\bar{h}_{3}(4 j+2)+2 \bar{h}_{3}(4 j+1) \equiv 0(\bmod 2), \\
\bar{h}_{3}(4(k+1)+3) & =\bar{h}_{3}(3(4 j+2)+1) \\
& =2 \bar{h}_{3}(4 j+2)+\bar{h}_{3}(4 j+1) \equiv 0(\bmod 2) .
\end{aligned}
$$

Case 2. $k=3 j+1$ for some integer $j<k$. We also have

$$
\begin{aligned}
\bar{h}_{3}(4(k+1)+1) & =\bar{h}_{3}(3(4 j+3)) \\
& =\bar{h}_{3}(4 j+3)+2 \bar{h}_{3}(4 j+2) \equiv 0(\bmod 2), \\
\bar{h}_{3}(4(k+1)+2) & =\bar{h}_{3}(3(4 j+3)+1) \\
& =2 \bar{h}_{3}(4 j+3)+\bar{h}_{3}(4 j+2) \equiv 0(\bmod 2), \\
\bar{h}_{3}(4(k+1)+3) & =\bar{h}_{3}(3(4 j+3)+2) \\
& =2 \bar{h}_{3}(4 j+3) \equiv 0(\bmod 2)
\end{aligned}
$$

Case 3. $k=3 j+2$ for some integer $j<k$. We also have

$$
\begin{aligned}
\bar{h}_{3}(4(k+1)+1) & =\bar{h}_{3}(3(4 j+4)+1) \\
& =2 \bar{h}_{3}(4 j+4)+\bar{h}_{3}(4 j+3) \equiv 0(\bmod 2), \\
\bar{h}_{3}(4(k+1)+2) & =\bar{h}_{3}(3(4 j+4)+2) \\
& =2 \bar{h}_{3}(4 j+4) \equiv 0(\bmod 2), \\
\bar{h}_{3}(4(k+1)+3) & =\bar{h}_{3}(3(4 j+5)) \\
& =\bar{h}_{3}(4 j+5)+2 \bar{h}_{3}(4 j+4) \equiv 0(\bmod 2) .
\end{aligned}
$$

So the theorem is true for the case $n=k+1$ and the proof is completed.

From Theorem 7 and Recurrence (4) we can prove

Theorem 8 For all $n \geq 0, k \geq 0$, we have

$$
\begin{aligned}
& \bar{h}_{3}\left(4 n \cdot 3^{k}+2 \cdot 3^{k}-1\right) \equiv 0\left(\bmod 2^{k+1}\right) \\
& \bar{h}_{3}\left(4 n \cdot 3^{k}+3 \cdot 3^{k}-1\right) \equiv 0\left(\bmod 2^{k+1}\right) \\
& \bar{h}_{3}\left(4 n \cdot 3^{k}+4 \cdot 3^{k}-1\right) \equiv 0\left(\bmod 2^{k+1}\right)
\end{aligned}
$$

Proof. We prove this result by induction on k. We first consider the case $k=0$. Note that the case $k=0$ is Theorem 2.7. Now, we assume

$$
\begin{aligned}
& \bar{h}_{3}\left(4 n \cdot 3^{k}+2 \cdot 3^{k}-1\right) \equiv 0\left(\bmod 2^{k+1}\right), \\
& \bar{h}_{3}\left(4 n \cdot 3^{k}+3 \cdot 3^{k}-1\right) \equiv 0\left(\bmod 2^{k+1}\right), \\
& \bar{h}_{3}\left(4 n \cdot 3^{k}+4 \cdot 3^{k}-1\right) \equiv 0\left(\bmod 2^{k+1}\right) .
\end{aligned}
$$

Then by Recurrence (4) we have

$$
\begin{aligned}
\bar{h}_{3}\left(4 n \cdot 3^{k+1}+2 \cdot 3^{k+1}-1\right) & =\bar{h}_{3}\left(3\left(4 n \cdot 3^{k}+2 \cdot 3^{k}-1\right)+2\right) \\
& =2 \bar{h}_{3}\left(4 n \cdot 3^{k}+2 \cdot 3^{k}-1\right) \equiv 0\left(\bmod 2^{k+2}\right), \\
\bar{h}_{3}\left(4 n \cdot 3^{k+1}+3 \cdot 3^{k+1}-1\right) & =\bar{h}_{3}\left(3\left(4 n \cdot 3^{k}+3 \cdot 3^{k}-1\right)+2\right) \\
& =2 \bar{h}_{3}\left(4 n \cdot 3^{k}+3 \cdot 3^{k}-1\right) \equiv 0\left(\bmod 2^{k+2}\right), \\
\bar{h}_{3}\left(4 n \cdot 3^{k+1}+4 \cdot 3^{k+1}-1\right) & =\bar{h}_{3}\left(3\left(4 n \cdot 3^{k}+4 \cdot 3^{k}-1\right)+2\right) \\
& =2 \bar{h}_{3}\left(4 n \cdot 3^{k}+4 \cdot 3^{k}-1\right) \equiv 0\left(\bmod 2^{k+2}\right),
\end{aligned}
$$

thereby completing the proof.
Furthermore, we obtain
Theorem 9 For all $n \geq 0$, we have $\bar{h}_{3}\left(3^{n}\right)=2^{n+1}$, and $\bar{h}_{3}\left(3^{n}-1\right)=2^{n}$.
Proof. We prove this result via induction on n using Recurrences (2) and (4). First, the theorem holds for the case $n=0$ since $\bar{h}_{3}(1)=2, \bar{h}_{3}(0)=1$. Now we assume the theorem is true for the case $n=k$. Then we have

$$
\begin{aligned}
\bar{h}_{3}\left(3^{k+1}\right) & =\bar{h}_{3}\left(3^{k}\right)+2 \bar{h}_{3}\left(3^{k}-1\right)=2^{k+1}+2 \cdot 2^{k}=2^{k+2}, \\
\bar{h}_{3}\left(3^{k+1}-1\right) & =2 \bar{h}_{3}\left(3^{k}-1\right)=2^{k+1} .
\end{aligned}
$$

So the theorem is true for the case $n=k+1$ and the proof is complete.

By Theorem 9 and Recurrence (4) we can easily prove
Corollary 10 For all $n \geq 0$, we have $\bar{h}_{3}\left(3^{n+1}+2\right)=2^{n+2}$.

3. General Conclusion

Lemma 11 For all $n \geq 0, m \geq 3$ and $j \geq 0$, we have

$$
\bar{h}_{m}\left(m^{j} n\right)=\bar{h}_{m}(n)+\left(2^{j+1}-2\right) \bar{h}_{m}(n-1) .
$$

Proof. We prove this result by induction on j. Note that the case $j=0$ is clear and the case $j=1$ is the recurrence (2). Now, we assume the result is true for some positive integer j. This means we assume that

$$
\bar{h}_{m}\left(m^{j} n\right)=\bar{h}_{m}(n)+\left(2^{j+1}-2\right) \bar{h}_{m}(n-1)
$$

or that

$$
\sum_{n \geq 0} \bar{h}_{m}\left(m^{j} n\right) q^{n}=\left(1+\left(2^{j+1}-2\right) q\right) \bar{H}_{m}(q) .
$$

Then, we have

$$
\begin{aligned}
\bar{h}_{m}\left(m^{j+1} n\right) & =\left[q^{m n}\right]\left(1+\left(2^{j+1}-2\right) q\right) \bar{H}_{m}(q) \\
& =\left[q^{m n}\right]\left(1+\left(2^{j+1}-2\right) q\right)(1+q)\left(1+q+\cdots+q^{m}\right) \bar{H}_{m}\left(q^{m}\right) \\
& =\left[q^{m n}\right]\left(1+2 q^{m}+\left(2^{j+1}-2\right) q \cdot 2 q^{m-1}\right) \bar{H}_{m}\left(q^{m}\right) \\
& =\left[q^{n}\right]\left(1+\left(2^{j+2}-2\right) q\right) \bar{H}_{m}(q) \\
& =\bar{h}_{m}(n)+\left(2^{j+2}-2\right) \bar{h}_{m}(n-1) .
\end{aligned}
$$

From Lemma 11 we can easily prove the following result, which generalizes Theorem 9.

Corollary 12 For all $n \geq 0$ and $m \geq 3$, we have

$$
\bar{h}_{m}\left(m^{n}\right)=2^{n+1}, \quad \bar{h}_{m}\left(m^{n}-1\right)=2^{n} .
$$

We now prove a family of congruences using similar elementary techniques.
Lemma 13 Let $m \geq 4, j \geq 0$, and $3 \leq k \leq m-1$. Then for all $n \geq 0$, we have

$$
\bar{h}_{m}\left(m^{j+1} n+m^{j} k\right)=\left(2^{j+2}-2\right) \bar{h}_{m}(n) .
$$

Proof. Using Lemma 11, we have

$$
\begin{aligned}
\bar{h}_{m}\left(m^{j+1} n+m^{j} k\right)= & {\left[q^{m n+k}\right]\left(1+\left(2^{j+1}-2\right) q\right) \bar{H}_{m}(q) } \\
= & {\left[q^{m n+k}\right]\left(1+\left(2^{j+1}-2\right) q\right) } \\
& \times\left(1+2 q+2 q^{2}+\cdots+2 q^{m}+q^{m+1}\right) \bar{H}_{m}\left(q^{m}\right) \\
= & {\left[q^{m n+k}\right]\left(2 q^{k}+\left(2^{j+1}-2\right) q \cdot 2 q^{k-1}\right) \bar{H}_{m}\left(q^{m}\right) } \\
& \quad(\text { since } 3 \leq k, \text { so that } m+2<m+k) \\
= & {\left[q^{m n}\right]\left(2^{j+2}-2\right) \bar{H}_{m}\left(q^{m}\right) } \\
= & \left(2^{j+2}-2\right) \bar{h}_{m}(n) .
\end{aligned}
$$

Remark 14 Lemma 13 implies that, for $m \geq 4, j \geq 0$ and $3 \leq k \leq m-1$, we have

$$
\bar{h}_{m}\left(m^{j+1} n+m^{j} k\right) \equiv 0\left(\bmod \left(2^{j+2}-2\right)\right)
$$

Theorem 15 For all $n \geq 0, m \geq 4, j \geq 0, t \geq 1$ and k satisfying $3 \leq k \leq m-1$, we have

$$
\bar{h}_{m}\left(m^{j+t} n+m^{j+t-1} k+\cdots+m^{j} k\right)=2^{t}\left(2^{j+1}-1\right) \bar{h}_{m}(n) .
$$

Proof. We prove this result by induction on t. The case $t=1$ is proved in Lemma 13. Now we assume

$$
\bar{h}_{m}\left(m^{j+t-1} n+m^{j+t-2} k+\cdots+m^{j} k\right)=2^{t-1}\left(2^{j+1}-1\right) \bar{h}_{m}(n)
$$

or that

$$
\bar{h}_{m}\left(m^{j+t-1} n+m^{j+t-2} k+\cdots+m^{j} k\right)=\left[q^{n}\right] 2^{t-1}\left(2^{j+1}-1\right) \bar{H}_{m}(q) .
$$

Then we have

$$
\begin{aligned}
\bar{h}_{m}(& \left.m^{j+t} n+m^{j+t-1} k+\cdots+m^{j} k\right) \\
& =\left[q^{m n+k}\right] 2^{t-1}\left(2^{j+1}-1\right) \bar{H}_{m}(q) \\
& =\left[q^{m n+k}\right] 2^{t-1}\left(2^{j+1}-1\right)(1+q)\left(1+q+\cdots+q^{m}\right) \bar{H}_{m}\left(q^{m}\right) \\
& =\left[q^{m n+k}\right] 2^{t-1}\left(2^{j+1}-1\right) \cdot 2 q^{k} \bar{H}_{m}\left(q^{m}\right) \\
& =\left[q^{n}\right] 2^{t}\left(2^{j+1}-1\right) \bar{H}_{m}(q) \\
& =2^{t}\left(2^{j+1}-1\right) \bar{h}_{m}(n)
\end{aligned}
$$

Remark 16 Theorem 15 implies that, for all $n \geq 0, m \geq 4, j \geq 1,3 \leq k \leq m-1$, and $t \geq 1$,

$$
\bar{h}_{m}\left(m^{j+t} n+m^{j+t-1} k+\cdots+m^{j} k\right) \equiv 0\left(\bmod 2^{t}\left(2^{j+1}-1\right)\right)
$$

Corollary 17 For all $t \geq 0, m \geq 4$, we have

$$
\begin{equation*}
\bar{h}_{m}\left(m^{t+1}+m^{t}-1\right)=2^{t+2} \tag{5}
\end{equation*}
$$

Proof. A proof can be obtained by letting $n=m, j=0, k=m-1$ in Theorem 15.
Remark 18 We can easily prove (5) is true for the case $m=3$.

Acknowledgements The authors would like to thank the anonymous referee for his productive and useful comments and suggestions. Theorem 8 was suggested by the referee.

References

[1] G. E. Andrews, Congruence properties of the m-ary partition function, J. Number Theory $\mathbf{3}$ (1971) 104-110.
[2] R. Churchhouse, Congruence properties of the binary partition function, Proc. Cambridge Philos. Soc. 66 (1969) 371-376.
[3] S. Corteel, J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356 (2004) 1623-1635.
[4] K. M. Courtright, J. A. Sellers, Arithmetic properties for hyper m-ary partition functions, Integers 4 (2004).
[5] G. Dirdal, On restricted m-ary partitions,Math. Scand. 37 (1975) 51-60.
[6] G. Dirdal, Congruences for m-ary partitions, Math. Scand. 37 (1975) 76-82.
[7] L. L. Dolph, A. Reynolds, J. A. Sellers, Congruences for a restricted m-ary partition function, Discrete Math 219 (2000) 265-269.
[8] H. Gupta, On m-ary partitions, Proc. Cambridge Philos. Soc. 71 (1972) 343-345.
[9] Q. L. Lu, On a restricted m-ary partition function, Discrete Math 275 (2004) 347-353.
[10] Ø. Rødseth, Some arithmetical properties of m-ary partitions, Proc. Cambridge Philos. Soc. 68 (1970), 447-453.
[11] \emptyset. Rødseth, J. A. Sellers, On m-ary partition function congruences : a fresh look at a past problem, J. Number Theory 87 (2001) 270-281.
[12] Ø. Rødseth, J. A. Sellers, On m-ary overpartitions, Annals of Combinatorics 9 (2005) 345353.

[^0]: ${ }^{1}$ Research is jointly supported by the National Natural Science Foundation of China (10771100) and the Natural Science Foundation for Colleges and Universities in Jiangsu province (06KJD110179).

