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Abstract
Recently, designs of pseudorandom number generators (PRNGs) using integer-
valued variants of logistic maps and their applications to certain cryptographic
schemes have been studied, due mostly to their ease of implementation and perfor-
mance. However, it has been noted that this ease is reduced for some choices of
the PRNGs accuracy parameters. In this article, we show that the distribution of
such undesirable accuracy parameters is closely related to the occurrence of some
patterns in the dyadic expansion of the square root of 2. We prove that for an
arbitrary infinite binary word, the asymptotic occurrence rate of these patterns is
bounded in terms of the asymptotic occurrence rate of zeroes. As a consequence,
a classical conjecture on asymptotic evenness of occurrence of zeroes and ones in
the dyadic expansion of the square root of 2 implies that the asymptotic rate of the
undesirable accuracy parameters for the PRNGs is at least 1/6.

1. Introduction

Randomness is a ubiquitous element in our present life and can be found from a
simple coin toss at the beginning of a football game, to more complex settings
such as encrypted communication of governmental secrets. The provision, appli-
cation and evaluation of randomness has occupied a major and attractive branch
of mathematics. In particular, there exist several methods and techniques that
generate a seemingly random-looking sequence by using shorter random sequences
(often called a seed) and deterministic algorithm, better known as a pseudorandom
number generator (PRNG), see for instance [3] for references therein.

In this article, we reveal a nontrivial relation between analysis of some PRNGs
and properties of the dyadic expansion of

√
2 = (1.01101 · · ·)2. Note, however, that

the dyadic expansion of
√

2 does not appear in the construction of the PRNGs
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itself. Also, it has been shown that the logistic map

L(x) = µx(1− x) , 0 < x < 1 ,

for some parameter µ can be effectively used for constructing good PRNGs ([7, 8]).
In particular, when µ = 4 is adopted, the logistic map shows chaotic behavior.
However, those PRNGs deal with real number as outputs and can therefore not
be implemented in computers due to their finite accuracy. As a result, a modified
integer-valued logistic map of the form:

Ln(x) =
⌊

4x(2n − x)
2n

⌋
=

⌊
x(2n − x)

2n−2

⌋
, x ∈ Xn = {1, 2, . . . , 2n − 1}

where $z% denotes the largest integer N such that N ≤ z and 2 ≤ n ∈ Z is an
accuracy parameter, has been proposed and studied in [1, 5]. The definition of
Ln(x) is derived from L(x) by expanding the bounds of the original seed x ∈ (0, 1)
to the larger interval (0, 2n) and then truncating the final value to obtain an integer.
The corresponding PRNG first chooses an internal state s0 = s from the set Xn and
then for each step i ≥ 1, updates the internal state by si = Ln(si−1) and outputs
some bits in the dyadic expansion of si.

For the above PRNG, it has been mentioned in [4] that when si = 2n−1 for some
i, the subsequent internal states eventually become stable, i.e., we have si+1 = 2n

and sj = 0 for every j ≥ i + 2. Since stable internal states are fatal for the purpose
of providing good randomness, the value 2n−1 should not be used as an internal
state. To correct the problem, it is not enough to simply exclude the value 2n−1

itself from the candidates of the initial internal state s0. Namely, if there exists an
x ∈ Xn such that Ln(x) = 2n−1, then the choice of internal state s0 = x for such an
x also makes the internal states eventually stable. We call the accuracy parameter
n undesirable if such an x exists, since in such a case an extra check is required
for choosing an appropriate initial internal state. The purpose of this work is to
estimate how many undesirable parameters exist among the integers n ≥ 2.

We explain an aforementioned relation of the above PRNGs with combinatorial
properties of

√
2. Let bi ∈ {0, 1} denote the i-th bit of the fractional part of the

dyadic expansion of
√

2, namely
√

2 = (1.b1b2b3 · · ·)2 .

We show that a parameter n ≥ 2 is undesirable if the (n− 1)-th tail bn−1bnbn+1 · · ·
of the dyadic expansion of

√
2 begins with one of the three patterns 00, 0100, and

01010. For instance, since

√
2 = (1.011010100000100 · · ·)2 , (1)
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we have b12 = b14 = b15 = 0 and b13 = 1, implying n = 13 is undesirable. As a
result, the occurrence rate of these three patterns in the dyadic expansion of

√
2

gives a lower bound of the occurrence rate of undesirable parameters. Motivated by
the observation, we study the distributions of the three patterns in arbitrary infinite
binary words w = w1w2w3 · · ·, and prove that the asymptotic occurrence rate of
the three patterns in w is bounded by a function of the asymptotic occurrence rate
of zeroes in w (see Theorem 6 for the precise statement). This result connects the
asymptotic occurrence rate of undesirable parameters to the distribution of zeroes
in the dyadic expansion of

√
2. For the latter, it has been conjectured that the

asymptotic occurrence rate of zeroes in the dyadic expansion of
√

2 is 1/2 (in other
words,

√
2 is simply normal to the base 2). If the conjecture is true, it follows,

by applying our above-mentioned general result (Theorem 6), that the asymptotic
occurrence rate of undesirable parameters is lower bounded by 1/6, which shows a
disadvantage of the above PRNGs.

This article is organized as follows. In Section 2, we prove the aforementioned
sufficient condition of an accuracy parameter n being undesirable, in terms of the
occurrence rate of the three patterns 00, 0100, and 01010 in the dyadic expansion
of
√

2. In Section 3, we state the main theorem (Theorem 6) on a relation between
the asymptotic occurrence rates of the three patterns and of zeroes in arbitrary
infinite binary words. As a result, we also estimate the asymptotic occurrence rate
of undesirable parameters. Finally, Section 4 gives the proof of the main theorem.

2. Integer-Valued Logistic Maps

As mentioned in Section 1, the main aim of this article is to study the integer-
valued logistic maps Ln(x) with domain Xn = {1, 2, . . . , 2n − 1}, parameterized by
an integer n ≥ 2. These are defined by

Ln(x) =
⌊

4x(2n − x)
2n

⌋
=

⌊
x(2n − x)

2n−2

⌋
, x ∈ Xn = {1, 2, . . . , 2n − 1} . (2)

Note that Ln(x) ∈ Xn for any x ∈ Xn \ {2n−1}, while Ln(2n−1) = 2n. We would
like to estimate the asymptotic occurrence rate of accuracy parameters n, among
all integers n ≥ 2, that satisfy the following condition:

Definition 1 We say that a parameter 2 ≤ n ∈ Z is undesirable if there exists an
x ∈ Xn such that Ln(x) = 2n−1.

This definition is motivated by an analysis of some pseudorandom number gener-
ators (PRNGs) using Ln(x); see Section 1 for details. In the rest of this section,
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we show that the occurrence rate of undesirable parameters is related to the occur-
rence of the patterns 00, 0100, and 01010 in the dyadic expansion of

√
2. For the

purpose, first note that by the definition, a parameter n is undesirable if and only
if there exists an x ∈ Xn such that 2n−1 ≤ x(2n − x)/2n−2 < 2n−1 + 1. By solving
the inequality, it follows that this condition for x is equivalent to

√
22n−3 − 2n−2 < |2n−1 − x| ≤

√
22n−3 . (3)

Moreover, since

√
22n−3 −

√
22n−3 − 2n−2 =

2n−2

√
22n−3 +

√
22n−3 − 2n−2

>
2n−2

2
√

22n−3
=
√

2
4

,

the condition (3) is satisfied if 2n−2
√

2−
√

2/4 ≤ |2n−1−x| ≤ 2n−2
√

2. Summarizing,
we have the following lemma:

Lemma 2 A parameter n ≥ 2 is undesirable if 2n−2
√

2−
√

2/4 ≤ m ≤ 2n−2
√

2 for
some integer m.

This lemma can be rephrased in terms of the dyadic expansion of
√

2 as follows.
Let

√
2 = (1.b1b2b3 · · ·)2 be the dyadic expansion of

√
2. For instance, we have

b1 = 0, b2 = 1 and b3 = 1 (see (1)). Then the fractional part of the dyadic
expansion of 2n−2

√
2 is (0.bn−1bnbn+1 · · ·)2, while the dyadic expansion of

√
2/4 is

(0.01b1b2b3 · · ·)2. By using these expressions, Lemma 2 implies the following:

Lemma 3 In the above setting, a parameter n ≥ 2 is undesirable if

(0.bn−1bnbn+1 · · ·)2 ≤ (0.01b1b2b3 · · ·)2 . (4)

Since b1b2b3 = 011, the condition (4) is satisfied if bn−1bn = 00, bn−1bnbn+1bn+2 =
0100, or bn−1bnbn+1bn+2bn+3 = 01010. Summarizing, we obtain the following suf-
ficient condition for an accuracy parameter n being undesirable:

Proposition 4 In the above setting, a parameter n ≥ 2 is undesirable if bn−1bn =
00, bn−1bnbn+1bn+2 = 0100, or bn−1bnbn+1bn+2bn+3 = 01010.

Remark 5 In general, the sufficient condition given by Proposition 4 is not nec-
essary for a parameter n ≥ 2 being undesirable. More precisely, there exists a gap
between the sufficient conditions in Proposition 4 and in Lemma 3. For instance,
n = 65 satisfies the condition (4) but not the condition in Proposition 4. Thus
a more precise study of the condition (4) would provide a better result. The au-
thor hopes that the condition (4) can motivate further interesting arguments by its
self-referential structure.
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3. Occurrence Rates of the Three Patterns

Motivated by Proposition 4, in this section we investigate the asymptotic occurrence
rate of the three patterns 00, 0100, and 01010 in an infinite binary word. The result
will be used to estimate the asymptotic occurrence rate of undesirable parameters.

To formulate the problem, we introduce the following notations. For a finite or
infinite binary word w = w1w2w3 · · · (wi ∈ {0, 1}), let !(w) denote the length of w.
Let P (w) denote the set of indices i ≥ 2 in w such that one of the following three
conditions holds:

• !(w) ≥ i and wi−1wi = 00;

• !(w) ≥ i + 2 and wi−1wiwi+1wi+2 = 0100;

• !(w) ≥ i + 3 and wi−1wiwi+1wi+2wi+3 = 01010.

By Proposition 4, a parameter n ≥ 2 is undesirable if n ∈ P (b), where b = b1b2b3 · · ·
is the fractional part of the dyadic expansion of

√
2 as an infinite binary word. Let

w(k) denote the initial subword of w of length k. Moreover, let Z(w) denote the set
of indices i in w such that wi = 0. Then our main theorem in this section shows
relations between the quantities

rinf(w) = lim inf
n→∞

|Z(w(n))|
n

and Rinf(w) = lim inf
n→∞

|P (w(n))|
n

, (5)

and relations between the quantities

rsup(w) = lim sup
n→∞

|Z(w(n))|
n

and Rsup(w) = lim sup
n→∞

|P (w(n))|
n

. (6)

By using the above notations, we state the main theorem as follows:

Theorem 6 For any infinite binary word w = w1w2w3 · · ·, let rinf(w), rsup(w),
Rinf(w), and Rsup(w) be defined in (5) and (6). Then we have

5rinf(w)− 2
3

≤ Rinf(w) ≤ rinf(w) and
5rsup(w)− 2

3
≤ Rsup(w) ≤ rsup(w) . (7)

Note that the lower bounds of Rinf(w) and Rsup(w) become trivial if rinf(w) < 2/5
and rsup(w) < 2/5, respectively. The proof of Theorem 6 will be given in Section 4.
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Remark 7 In fact, we can further prove that the lower and upper bounds in Theo-
rem 6 are tight (except the trivial exceptional cases rinf(w) < 2/5 and rsup(w) < 2/5,
in which case values of the lower bounds become negative). More precisely, for
any real number 2/5 ≤ r ≤ 1, there exists an infinite binary word w such that
rinf(w) = rsup(w) = r and Rinf(w) = Rsup(w) = (5r − 2)/3, therefore the lower
bounds are achieved. Similarly, for any 0 ≤ r ≤ 1, there exists an infinite binary
word w such that rinf(w) = rsup(w) = r and Rinf(x) = Rsup(x) = r, therefore the
upper bounds are achieved. Details of these results will appear in a forthcoming
article of the author.

Regarding the problem in Section 2, by applying Theorem 6 to the above word
w = b of the fractional part of the dyadic expansion of

√
2, we have the following

theorem:

Theorem 8 In the above setting, let dN denote the number of the undesirable pa-
rameters n ≤ N . Then we have

lim inf
N→∞

dN

N
≥ 5rinf(b)− 2

3
and lim sup

N→∞

dN

N
≥ 5rsup(b)− 2

3
. (8)

In particular, if rsup(b) > 2/5, then there exist infinitely many undesirable parame-
ters.

As a result, the (lower bound of the) asymptotic occurrence rate of zeroes in the
dyadic expansion of

√
2 yields a lower bound of the asymptotic occurrence rate

of undesirable parameters. Note that there has been the following long-standing
conjecture:

Conjecture 9
√

2 is simply normal to base 2; that is, the asymptotic occurrence
rate of zeroes in the dyadic expansion of

√
2 is 1/2 (i.e., rinf(b) = rsup(b) = 1/2 in

the above notations).

This conjecture reflects our naive intuition that the dyadic expansion of
√

2 looks
very random. There have been some further observations that sound positive for
the conjecture. For instance, Borel [2] proved that almost every real number (in
terms of Lebesgue measure) is simply normal to base 2 (more strongly, is normal
to every base q ≥ 2). By combining Conjecture 9 with Theorem 8, we obtain the
following result that is very likely to show a disadvantage of the PRNGs mentioned
in Section 1.

Corollary 10 If Conjecture 9 is true, then the numbers dN of undesirable param-
eters n ≤ N satisfy lim infN→∞ dN/N ≥ 1/6.
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4. Proof of Main Theorem

In this section, we give a proof of Theorem 6 in Section 3. First, the upper bounds
of Rinf(w) and Rsup(w) in (7) follow simply from the fact that the map i (→ i− 1 is
an injection from P (w) to Z(w) for any finite binary word w.

In the rest of this article we prove the lower bounds in Theorem 6, i.e., Rinf(w) ≥
(5rinf(w) − 2)/3 and Rsup(w) ≥ (5rsup(w) − 2)/3 for any infinite binary word w.
In the proof, we use the following notations. For any (finite or infinite) word w =
w1w2w3 . . . and indices 1 ≤ i ≤ j ≤ !(w), let w[i,j] = wiwi+1 · · ·wj−1wj . Let ∅
denote the empty word. Let WN denote the set of binary words of length N . Let
≺ denote the lexicographic order on Wn excluding equalities; for instance, we have
1011 ≺ 1100 and 0010 ,≺ 0010. For two words w and w′, we write w ⊂ w′ if
w = w′[i,j] for some indices i ≤ j. Let wj = ww . . . w (j repetition of w) for any
integer j ≥ 0.

The outline of our proof is as follows. In the proof, we investigate the maximum
value of the number |Z(u)| of zeroes in u ∈ WN subject to the condition that |P (u)|
is bounded above by a fixed value. This will yield a relation between the quantities
|P (w(n))| and |Z(w(n))| for each initial subword w(n) of a given infinite binary
word w, from which the desired lower bounds will be derived. For this purpose,
we will introduce some “elementary transformations” for the words u ∈ WN that
preserve !(u) and |Z(u)| and do not increase |P (u)|. By iterating such elementary
transformations, our argument will be reduced to the case of words in WN of some
“normal form” that can be dealt with by case-by-case analysis.

We start the above program. First, we introduce the following seven maps ϕk :
WN → WN , 1 ≤ k ≤ 7, as aforementioned elementary transformations, where v
and v′ signify some (possibly empty) binary words. We define

ϕ1(u) =

{
1pv0, if u = v01p, p ≥ 1;

u, otherwise.

(namely, ϕ1 moves the ones at the tail of the word u, to the front of u; for instance,
ϕ1(1010011) = 1110100 and ϕ1 fixes 10100),

ϕ2(u) =

{
1p+1v11v′, if u = 1pv111v′, p ≥ 0, 111 ,⊂ v ,= ∅, v1 = v!(v) = 0;

u, otherwise

(namely, ϕ2 picks up a one from the first block of at least three consecutive ones after
a zero and moves it to the front; for instance, ϕ2(160110140150) = 170110130150
and ϕ2 fixes 130011010),

ϕ3(u) =

{
v0110p−1v′, if u = v0p11v′, p ≥ 2, 0011 ,⊂ v, v!(v) ,= 0;

u, otherwise
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(namely, ϕ3 focuses on the first block of the form 0p11 with p ≥ 2, and moves all but
one zero in that block to the tail of that block; for instance, ϕ3(110110411100110) =
1101101103100110 and ϕ3 fixes 1011011),

ϕ4(u) =

{
v01100v′, if u = v01010v′, 01010 ,⊂ v010;

u, otherwise

(namely, ϕ4 focuses on the first block of the form 01010, and permutes the third
and the fourth bits in that block; for instance, ϕ4(110101010) = 110110010 and ϕ4

fixes 011010110101),

ϕ5(u) =

{
v10p+2v′, if u = v0p100v′, p ≥ 1, 0100 ,⊂ v0p, v!(v) ,= 0;

u, otherwise

(namely, ϕ5 focuses on the first block of the form 0p100 with p ≥ 1, and moves the
unique one in that block to the front of that block; for instance, ϕ5(1001103100100) =
10011105100 and ϕ5 fixes 100110010),

ϕ6(u) =

{
v010110pv′, if u = v0p10110v′, p ≥ 2, 0010110 ,⊂ v0p, v!(v) ,= 0;

u, otherwise

(namely, ϕ6 focuses on the first block of the form 0p10110 with p ≥ 2, and moves all
but one zeroes at the beginning of that block to the tail of that block; for instance,
ϕ6(104101100101100) = 101011040101100 and ϕ6 fixes 1010110), and

ϕ7(u) =

{
v1010110v′, if u = v0110110v′, 0110110 ,⊂ v0110;

u, otherwise

(namely, ϕ7 focuses on the first block of the form 0110110, and permutes the first
and the second bits in that block; for instance, ϕ7(1300110110110) = 1301010110110
and ϕ7 fixes 0111011010).

Let Wϕ
N denote the set of all u ∈ WN that are fixed by every ϕk, 1 ≤ k ≤ 7.

Note that each of the seven maps ϕk is well-defined and satisfies that !(ϕk(u)) =
!(u) and |Z(ϕk(u))| = |Z(u)|, since ϕk is just a permutation of bits in a given
word. Moreover, it follows immediately from the definition that each ϕk is a weakly
increasing map with respect to ≺, namely we have u . ϕk(u). Since WN is a finite
set, this implies that each u ∈ WN can be transformed to a word u ∈ Wϕ

N by
finitely many times of applications of the maps ϕk, 1 ≤ k ≤ 7. Note that this u is
not necessarily unique for a given u ∈ WN due to various choices of the order of
applying the maps ϕk.
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To reduce our argument to the case of the words in Wϕ
N , we would like to show

that |P (u)| ≤ |P (u)| for any u ∈ WN . For this purpose, it suffices to show that
|P (ϕk(u))| ≤ |P (u)| for every map ϕk, 1 ≤ k ≤ 7. This is preceded by the following
seven lemmas, where we use the notation:

Pi,j(u) = P (u) \ {i, i + 1, . . . , j − 1, j} for any indices i ≤ j in u ∈ WN .

Before giving the lemmas, note that for any word u and any index i,

we have i ,∈ P (u) unless i ≥ 2 and ui−1 = 0, (9)

and therefore 1 ,∈ P (u). Similarly,

if ui = 1, then i ,∈ P (u) unless 2 ≤ i ≤ !(u)− 1 and ui−1 = ui+1 = 0. (10)

Moreover, it is obvious that

whether i ∈ P (u) or not depends solely on u[i−1,i+3] . (11)

Now we show the lemmas as follows, where we write u′ = ϕk(u) for the map ϕk

under consideration:

Lemma 11 If u ∈ WN , then |P (ϕ1(u))| = |P (u)|.

Proof. It suffices to consider the case that u′ ,= u, namely u = v01p and u′ = 1pv0
with p ≥ 1, as in the former case of the definition of ϕ1. Now if x = u′[i−1,j] is a
subword in u′ of one of the three forms 00, 0100, or 01010, corresponding to an index
i ∈ P (u′), then x should be contained in v0 by the shapes of x and u′, therefore
u[i−1−p,j−p] = x and i − p ∈ P (u). Similarly, if x = u[i−1,j] is a subword in u of
the form 00, 0100, or 01010, corresponding to an i ∈ P (u), then x ⊂ v0, therefore
u′[i−1+p,j+p] = x and i + p ∈ P (u′). Thus i (→ i + p is a bijection P (u) → P (u′),
therefore Lemma 11 holds. !

Lemma 12 If u ∈ WN , then |P (ϕ2(u))| = |P (u)|.

Proof. It suffices to consider the case that u = 1pv111v′ and u′ = 1p+1v11v′ as in
the former case of the definition of ϕ2. Now by the shapes of u and u′, any subword
in u of the form 00, 0100, or 01010 is contained in either v or v′, and the same also
holds for u′. This implies that there exists a bijection P (u) → P (u′), hence Lemma
12 holds. !

Lemma 13 If u ∈ WN , then |P (ϕ3(u))| ≤ |P (u)|.
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Proof. It suffices to consider the case that u = v0p11v′ and u′ = v0110p−1v′ as in
the former case of the definition of ϕ3. Put ! = !(v). Then for any subword x in u′

of the form 00, 0100, or 01010 corresponding to an i ∈ P (u′), one of the following
four conditions is satisfied:

1. x is contained in the block v0;

2. x = 00 and x is contained in the block 0p−1 (thus ! + 5 ≤ i ≤ ! + p + 2);

3. i = ! + p + 3, namely i is the first position of the block v′;

4. x is contained in the block v′.

In the cases 1 and 4, x is also contained in u and we have i ∈ P (u). In the case
2, x is also contained in the last p − 1 bits of the block 0p in u, and we have
i − 2 ∈ P (u). Moreover, we have ! + 2 ∈ P (u) since p ≥ 2. Thus there exists an
injection P (u′) → P (u) that maps i ∈ P (u′) to i for the cases 1 and 4, to i− 2 for
the case 2, and to ! + 2 for the case 3. Hence Lemma 13 holds. !

Lemma 14 If u ∈ WN , then |P (ϕ4(u))| ≤ |P (u)|.

Proof. It suffices to consider the case that u = v01010v′ and u′ = v01100v′ as in
the former case of the definition of ϕ4. Put ! = !(v). Then for any subword x in u′

of the form 00, 0100, or 01010 corresponding to an i ∈ P (u′), one of the following
three conditions is satisfied:

1. x is contained in the block v0;

2. i = ! + 5, namely i is the last position of the block 01100;

3. x is contained in the block 0v′ (thus ! + 6 ≤ i).

In the cases 1 and 3, x is also contained in u and we have i ∈ P (u). Since ! + 2 ∈
P (u), there exists an injection P (u′) → P (u) that maps i ∈ P (u′) to i for the cases
1 and 3, and to ! + 2 for the case 2. Hence Lemma 14 holds. !

Lemma 15 If u ∈ WN , then |P (ϕ5(u))| ≤ |P (u)|.

Proof. It suffices to consider the case that u = v0p100v′ and u′ = v10p+2v′ as in
the former case of the definition of ϕ5. Put ! = !(v). Note that p ≥ 1 and v! ,= 0 by
the definition of ϕ5. Then for any subword x in u′ of the form 00, 0100, or 01010
corresponding to an i ∈ P (u′), one of the following four conditions is satisfied:

1. x is contained in the block v;

2. x is contained in the first p bits of the block 0p+2 (thus ! + 3 ≤ i ≤ ! + p + 1);
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3. i = ! + p + 2, namely i is the second last position of the block 0p+2;

4. x is contained in the block 00v′.

In Cases 1 and 4, x is also contained in u and we have i ∈ P (u). In Case 2, x is
also contained in the block 0p in u, and we have i − 1 ∈ P (u). Moreover, we have
! + p + 1 ∈ P (u) since p ≥ 1 (namely u[!+p,!+p+3] = 0100). Thus there exists an
injection P (u′) → P (u) that maps i ∈ P (u′) to i for the cases 1 and 4, to i− 1 for
Case 2, and to ! + p + 1 for the case 3. Hence Lemma 15 holds. !

Lemma 16 If u ∈ WN , then |P (ϕ6(u))| ≤ |P (u)|.

Proof. It suffices to consider the case that u = v0p10110v′ and u′ = v010110pv′ as
in the former case of the definition of ϕ6. Put ! = !(v). Note that p ≥ 2 and v! ,= 0
by the definition of ϕ6. Then for any subword x in u′ of the form 00, 0100, or 01010
corresponding to an i ∈ P (u′), one of the following four conditions is satisfied:

1. x is contained in the block v0 (thus i ≤ !− 1 since v! ,= 0);

2. ! ≥ 2, v[!−1,!] = 01, x = 01010 and i = !;

3. x is contained in the block 0p (thus ! + 7 ≤ i ≤ ! + p + 5);

4. x is contained in the block 0v′ (thus ! + p + 6 ≤ i).

In the cases 1 and 4, x is also contained in u and we have i ∈ P (u). In the case 3,
x is also contained in the block 0p in u, and we have i− 5 ∈ P (u). Moreover, in the
case 2, we have ! ∈ P (u) since p ≥ 2 (namely u[!−1,!+2] = 0100). Thus there exists
an injection P (u′) → P (u) that maps i ∈ P (u′) to i for the cases 1 and 4, to i− 5
for the case 3, and to ! for the case 2. Hence Lemma 16 holds. !

Lemma 17 If u ∈ WN , then |P (ϕ7(u))| ≤ |P (u)|.

Proof. It suffices to consider the case that u = v0110110v′ and u′ = v1010110v′ as
in the former case of the definition of ϕ7. Put ! = !(v). Then for any subword x in
u′ of the form 00, 0100, or 01010 corresponding to an i ∈ P (u′), one of the following
four conditions is satisfied:

1. x is contained in the block v;

2. ! ≥ 1, v! = 0, x = 01010 and i = ! + 1;

3. x is contained in the block 0v′ (thus ! + 8 ≤ i).
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type subword type subword type subword
1 0v1) 2 0v111 3 01010
4 0100 5 0110110 6 001v) (v ,= 0)
6a 0011 6b 0010v) (v ,= ∅) 6c 0010110

Here v is a (possibly empty) word, and ‘)’ denotes the tail of the word u.

Table 1: Excluded subwords for words in Wϕ
N

In the cases 1 and 3, x is also contained in u and we have i ∈ P (u). Moreover,
in the case 2, we have ! + 1 ∈ P (u) (namely u[!,!+1] = 00). Thus there exists an
injection P (u′) → P (u) that maps i ∈ P (u′) to i for the cases 1 and 3, and to ! + 1
for the case 2. Hence Lemma 17 holds. !

Thus we have proven that |P (u)| ≤ |P (u)| for any u ∈ WN as desired. From
now, we determine the possibilities of the shape of u ∈ Wϕ

N . For the purpose, first
we show that any word in Wϕ

N does not contain a subword of type 1–6 in Table 1.
For instance, if u ∈ Wϕ

N , then we have 010111 ,⊂ u since 010111 is a word of type 2.
We also include three other auxiliary subwords (that are special cases of subwords
of type 6) in Table 1 since these are used in the proof of the above fact (Lemma 18
below).

Lemma 18 Any u ∈ Wϕ
N does not contain a subword of type 1–6 listed in Table 1.

Proof. First, it is straightforward to show that a subword of type 1, 2, 3, 4, and 5
in Table 1 is not contained in u since u is fixed by a map ϕ1, ϕ2, ϕ4, ϕ5, and ϕ7,
respectively. From here, we show that u does not contain a subword u′ of type 6.
We prove this by classifying the subword v appearing in the definition of u′.

First, if v is an empty word, then u′ is of type 1 in Table 1, and therefore u
does not contain u′ by the previous paragraph. If v begins with a one, then u′ is of
type 6a in Table 1, and this u′ is not contained in u since u is fixed by ϕ3. Thus it
suffices to consider the case that v begins with a zero, and hence u′ is of type 6b in
Table 1 (where we reuse the notation v for simplicity).

For the u′ of type 6b in Table 1, if v begins with a zero, then u′ contains a subword
of type 4 in Table 1, and therefore u does not contain u′ by the first paragraph.
Thus it suffices to consider the case that u′ is of the form 00101v′) where v′ is an
arbitrary finite word.

If v′ is empty or begins with a zero, then u′ contains a subword of type 1 or 3,
respectively, and hence u does not contain u′ by the first paragraph. Thus it suffices
to consider the case that u′ is of the form 001011v′′) where v′′ is an arbitrary finite
word.
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If v′′ is empty or begins with a one, then u′ contains a subword of type 1 or
2, respectively, and hence u does not contain u′ by the first paragraph. Finally, if
v′′ begins with a zero, then u′ contains a subword of type 6c, and this u′ is not
contained in u since u is fixed by ϕ6. Hence the claim holds in any case, concluding
the proof of the lemma. !

Owing to Lemma 18, we obtain the following classification of the words u in Wϕ
N

summarized in Table 4, where for each word u = u, descriptions of values N , |Z(u)|
and |P (u)| and relations for these values and parameters p, q (except for Types 6
and 7) and s (except for Type 1) are also included:

Lemma 19 Any word u in Wϕ
N is of one of the seven types in Table 4.

Proof. First, note that any u ∈ Wϕ
N can be expressed in the following form:

u = 1p00q11p1 · · · 0qk1pk0qk+1 ,

k ≥ 0, p0 ≥ 0, qk+1 ≥ 0, pi ≥ 1, qi ≥ 1 (1 ≤ i ≤ k).

We apply Lemma 18 to this u. First, the absence of a subword of type 1 in Table 1
implies that u does not end with a one unless u contains no zeroes. Thus we have
qk+1 ≥ 1 if k ≥ 1. Secondly, the absence of a subword of type 2 in Table 1 implies
that three consecutive ones do not appear after a zero, therefore we have pi ∈ {1, 2}
for every 1 ≤ i ≤ k. Moreover, the absence of a subword of type 6 in Table 1
implies that if 001 ⊂ u, then a zero should follow that subword 001 immediately
and u should end with that zero. By these conditions, the possible shapes of u are
classified as follows:

1. u = 1p00q1 (corresponding to the case k = 0);

2. u = 1p001p10q2 , p1 ∈ {1, 2}, q2 ≥ 1 (corresponding to the case k = 1, qk = 1);

3. u = 1p00q110, q1 ≥ 2 (corresponding to the case k = 1, qk ≥ 2);

4. u = 1p001p1 · · · 01pk−101pk0qk+1 , pi ∈ {1, 2} (1 ≤ i ≤ k), qk+1 ≥ 1 (corre-
sponding to the case k ≥ 2, qk = 1);

5. u = 1p001p1 · · · 01pk−10qk10, pi ∈ {1, 2} (1 ≤ i ≤ k), qk ≥ 2 (corresponding to
the case k ≥ 2, qk ≥ 2).

Case 1 corresponds to Type 1 in Table 4. In Case 2, a choice p1 = 1 implies that
q2 = 1 by the absence of a subword 0100 of type 4 in Table 1, and it corresponds
to Type 6 in Table 4 with parameter s = 0. On the other hand, the other choice
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Type 1 u = 1p0q (p ≥ 0, q ≥ 0)
N = p + q

|Z(u)| = q |P (u)| = q − 1
|Z(u)|/N = |P (u)|/N + 1/N

Type 2 u = 1p(01011)s0q10 (p ≥ 0, q ≥ 2, s ≥ 0)
N = 5s + p + q + 2

|Z(u)| = 2s + q + 1 |P (u)| = q − 1
|Z(u)|/N = 3/5 · |P (u)|/N + 2/5 + 4/(5N)− 2p/(5N)

Type 3 u = 1p011(01011)s0q10 (p ≥ 0, q ≥ 2, s ≥ 0)
N = 5s + p + q + 5

|Z(u)| = 2s + q + 2 |P (u)| = q − 1
|Z(u)|/N = 3/5 · |P (u)|/N + 2/5 + 3/(5N)− 2p/(5N)

Type 4 u = 1p(01011)s0q (p ≥ 0, q ≥ 1, s ≥ 1)
N = 5s + p + q

|Z(u)| = 2s + q |P (u)| = q − 1
|Z(u)|/N = 3/5 · |P (u)|/N + 2/5 + 3/(5N)− 2p/(5N)

Type 5 u = 1p011(01011)s0q (p ≥ 0, q ≥ 1, s ≥ 0)
N = 5s + p + q + 3

|Z(u)| = 2s + q + 1 |P (u)| = q − 1
|Z(u)|/N = 3/5 · |P (u)|/N + 2/5 + 2/(5N)− 2p/(5N)

Type 6 u = 1p(01011)s010 (p ≥ 0, s ≥ 0)
N = 5s + p + 3

|Z(u)| = 2s + 2 |P (u)| = 0
|Z(u)|/N = 2/5 + 4/(5N)− 2p/(5N)

Type 7 u = 1p011(01011)s010 (p ≥ 0, s ≥ 0)
N = 5s + p + 6

|Z(u)| = 2s + 3 |P (u)| = 0
|Z(u)|/N = 2/5 + 3/(5N)− 2p/(5N)

Table 2: Classification of words u in Wϕ
N
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p1 = 2 corresponds to Type 5 in Table 4 with parameter s = 0. Case 3 corresponds
to Type 2 in Table 4 with parameter s = 0.

The remaining part of the proof focuses on Cases 4 and 5. In Case 4, the absence
of a subword 01010 of type 3 in Table 1 and a subword 0110110 of type 5 in Table
1 implies that (pi, pi+1) = (1, 2) or (2, 1) for each 1 ≤ i ≤ k− 1. Thus the sequence
(p1, p2, . . . , pk) is of one of the four forms (1, 2, 1, 2, . . . , 1, 2), (1, 2, 1, 2, . . . , 2, 1),
(2, 1, 2, 1, . . . , 2, 1), and (2, 1, 2, 1, . . . , 1, 2). The first and the fourth cases correspond
to Type 4 and Type 5 in Table 4, respectively. On the other hand, the second and
the third cases correspond to Type 6 and Type 7 in Table 4, respectively, since now
we have pk = 1 and the absence of a subword 0100 of type 4 in Table 1 implies that
qk+1 = 1.

Finally, in Case 5, the fact that qk ≥ 2 and the absence of a subword 0100
of type 4 in Table 1 imply that pk−1 = 2. Now by the same argument as the
previous paragraph, the sequence (p1, p2, . . . , pk−1) is either (1, 2, 1, 2, . . . , 1, 2), or
(2, 1, 2, 1, . . . , 1, 2). These cases correspond to Type 2 and Type 3 in Table 4, re-
spectively. Hence Lemma 19 holds. !

Now, we present the main part of the proof of lower bounds in Theorem 6. The
key fact in the argument is the following:

Lemma 20 For each initial subword w(n) ∈ Wn of any infinite binary word w, we
have

|P (w(n))|
n

≥ 5
3
· |Z(w(n))|

n
− 2

3
− 4

3n
. (12)

Proof. For each w(n), we associate a (not necessarily unique) word y(n) = w(n) in
Wϕ

n to w(n) by applying the maps ϕi, 1 ≤ i ≤ 7, repeatedly. Note that |Z(y(n))| =
|Z(w(n))| and |P (y(n))| ≤ |P (w(n))| by Lemmas 11–17. If y(n) is of type 1 in Table
4, then we have

|P (w(n))|
n

≥ |P (y(n))|
n

=
|Z(y(n))|

n
− 1

n
=

|Z(w(n))|
n

− 1
n

. (13)

Now we have |Z(w(n))|/n ≤ 1 by the definition, therefore the right-hand side of
(13) is larger than the right-hand side of (12). On the other hand, if y(n) is of types
2–5 in Table 4, then we have

|P (w(n))|
n

≥ |P (y(n))|
n

=
5
3
· |Z(y(n))|

n
− 2

3
− c

3n
+

2p
3n

≥ 5
3
· |Z(w(n))|

n
− 2

3
− 4

3n
,
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where c = 4, 3, 3, and 2 in the case of types 2, 3, 4, and 5, respectively. Moreover,
if y(n) is of types 6–7 in Table 4, then a direct calculation shows that the right-
hand side of (12) is not positive (note that |Z(w(n))| = |Z(y(n))|), therefore (12)
obviously holds. !

Now the desired bounds Rinf(w) ≥ (5rinf(w)− 2)/3 and Rsup(w) ≥ (5rsup(w)−
2)/3 are derived by taking the lim infn→∞ and lim supn→∞ of both sides of (12),
respectively. Hence the proof of lower bounds in Theorem 6 is concluded.
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