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Abstract
Motivated by the study of Mahonian statistics, in 2000, Babson and Steingŕımsson in-
troduced the notion of a “generalized permutation pattern” (GP) which generalizes the
concept of “classical” permutation pattern introduced by Knuth in 1969. The invention
of GPs led to a large number of publications related to properties of these patterns in
permutations and words. Since the work of Babson and Steingŕımsson, several further
generalizations of permutation patterns have appeared in the literature, each bringing a
new set of permutation or word pattern problems and often new connections with other
combinatorial objects and disciplines. For example, Bousquet-Mélou et al. introduced a
new type of permutation pattern that allowed them to relate permutation patterns theory
to the theory of partially ordered sets.

In this paper we introduce yet another, more general definition of a pattern, called

place-difference-value patterns (PDVP) that covers all of the most common definitions of

permutation and/or word patterns that have occurred in the literature. PDVPs provide

many new ways to develop the theory of patterns in permutations and words. We shall

give several examples of PDVPs in both permutations and words that cannot be described

in terms of any other pattern conditions that have been introduced previously. Finally, we

discuss several bijective questions linking our patterns to other combinatorial objects.

1. Introduction

In the last decade, several hundred papers have been published on the subject of
patterns in words and permutations. This is a new, but rapidly growing, branch
of combinatorics which has its roots in the works by Rotem, Rogers, and Knuth
in the 1970s and early 1980s. However, the first systematic study of permutation
patterns was not undertaken until the paper by Simion and Schmidt [22] which
appeared in 1985. The field has experienced explosive growth since 1992. The
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Fund.
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notion of patterns in permutations and words has proved to be a useful language
in a variety of seemingly unrelated problems including the theory of Kazhdan-
Lusztig polynomials, singularities of Schubert varieties, Chebyshev polynomials,
rook polynomials for Ferrers board, and various sorting algorithms including sorting
stacks and sortable permutations.

A (“classical”) permutation pattern is a permutation σ = σ1 . . .σk in the sym-
metric group Sk viewed as a word without repeated letters. We say that σ occurs
in a permutation π = π1 . . .πn if there is a subsequence 1 ≤ i1 < · · · < ik ≤ n such
that πi1πi2 . . .πik is order isomorphic to σ. We say that π avoids σ if there is no
occurrence of σ in π. One of the fundamental questions in the area of permutation
patterns is to determine the number of permutations (words) of length n contain-
ing k occurrences of a given pattern p. That is, we want to find an an explicit
formula or a generating function for such permutations. It is also of great interest
to find bijections between classes of permutations and/or words that satisfy some
sort of pattern condition and other combinatorial structures that preserve as many
statistics as possible. For example, we say say that two permutations σ, τ ∈ Sk are
Wilf equivalent if for each n, the number of permutations in Sn that avoid σ equals
the number of permutations in Sn that avoid τ . If σ and τ are Wilf equivalent,
then it is natural to ask for a bijection between the set of permutations of Sn which
avoid σ and the set of permutations of Sn which avoid τ which preserves as many
classical permutation statistics as possible. Such statistics-preserving bijections not
only reveal structural similarities between different combinatorial objects, but they
often also reveal previously unknown properties of the structures being studied.

In [1] Babson and Steingŕımsson introduced generalized permutation patterns
(GPs) that allow for the requirement that two adjacent letters in a pattern must
be adjacent in the permutation. If we write, say 2-31, then we mean that if this
pattern occurs in a permutation π, then the letters in π that correspond to 3 and
1 are adjacent. For example, the permutation π = 516423 has only one occurrence
of the GP 2-31, namely the subword 564, whereas the GP 2-3-1 occurs, in addition,
in the subwords 562 and 563. Note that a pattern containing a dash between each
pair of consecutive letters is a classical pattern.

The motivation for introducing these patterns in [1] was the study of Mahonian
statistics. Many interesting results on GPs appear in the literature (see [24] for a
survey). In particular, [4] provides relations of generalized patterns to several well
studied combinatorial structures, such as set partitions, Dyck paths, Motzkin paths
and involutions. We refer to [13] for a survey over results on patterns discussed so
far.

Further generalizations and refinements of GPs have appeared in the literature.
For example, one can study occurrences of a pattern σ in a permutation π where
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one pays attention to the parity of the elements in the subsequences of π which
are order isomorphic to σ. For instance, Kitaev and Remmel [16] studied descents
(the GP 21) where one fixes the parity of exactly one element of a descent pair.
Explicit formulas for the distribution of these (four) new patterns were provided.
The new patterns are shown in [16] to be connected to the Genocchi numbers,
the study of which goes back to Euler. In [17], Kitaev and Remmel generalized
the results of [16] to classify descents according to equivalence mod k for k ≥ 3
of one of the descent pairs. As a result of this study, one obtains, in particular,
remarkable binomial identities. Liese [20, 21] studied enumerating descents where
the difference between descent pairs is a fixed value. More precisely, study of the set
Desk(σ) = {i|σi − σi+1 = k} is done in [21, Chpt 7]. Hall and Remmel [7] further
generalized the studies in [16, 17, 20, 21]. The main focus of [7] is to study the
distribution of descent pairs whose top σi lies in some fixed set X and whose bottom
σi+1 lies in some fixed set Y (such descents are called “(X,Y )-descents”). Explicit
inclusion-exclusion type formulas are given for the number of n-permutations with
k (X,Y )-descents.

A new type of permutation pattern condition was introduced by Bousquet-Mélou
et al. in [2]. In [2], the authors considered restrictions on both the places and the
values where a pattern can occur. For example, they considered pattern diagrams
as pictured in Figure 1.

Figure 1: A new 2 3 1 pattern.

The vertical line between the 2 and 3 of the pattern means that the occurrence
of the 2 and 3 in a subsequence must be consecutive and the horizontal line between
2 and the 1 in the pattern means that values corresponding to the 1 and 2 in an
occurrence must be consecutive. Thus an occurrence of the pattern pictured above
in a permutation π = π1 . . .πn ∈ Sn, is a sequence 1 ≤ i1 < i2 < i3 ≤ n such that
πi1πi2πi3 is order isomorphic to 231, i1 + 1 = i2 and πi3 + 1 = πi1 . For example,
if π = 31524, then there is an occurrence of 231 in π, namely, 352, but it is not an
occurrence of the pattern in Figure 1 because 3 and 5 do not occur consecutively
in π. However if τ = 32541, then 251 is an occurrence of the pattern as pictured in
Figure 2.

An attractive property of these new patterns is that, like classical patterns (but
not like GPs!), they are closed under the action of D8, the symmetry group of the
square. More precisely, the authors in [2] studied permutations that either avoid the
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Figure 2: Permutations which avoid and contain the new 2 3 1 pattern.

pattern 2-3-1 or in an occurrence πiπjπk of 2-3-1 in a permutation π1π2 . . .πn where
one either has j %= i+1 or πi %= πk+1. It turns out that there is a bijection preserving
several statistics between (2+2)-free posets and permutations avoiding the pattern
in the previous sentence (see [2]).

The outline of this paper is as follows. In Section 2, we define place-difference-
value patterns (PDVPs) in both permutations and words. These patterns cover
under one roof most of the commonly used pattern restrictions that have occurred
in the literature on generalizations of GPs. In Sections 3 and 4, we consider several
examples of PDVPs. Some of these examples show connections to other combinato-
rial objects, which cannot be obtained using the languages of most general notions
of GPs studied so far. Our work gives rise to four bijective questions linking our
patterns to other combinatorial objects; see Problems 1–4. Two of them were solved
by Alexander Valyuzhenich in [26] and another is solved in this paper via a sugges-
tion due to an anonymous referee. Finally, in Section 5, we sketch some directions
of further research.

2. Place-Difference-Value Patterns

In what follows, P denotes the set of positive integers and kP denotes the set of all
positive multiples of k.

Definition 1. A place-difference-value pattern (PDVP for short) is a quadruple
P = (p,X, Y, Z) where p is a permutation of length m, X is an (m + 1)-tuple of
non-empty, possibly infinite, sets of positive integers, Y is a set of triples (s, t, Ys,t)
where 0 ≤ s < t ≤ m + 1 and Ys,t is a non-empty, possibly infinite, set of posi-
tive integers, and Z is an m-tuple of non-empty, possibly infinite, sets of positive
integers. A PDVP P = (p1p2 . . . pm, (X0,X1, . . . ,Xm), Y, (Z1, . . . , Zm)) occurs in a
permutation π = π1π2 . . .πn, if π has a subsequence πi1πi2 . . .πim with the following
properties:
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1. πik < πi! if and only if pk < p! for 1 ≤ k < $ ≤ m;

2. ik+1 − ik ∈ Xk for k = 0, 1, . . . ,m, where we assume i0 = 0 and im+1 =
n + 1;

3. for each (s, t, Ys,t) ∈ Y , |πis − πit | ∈ Ys,t where we assume πi0 = π0 = 0 and
πim+1 = πn+1 = n + 1; and

4. πik ∈ Zk for k = 1, . . .m.

For example, let E and O denote the set of even and odd numbers, respectively.
Then the PDVP (12, ({1}, {3, 4}, {1, 2, 3}), {(1, 2, E)}, (E, P)) occurs in the permu-
tation π = 23154 once as the subsequence 24. Indeed, each such occurrence must
start at position 1 as required by the set X0 and the second element of the sequence
must occur either at position 4 or 5 as required by X1. X2 says the 4 must occur in
one of the last three positions of the permutation. The condition that Z1 = E says
that the value in position 1 must be even. Finally the condition that (1, 2, E) ∈ Y
rules out 25 as an occurrence of the pattern.

Classical patterns are PDVPs of the form (p, (P, P, . . .), ∅, (P, P, . . .)),
whereas the GPs introduced in [1] have the property that Xi is either P or {1},
Y = ∅, and Zi = P for all i. Also, the patterns introduced in [2] have the
property that each of the Xi’s are either P or {1}, Zi = P for all i, and all
the elements of Y are of the form (i, j, {1}). Similarly, the occurrences of the
pattern (21, (P, {1}, P), ∅, (X,Y )) in a permutation π correspond to the (X,Y )-
descents in π considered by Hall and Remmel [7] and the occurrences of the pattern
(21, (P, {1}, P), {(1, 2, {k})}, (P, P)) in π correspond to elements of Desk(π) as stud-
ied by Liese [20, 21].

We should note that there is often more than one way to specify the same pattern.
For instance, we can restrict ourselves to occurrences of patterns that involve only
even numbers by either setting Zi = E for all i or by setting Y = {(i, i + 1, E) : i =
0, . . . ,m− 1}.

In Table 1, we list how several pattern conditions that have appeared in the
literature can be expressed in terms of PDVPs.

The place-difference-value patterns in case of words can be defined in a similar
manner.

Definition 2. A place-difference-value (word) pattern, PDVP, is a quadruple P =
(p,X, Y, Z) where p is a word of length m having an occurrence of each of the
letters 1, 2, . . . , k for some k, X is an (m + 1)-tuple of non-empty, possibly infi-
nite, sets of positive integers, the elements of Y are of the form (s, t, Ys,t) where
0 ≤ i < j ≤ m + 1 and Yi,j is a non-empty, possibly infinite, set of non-negative
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Object in the literature PDVP P = (p,X, Y, Z)
Classical patterns Xi = Zj = P for all i and j and Y = ∅.
GPs in [1] Xi is either P or {1} for all i, Zj = P for all j,

Y = ∅.
Descents conditioned on the p = 21 and X0 = P, X1 = {1}, X2 = P,
parity of the elements in the Y = ∅, and (Z1, Z2) equals
descent pairs as in [16] (E, P), (O, P), (P, E),or (P, O).
Patterns in [17] Similar to the last patterns, except

we allow Zi’s of the form kP where k ≥ 3.
Patterns in [20, 21] (21, (P, {1}, P), {(1, 2, {k})}, (P, P)), where k ≥ 1.
Patterns in [7] (21, (P, {1}, P), ∅, (X,Y )), X and Y are any

fixed sets
Patterns in [2] Xi is either P or {1}, the elements of Y are of

the form (i, j, {1}) , and Zi = P for all i.

Table 1: Objects studied in the literature using the language of place-difference-
value patterns.

integers, and Z is an m-tuple of non-empty, possibly infinite, sets of positive integers.
A PDVP P = (p1p2 . . . pm, (X0,X1, . . . ,Xm), Y, (Z1, . . . , Zm)) occurs in a word w =
w1w2 . . . wn over the alphabet {1, 2, . . . , t}, if w has a subsequence wi1wi2 . . . wim

with the following properties:

1. wik < wi! if and only if pk < p! for 1 ≤ k < $ ≤ m;

2. wik = wi! if and only if pk = p! for 1 ≤ k < $ ≤ m;

3. ik+1− ik ∈ Xk for k = 0, 1, . . . ,m, where we assume i0 = 0 and im+1 = n+1;

4. for each (s, t, Ys,t) ∈ Y , |wis −wit | ∈ Ys,t where we assume wi0 = w0 = 0 and
wim+1 = wn+1 = t; and

5. wij ∈ Zj for j = 1, . . . ,m.

We would like to point out that, of course, the notion of PDVPs can be general-
ized even further, e.g., increasing the number of dimensions (as it is done in [14, 18])
or, for example, by having the differences or values be dependent on the place. We
will discuss some of these extensions in Section 5. In any case, the PDVPs are the
closest objects to those most popular pattern restrictions that have appeared in the
current literature on patterns.

Another thing to point out is that particular cases of patterns introduced by
us already appear in the literature, without any general framework though. For
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example, in [25], Tauraso found the number of permutations of size n avoiding
simultaneously the PDVPs

(12, (P, {d}, P), {(1, 2, {d})}, (P, P))

and

(21, (P, {d}, P), {(1, 2, {d})}, (P, P)),

where 2 ≤ d ≤ n− 1. Also, see [23, A110128] for related objects.

3. Some Results on Place-Difference-Value Patterns in Permutations

Recall that E = {0, 2, 4, . . .} and O = {1, 3, 5, . . .} denote the set of even and odd
numbers, respectively. Also, let Sn denote the set of permutations of length n.

3.1. Distribution of Certain PDVPs on Permutations

Suppose P = (p, (O, E, . . . , E), ∅, (E, . . . , E)), where p is any permutation on t ele-
ments. We will show an easy connection between distributions of p, viewed as a
classical pattern, and the pattern P .

The restriction on the X’s says that we want our pattern to occur at the odd
positions. The restriction on the Z’s says that we are worried about the even
numbers that appear at the odd positions.

Let An,m (resp. Bn,m) be the number of permutations in Sn that contain m
occurrences of the pattern p (resp. P ). There is an easy way to express Bn,m in
terms of An,m, as it is shown below.

Consider S2n and suppose a permutation contains m occurrences of P and k even
numbers in odd positions, where 0 ≤ k ≤ n. We can choose these even numbers
that appear in odd positions in

(n
k

)
ways, and then we can choose the positions

of the even numbers in
(n

k

)
ways. Once we have chosen those numbers and those

positions, we have to arrange the even numbers so that the permutation built by
them contains m occurrences of p. This can be done in Ak,m ways. Then we have to
choose the odd numbers that appear in the odd positions in

( n
n−k

)
ways and those

odd numbers can be arranged in (n− k)! ways. Finally the numbers which occupy
the even positions can be arranged in n! ways. Thus,

B2n,m =
n∑

k=0

n!(n− k)!
(

n

k

)3

Ak,m. (1)

The case for S2n+1 is similar.
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Thus, whenever we know the distribution of a classical pattern p (it is known
only in a few cases), we can find the distribution of P . On the other hand, we
can use the same formula for avoidance matters, in which case we can get more
applications of it. For example, for p = 12, Ak,0 becomes 1, as the only way to
avoid 1-2 is to arrange the corresponding even elements in decreasing order. Thus,
in this case, we have

B2n,0 =
n∑

k=0

n!(n− k)!
(

n

k

)3

.

Another example is when p = 123. It is well-known that the number of n-permutations
avoiding the pattern 1-2-3 is given by the n-th Catalan number Cn, and thus, in
this case, we have

B2n,0 =
n∑

k=0

n!(n− k)!
(

n

k

)3

Ck.

For a slightly more complicated example, suppose that p = 12, X = (O, 4P, P),
Y = {(1, 2, 4P)}, and Z = (O, P). Let A = {1, 5, 9, 13, . . .} and B = {3, 7, 11, 15, . . .}.
The restriction imposed by our choice of X says that we are only interested in sub-
sequences that occur at positions in A or subsequences that occur at positions in B.
The restrictions imposed by our choice of Y and Z says that we are only interested
in subsequences that involve values in A or subsequences that involve values in B.
Suppose we want to find the number Kn of permutations in Sn that avoid our pat-
tern. Then choose k1 to be the number of elements of A that occur in positions in
A and k2 to be the number of elements of A that occur in positions in B. Similarly
choose l1 to be the number of elements of B that occur in positions in A and l2 to be
the number of elements of B that occur in positions in B. To avoid our pattern, the
k1 elements of A that occur in the positions of A must be in decreasing order and
k2 elements of A that occur in the positions of B must occur in decreasing order.
Next, the l1 elements of B that occur in the positions of A must be in decreasing
order and l2 elements of B that occur in the positions of B must occur in decreasing
order. Then we can arrange the remaining elements that occur in the positions of
A in any order we want and we can arrange in the remaining elements that occur in
the positions of B any order we want. Finally, we can arrange the elements that lie
in positions outside of A and B in any order that we want. Thus, our final answer
is determined by the number of ways to choose the elements that correspond to k1,
k2, l1 and l2 and the number of ways to choose their corresponding positions in A
and B. Thus, for example, one can easily check that
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K4n = (2n)!
∑

0≤k1,k2,l1,l2
k1+k2≤n,l1+l2≤n

(
n

k1, k2, n− k1 − k2

)(
n

l1, l2, n− l1 − l2

)

×
(

n

k1, l1, n− k1 − l1

)(
n

k2, l2, n− k2 − l2

)
(n− k1 − l1)!(n− k2 − l2)!

= (2n)!
∑

0≤k1,k2,l1,l2
k1+k2≤n,l1+l2≤n

(n!)4

(k1!)2(k2!)2(l1!)2(l2!)2(n− k1 − k2)!(n− l1 − l2)!
.

3.2. One More Result on PDVPs on Permutations

In this subsection, we consider the permutations which simultaneously avoid the
GPs 231 and 132 and the PDVP P = (12, (P, {k}, P), {(1, 2, {1})}, (P, P)), where
k ≥ 1. Let an,k be the number of such permutations of length n. We will show that

an,k =






F (n) if k = 1,

2n−1 if k ≥ 2 and n ≤ k,

3 · 2n−3 if k ≥ 2 and n ≥ k + 1

where F (n) is the n-th Fibonacci number. The sequence of an,2’s — 3, 6, 12, 24,
48, 96, 192,. . . — appears in [23, A042950].

Notice, that avoiding just the GPs 231 and 132 gives 2n−1 permutations of length
n ([8]), and the structure of such permutations is a decreasing word followed by an
increasing word (1 is staying between the words and it is assumed to belong to
both of them). Suppose first that k ≥ 2. If n ≤ k, then there is no chance for P
to occur thus giving 2n−1 possibilities. On the other hand, assuming n = k + 1,
the number of permutations avoiding the three patterns is given by 2k − 2k−2 as
whenever the first letter is n − 1 and the last letter is n, we get an occurrence of
P (there are 2k−2 such cases). Finally, if we increase the number of letters in a
“good” permutation of length k+1, one by one, we always have two places to insert
a current largest element: at the very beginning or at the very end, which gives in
total (2k − 2k−2)2n−k−1 = 3 · 2n−3 possibilities, as claimed.

In the case k = 1, we think of counting good permutations by starting with the
letter 1, and inserting, one by one, the letters 2,3,. . .. If P would not be prohibited,
we would always have two choices to insert a current largest element. However,
inserting n, the configuration (n− 1)n is prohibited, which leads immediately to a
recursion for the Fibonacci numbers.
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Remark 3. Because of the structure of permutations avoiding GPs 231 and 132,
one can see that the maximum number of occurrences of P in such permutations
is 1. Thus, we actually found distribution of P on 231- and 132-avoiding permu-
tations, as the number of such permutations having exactly one occurrence of P is
2n−1 − an,k.

An interpretation of the sequence [23, A042950], based on a result in [15, Section
6.2], suggests the first of our bijective problems.

Problem 4. For k ≥ 2 and n ≥ k + 1, find a bijection between permutations of
length n which simultaneously avoid the GPs 231 and 132 and the PDVP P =
(12, (P, {k}, P), {(1, 2, {1})}, (P, P)) and the set of rises (occurrence of the GP 12)
after n iterations of the morphism 1 → 123, 2 → 13, 3 → 2, starting with element
1. For example, for k = 2 and n = 3, there are 3 permutations avoiding the
prohibitions, 123, 312, and 321, and there are 3 rises in 1231323.

In this case, we can construct the desired bijection essentially following the bi-
jection description provided by the anonymous referee. Fix k ≥ 2. The first step
is to give a coding for the set An of permutations in Sn which avoid both the
GPs 231 and 132. Clearly, A1 = {1} and in general, we can construct An+1

from An by adding n + 1 to both the right and the left of each element of An.
Thus each element σ ∈ An, where n ≥ 2, can be coded by a word w(σ) ∈
{L,R}n−1. That is, if σ ∈ An, w(σ) = w1 . . . wn−1 where then wi = R if i is
to the right of 1 in σ and wi = L if i is to the left of 1 in σ. Next observe that
the PDVP P = (12, (P, {k}, P), {(1, 2, {1})}, (P, P)) occurs in σ ∈ An if and only
if w(σ) = w1 . . . wn−1 where wk = L and wk+1 = R. Thus for n ≥ k + 1, the
set of permutations B(k)

n which simultaneously avoid the GPs 231 and 132 and the
PDVP P = (12, (P, {k}, P), {(1, 2, {1})}, (P, P)) in bijection with the set of words
σ ∈ An such that w(σ) = w1 . . . wn−1 where wkwk+1 equals LL, RL or RR. For
each σ ∈ B(k)

n , we let w̄(σ) be the word wk wk+1 w1 . . . wk−1 wk+2 . . . wn−1 if
w(σ) = w1 . . . wn. In this way, we have a bijection between B(k)

n and the sequences
of the form LL{L,R}n−3 ∪RL{L,R}n−3 ∪RR{L,R}n−3.

Now let φ be the morphism such that on any word w = w1 . . . wn ∈ {1, 2, 3}n,
φ(w) = φ(w1) . . .φ(wn) where φ(1) = 123, φ(2) = 13, and φ(3) = 2. Then define
a sequence of words Un for n ≥ 1 by induction by letting U1 = φ(1) = 123 and
Un+1 = φ(Un) for all n ≥ 1. Thus for example,

U1 = 123,

U2 = 123132,
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U3 = 123132123213, and

U4 = 123132123213123132131232.

First we claim that Un is a rearrangement of 2n−1 1’s, 2n−1 2’s, and 2n−1 3’s.
Clearly, this is true for n = 1. If by induction, we assume our claim is true for n,
then each 1 in Un gives rise to 2n−1 1’s, 2’s and 3’s in Un+1, each 2 in Un gives rise
to 2n−1 1’s and 3’s in Un+1, and each 3 in Un gives rise to 2n−1 2’s in Un+1. Thus
there will be 2n−1 + 2n−1 = 2n 1’s, 2’s and 3’s in Un+1. Moreover, each letter in
Un+1 arises from some φ(ui) where Un = u1 . . . u3·2n−1 . By iterating this idea, we
can define what we call the trace of each letter in Un+1. That is, for U1, trace(i) = i
for i = 1, 2, 3. Now suppose that Un+1 = w1 . . . w3·2n and Un = u1 . . . u3·2n−1 and
we have defined trace(ui) for i = 1, . . . , 3 ·2n−1. Then for j = 1, . . . , 3 ·2n, we define
trace(wj) = wjtrace(ui) if wj arises from φ(ui). For example, suppose that n = 4,
if we consider the third 2 from the right in U4, we have underlined the sequence of
letters that correspond to the trace of that 2 below:

U1 = 123

U2 = 123132

U3 = 123132123213

U4 = 123132123213123132131232.

Thus the trace of the third 2 from the right in Un is 2312. Now it is easy to see
that the set of all possible traces of letters in Un+1 corresponds to three binary trees
of height n. That is, if v1v2 . . . vn+1 is the trace of a letter in Un+1, then v1 ∈ {1, 2, 3}
and for each i, vi−1 ∈ {1, 2} if vi = 1, vi−1 ∈ {1, 3} if vi = 2, and vi−1 ∈ {1, 2}
if vi = 3. Next, consider the rises in Un+1 where we say that wi is a rise in Un+1

if wi < wi+1. It is easy to check that the only rises that occur in Un+1 are the
rises which are internal to the image of some φ(ui). That is, our morphism is such
that there is never a rise between the last letter of φ(ui) and the first letter of
φ(ui+1) for any i. This means that for i = 1, . . . , 3 · 2n − 1, wi is a rise in Un+1

if and only if wi arose from some uj where either uj = 1 and wi = 1 or wi = 2,
or uj = 2 and wi = 1. Thus the traces of such wi are of the form 11 · · · , 21 · · · ,
or 12 · · · . In each case, the · · · part corresponds to a path from root to leaf in a
binary tree. For example, in the case of n = 4, the traces of the twelve rises in U4

would correspond to the twelve paths from root to leaf in the three trees pictured
in Figure 3.
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Figure 3: The trees corresponding to the traces of the rises in U4.

Our problem is to find a bijection between the elements of B(k)
n+1 and the rises in

Un. We have shown that both sets correspond to the paths in the union of three
trees of height n−2. So we map the trees RR{L,R}n−2 onto the trees corresponding
to the traces of the rises in Un whose traces are of the form 11 · · · where we interpret
L as taking the left branch at each node and R as taking the right branch at each
node. Similarly, we map the trees RL{L,R}n−2 onto the trees corresponding to the
traces of the rises in Un whose traces are of the form 21 · · · and we map the trees
LL{L,R}n−2 onto the trees corresponding to the traces of the rises in Un whose
traces are of the form 12 · · · .

4. Some Results on Place-Difference-Value Patterns on Words

In this section, we consider examples of PDVPs on words involving both distance
and value, that cannot be expressed in terms of pattern conditions that have ap-
peared in the literature so far.

4.1. The PDVP (12, (P, {2}, P), {(1, 2, {2})}, (P, P)) on Words.

Consider words w ∈ {1, . . . , k}∗. If w = w1 . . . wn, then let S(w) = {i : wi+2−wi =
2} and s(w) = |S(w)|.

Our goal is to compute the generating function

Ak(q, z) =
∑

w∈{1,...,k}∗
q|w|zs(w). (2)

Let

Ak(i1 . . . ij ; q, z) =
∑

w∈{1,...,k}∗
q|i1...ijw|zs(i1...ijw). (3)



INTEGERS: 10 (2010) 141

Then, for example, when k = 3, we easily obtain the following recursions for
A3(ij; q, z) = A(ij; q, z).

A(11; q, z) = q2 + qA(11; q, z) + qA(12; q, z) + qzA(13; q, z)

A(12; q, z) = q2 + qA(21; q, z) + qA(22; q, z) + qzA(23; q, z)

A(13; q, z) = q2 + qA(31; q, z) + qA(32; q, z) + qzA(33; q, z)

A(21; q, z) = q2 + qA(11; q, z) + qA(12; q, z) + qA(13; q, z)

A(22; q, z) = q2 + qA(21; q, z) + qA(22; q, z) + qA(23; q, z)

A(23; q, z) = q2 + qA(31; q, z) + qA(32; q, z) + qA(33; q, z)

A(31; q, z) = q2 + qA(11; q, z) + qA(12; q, z) + qA(13; q, z)

A(32; q, z) = q2 + qA(21; q, z) + qA(22; q, z) + qA(23; q, z)

A(33; q, z) = q2 + qA(31; q, z) + qA(32; q, z) + qA(33; q, z).

Thus if we let

Q = (−q2,−q2,−q2,−q2,−q2,−q2,−q2,−q2,−q2) and

A = (A(11; q, z), A(12; q, z), A(13; q, z), A(21; q, z), A(22; q, z), A(23; q, z),

A(31; q, z), A(32; q, z), A(33; q, z)),

then we see that

QT = MAT

where

M =





q − 1 q zq 0 0 0 0 0 0
0 −1 0 q q qz 0 0 0
0 0 −1 0 0 0 q q qz
q q q −1 0 0 0 0 0
0 0 0 q q − 1 q 0 0 0
0 0 0 0 0 −1 q q q
q q q 0 0 0 −1 0 0
0 0 0 q q q 0 −1 0
0 0 0 0 0 0 q q q − 1





.



INTEGERS: 10 (2010) 142

Thus AT = M−1QT and our desired generating function is given by

A3(q, z) = 1 + 3q + (1, 1, 1, 1, 1, 1, 1, 1, 1)AT

=
1

(1− q2(1− z))(1− (3q + q2(z − 1)))
.

where we used Mathematica for the last equation.
Note that

1
1− (3q + q2(z − 1))

=
∑

m≥0

m∑

k=0

(
m

k

)
3kqkq2m−2k(z − 1)m−k

=
∑

m≥0

m∑

k=0

(
m

k

)
3k(z − 1)m−kq2m−k.

Now it is easy to see that
∑m

k=0

(m
k

)
3k(z − 1)m−kq2m−k involves powers of q that

range from m to 2m. Thus, since 2m− k = 2n if and only if k = 2m− 2n, we have

1
1− (3q + q2(z − 1))

∣∣∣
q2n

=
2n∑

m=n

(
m

2m− 2n

)
32m−2n(z − 1)m−(2m−2n)

=
n∑

m=0

(
m + n

2m

)
32m(z − 1)n−m.

It follows that

1
(1− q2(1− z))(1− (3q + q2(z − 1))

∣∣∣
q2n

=
n∑

r=0

(1− z)n−r
r∑

m=0

(
m + r

2m

)
32r(z − 1)r−m

=
n∑

r=0

r∑

m=0

(−1)n−r

(
m + r

2m

)
32m(z − 1)n−m

and
1

(1− q2(1− z))(1− (3q + q2(z − 1))

∣∣∣
q2nzs

=
n∑

r=0

r∑

m=0

(−1)m+r+s

(
m + r

2m

)(
n−m

s

)
9m.
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Similarly, one can show that

1
1− (3q + q2(z − 1))

∣∣∣
q2n+1

=
2n+1∑

m=n+1

(
m

2m− 2n− 1

)
32m−2n−1(z − 1)m−(2m−2n−1)

=
n∑

m=0

(
m + n + 1
2m + 1

)
32m+1(z − 1)n−m.

It follows that

1
(1− q2(1− z))(1− (3q + q2(z − 1))

∣∣∣
q2n+1

=
n∑

r=0

(1− z)n−r
r∑

m=0

(
m + r + 1
2m + 1

)
32r+1(z − 1)r−m

=
n∑

r=0

r∑

m=0

(−1)n−r

(
m + r + 1
2m + 1

)
32m+1(z − 1)n−m

and

1
(1− q2(1− z))(1− (3q + q2(z − 1))

∣∣∣
q2n+1zs

=
n∑

r=0

r∑

m=0

(−1)m+r+s

(
m + r + 1
2m + 1

)(
n−m

s

)
32m+1. (4)

Thus we have shown that, in particular, in case of avoidance,

A3(q, 0)|q2n =
n∑

r=0

r∑

m=0

(−1)m+r

(
m + r

2m

)
32m and (5)

A3(q, 0)|q2n+1 =
n∑

r=0

r∑

m=0

(−1)m+r

(
m + r + 1
2m + 1

)
32m+1. (6)

A check in [23] shows that A3(q, 0)|q2n = (F (2n))2 and A3(q, 0)|q2n+1 =
F (2n)F (2n + 2) where F (n) is the n-th Fibonacci number (see [23, A006190]).
Here is a proof of that fact. Clearly if we have a word w = w1 . . . w2n such
that s(w) = 0, then u = w1w3 . . . w2n−1 and v = w2w4 . . . w2n must be words in
{1, 2, 3}∗ that never have a 3 following a 1. The map {1 → 01, 2 → 00, 3 → 10}
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gives a bijection from the set of words of length n avoiding 13 and the set of binary
words of length 2n avoiding 11 and known to be counted by F (2n).

For another way to understand the same result, we first find the distribution of
consecutive occurrences of 13 over words in {1, 2, 3}∗. For any word u = u1 . . . un ∈
{1, 2, 3}∗, let T (w) = {i : wi+1 = 2 + wi} and t(w) = |T (w)|. Then we wish to
compute

B3(q, z) =
∑

w∈{1,2,3}∗
q|w|zt(w). (7)

Let

B3(i1 . . . ij ; q, z) =
∑

w∈{1,2,3}∗
q|i1...ijw|zt(i1...ijw). (8)

Then it is easy to see that

B3(1; q, z) = q + qB3(1; q, z) + qB3(2; q, z) + qzB3(3; q, z)

B3(2; q, z) = q + qB3(1; q, z) + qB3(2; q, z) + qB3(3; q, z)

B3(3; q, z) = q + qB3(1; q, z) + qB3(2; q, z) + qB3(1; q, z).

Thus if Q̄ = (−q,−q,−q) and B = (B3(1; q, z), B3(2; q, z), B3(3; q, z)), then Q̄T =
RBT where

R =




q − 1 q qz

q q − 1 q
q q q − 1



 .

Thus BT = R−1Q̄T and hence

B3(q, z) = 1 + B3(1; q, z) + B3(2; q, z) + B3(3; q, z) (9)

=
1

1− 3q − q2(z − 1)
. (10)

To derive the avoidance case algebraically, notice that the generating function
for the Fibonacci numbers (with a proper shift of indices) is

F (q) =
∑

n≥0

F (n)qn =
1 + q

1− q − q2
. (11)



INTEGERS: 10 (2010) 145

Thus,

f(q) =
∑

n≥0

F (2n)qn

=
F (q1/2) + F (−q1/2)

2

=
1

1− 3q + q2

= B3(q, 0).

This shows again that the number of words w ∈ {1, 2, 3}∗ of length n such that
t(w) = 0 is equal to F (2n). It easily follows that w ∈ {1, 2, 3}∗ of length 2n such
that s(w) = 0 is equal to (F (2n))2 and the number of word w ∈ {1, 2, 3}∗ of length
2n + 1 such that s(w) = 0 is equal to F (2n)F (2n + 2).

One can do a similar calculations when k = 4. In that case, Mathematica shows
that

A4(q, z) =
1

1− 4q − 8q3(z − 1)− 4q4(z − 1)2
(12)

and thus,

A4(q, 0) = 1 + 4q + 16q2 + 56q3 + 196q4 + 672q5 + 2304q6 + · · · .

As before, if we have a word of w = w1 . . . w2n such that s(w) = 0, then u =
w1w3 . . . w2n−1 and v = w2w4 . . . w2n must be words in {1, 2, 3, 4}∗ that never have
a 3 following a 1 or a 4 following a 2. For any word u = u1 . . . un ∈ {1, 2, 3, 4}∗, let,
as before, T (w) = {i : wi+1 = 2 + wi} and t(w) = |T (w)|. Then we can compute

B4(q, z) =
∑

w∈{1,2,3,4}∗
q|w|zt(w) (13)

in the same way that we computed B3(q, z). In this case,

B4(q, z) =
1

1− 4q − 2q2(z − 1)
. (14)

Then

B4(q, 0) = 1 + 4q + 14q2 + 48q3 + 164q4 + 560q5 + 1912q6 + · · · .

It should be noted that B4(q, 0) = 1
1−4q+2q2 is a generating function that be-

yond the objects listed in [23, A007070] counts the number of independent sets
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in certain “almost regular” graphs Gn
3 (see [3]). We leave establishing a bijection

between the objects in question as an open problem, instead considering the follow-
ing bijective question.

Problem 5. Find a bijection between the set An of words w = w1w2 . . . wn ∈
{1, 2, 3, 4}∗ that avoid the pattern (12, (P, {1}, P), {(1, 2, {2})}, (P, P)) and the set
Bn of words w0w1 . . . w2n+3 over {1, 2, . . . , 7}∗ with w0 = 1 and w2n+3 = 4 and
|wi − wi−1| = 1.

Problem 5 was solved by Alexander Valyuzhenich in [26] who found a recursive
bijection between the objects involved.

4.2. The PDVP (12, (P, {1, 2}, P), {(1, 2, {2})}, (P, P)) on Words.

Let U(w) = {i : wi+1 − wi = 2} and V (w) = {i : wi+2 − wi = 2} and let p(w) =
|U(w)|+ |V (w)|. In that case, we can use essentially the same methods to calculate
Dk(q, z) =

∑
w∈{1,...,k}∗ q|w|zp(w).

Let

Dk(i1 . . . ij ; q, z) =
∑

w∈{1,...,k}∗
q|i1...ijw|zp(i1...ijw). (15)

Then for example, when k = 3, we easily obtain the following recursions for
D3(ij; q, z) = D(ij; q, z).

D(11; q, z) = q2 + qD(11; q, z) + qD(12; q, z) + qzD(13; q, z)

D(12; q, z) = q2 + qD(21; q, z) + qD(22; q, z) + qzD(23; q, z)

D(13; q, z) = zq2 + zqD(31; q, z) + zqD(32; q, z) + qz2D(33; q, z)

D(21; q, z) = q2 + qD(11; q, z) + qD(12; q, z) + qD(13; q, z)

D(22; q, z) = q2 + qD(21; q, z) + qD(22; q, z) + qD(23; q, z)

D(23; q, z) = q2 + qD(31; q, z) + qD(32; q, z) + qD(33; q, z)

D(31; q, z) = q2 + qD(11; q, z) + qD(12; q, z) + qD(13; q, z)

D(32; q, z) = q2 + qD(21; q, z) + qD(22; q, z) + qD(23; q, z)

D(33; q, z) = q2 + qD(31; q, z) + qD(32; q, z) + qD(33; q, z).
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Thus if we let

Q = (−q2,−q2,−zq2,−q2,−q2,−q2,−q2,−q2,−q2) and

D = (D(11; q, z),D(12; q, z),D(13; q, z),D(21; q, z),D(22; q, z),D(23; q, z),

D(31; q, z),D(32; q, z),D(33; q, z)),

then we see that

QT = MDT

where

M =





q − 1 q zq 0 0 0 0 0 0
0 −1 0 q q qz 0 0 0
0 0 −1 0 0 0 zq zq qz2

q q q −1 0 0 0 0 0
0 0 0 q q − 1 q 0 0 0
0 0 0 0 0 −1 q q q
q q q 0 0 0 −1 0 0
0 0 0 q q q 0 −1 0
0 0 0 0 0 0 q q q − 1





.

Thus DT = M−1QT and our desired generating function is given by

D3(q, z) = 1 + 3q + (1, 1, 1, 1, 1, 1, 1, 1, 1)DT

=
1

1− 3q − q2(z − 1)− q3(2z + 1)(z − 1)− q4(z − 1)2
(16)

where we again used Mathematica for the last equation. In this case,

D3(q, 0) = 1 + 3q + 8q2 + 20q3 + 49q4 + 119q5 + 288q6 + · · · .

A similar computation as that above will show that

D4(q, z) =
1 + 2q2(1− z)− 2q3(z − 1)2

1− 4q − 8q2(z − 1)− 4q4(z − 1)2
. (17)

It follows that

D4(q, 0) =
1 + 2q2 − 2q3

1− 4q + 8q3 − 4q4

= 1 + 4q + 14q2 + 46q3 + 156x4 + 528x5 + 1800x6 + · · · .
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The sequence 1, 3, 8, 20, 49, 119, 288, . . . appears in [23, A048739] where it is given
an interpretation as the number of words w = w0 . . . wn+2 ∈ {1, 2, 3}∗ such that
|wi+1 − wi| ≤ 1, and w0 = 1 and wn+2 = 3. This leads to the following bijective
problem.

Problem 6. Find a bijection between the set An of words w = w1w2 . . . wn ∈
{1, 2, 3}∗ that avoid the pattern (12, (P, {1, 2}, P), {(1, 2, {2})}, (P, P)) and the set
Bn of words w = w0 . . . wn+2 ∈ {1, 2, 3}∗ such that |wi+1 − wi| ≤ 1, and w0 = 1
and wn+2 = 3.

Problem 6 was solved by Alexander Valyuzhenich in [26] who found a recursive
bijection in question.

4.3. The PDVP (12, (P, {1, 2}, P), {(1, 2, {2})}, (O, P)) on Words.

In this case, an occurrence of our PDVP is either 2 consecutive odd numbers that
differ by 2 or two odd numbers at distance 2 from each other that differ by 2. Let
P (w) = {i : wi+1−wi = 2 & wi+1 ∈ O} and Q(w) = {i : wi+2−wi = 2 & wi+2 ∈ O}
and let r(w) = |P (w)| + |Q(w)|. In that case, we can use essentially the same
methods to calculate Ek(q, z) =

∑
w∈{1,...,k}∗ q|w|zr(w).

Let

Ek(i1 . . . ij ; q, z) =
∑

w∈{1,...,k}∗
q|i1...ijw|zr(i1...ijw). (18)

For example, in the case that n = 4, it is easy to see that

E(11; q, z) = q2 + qE(11; q, z) + qE(12; q, z) + qzE(13; q, z) + qE(14 : q, z)

E(12; q, z) = q2 + qE(21; q, z) + qE(22; q, z) + qzE(23; q, z) + qE(24 : q, z)

E(13; q, z) = q2z + qzE(31; q, z) + qzE(32; q, z) + qz2E(33; q, z)
+qzE(34 : q, z)

E(14; q, z) = q2 + qE(41; q, z) + qE(42; q, z) + qzE(13; q, z) + qE(14 : q, z)

and for any i ∈ 2, 3, 4,

E(i1; q, z) = q2 + qE(11; q, z) + qE(12; q, z) + qE(13; q, z) + qE(14 : q, z)

E(i2; q, z) = q2 + qE(21; q, z) + qE(22; q, z) + qE(23; q, z) + qE(24 : q, z)

E(i3; q, z) = q2 + qE(31; q, z) + qE(32; q, z) + qE(33; q, z) + qE(34 : q, z)

E(i4; q, z) = q2 + qE(41; q, z) + qE(42; q, z) + qE(13; q, z) + qE(14 : q, z).
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Thus if we let

Q = (−q2,−q2,−zq2,−q2,−q2,−q2,−q2,−q2,−q2,−q2,−q2,−q2,

−q2,−q2,−q2,−q2) and

E = (E(ij; q, z))1≤i,j≤4

where we order the elements of E according to the lexicographic order on the pairs
(i, j), then we see that

QT = MET

where

M =





q − 1 q zq q 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 q q qz q 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 qz qz qz2 qz 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 q q qz q
q q q q −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 q q − 1 q q 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 q q q q 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 q q q q
q q q q 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 q q q q 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 q q q − 1 q 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 q q q q
q q q q 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 q q q q 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 q q q q 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 q q q q − 1





.

Thus ET = M−1QT and our desired generating function is given by

E4(q, z) = 1 + 4q + (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)ET

=
1

1− 4q − (z − 1)q2 − 2(z2 − 1)q3 − z(z − 1)2q4
(19)

where we again used Mathematica for the last equation. Then

E4(q, 0) = 1 + 4q + 15q2 + 54q3 + 193q4 + 688q5 + · · · .
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4.4. One More Result on PDVPs on Words

In this subsection, we consider the following two PDVP’s,

P1 = (12, (P, {1}, P), {(1, 2, {1})}, (P, P)) and

P2 = (12, (P, {2}, P), {(1, 2, {2})}, (P, P)).

Thus an occurrence of P1 in w = w1 . . . wn is a pair wi wi+1 of the form x x + 1
and an occurrence of P2 in w is a pair wi wi+2 of the form x x + 2.

Our goal is to show that the number an of words of length n over {1, 2, 3} avoiding
simultaneously the PDVP P1 and P2 is given by F (n + 5)− n− 4, where F (n), as
above, is the n-th Fibonacci number. The corresponding sequence — 3, 7, 14, 26,
46, 79, 133, 221, . . . — appears in [23, A079921].

It is easy to check that a1 = 3 and a2 = 7. We will show that for n ≥ 3,
an = an−1 + an−2 + n + 1, thus proving the claim by [23, A079921]. For a given
word w = w1w2 . . . wn over {1, 2, 3} avoiding the prohibited patterns, we distinguish
5 non-overlapping cases covering all possibilities:

1. w1 = 3. This 3 has no effect on the rest of w (it cannot be involved in an
occurrence of a prohibited pattern) thus giving an−1 possibilities.

2. w1w2 = 11. There is only one valid extension of 11 to the right, namely,
1 . . . 1, as placing 2 (resp. 3) will introduce an occurrence of P1 (resp. P2) in
w. Thus, the number of possibilities in this case is 1.

3. w1w2 = 13. Extending 13 to the right by any legal word w3w4 . . . wn of length
n − 2, we will be getting valid words of length n, except for the case when
w3 = 3 (w1w3 is an occurrence of P2). The number of “bad” words, according
to case (1) above is an−3. Thus, the number of possibilities in this case is
an−2 − an−3.

4. w = 2 . . . 2︸ ︷︷ ︸
>0

1 . . . 1︸ ︷︷ ︸
≥0

. The number of possibilities in this case is, clearly, n.

5. w1 = 2 and w contains at least one 3. Notice, that the leftmost 3 in w must
be preceded by 1 (to avoid P1), which, in turn, must be preceded by 2 (using
the fact that w avoids P2 and w1 = 2). Thus, in this case, w begins with
a word of the form 2 . . . 2︸ ︷︷ ︸

>0

13x, where x, if it exists, is not equal to 3. To

count all such words, we proceed according to the following, obviously re-
versible, procedure. Consider a good word, say v, of length n − 3. If v does
not begin with 3, map it to 213v to get a proper word of length n in the
class in question. On the other hand, if v = 3 . . . 3︸ ︷︷ ︸

i>0

xV , were x %= 3 (assuming
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such x exists), map v to 2 . . . 2︸ ︷︷ ︸
i>1

13xV getting a proper word of length n in the

class. Clearly, we get all words in the class. Thus, the number of possibilities
in this case is an−3.

Summarizing cases 1–5 above we get the desired recurrence.
The problem below involves so called 2-stack sortable permutations, that is, per-

mutations that can be sorted by passing them twice through a stack (where the
letters on the stack must be in increasing order). Such permutations were first
considered in [27], but have attracted much attention in the literature since then.

Problem 7. Find a bijection between the set An of words w = w1w2 . . . wn ∈
{1, 2, 3}∗ that avoid simultaneously the PDVPs P1 and P2 and the set Bn of 2-
stack sortable permutations which avoid the pattern 1-3-2 and contain exactly one
occurrence of the pattern 1-2-3. The last object is studied in [5].

5. Beyond PDVPs: Directions of Further Research

Another generalization of the GPs is partially ordered patterns (POPs) when the
letters of a pattern form a partially ordered set (poset), and an occurrence of such a
pattern in a permutation is a linear extension of the corresponding poset in the order
suggested by the pattern (we also pay attention to eventual dashes and brackets).
For instance, if we have a poset on three elements labeled by 1′, 1, and 2, in which
the only relation is 1 < 2 (see Figure ??), then in an occurrence of p = 1′-12 in
a permutation π the letter corresponding to the 1′ in p can be either larger or
smaller than the letters corresponding to 12. Thus, the permutation 31254 has
three occurrences of p, namely 3-12, 3-25, and 1-25.

Figure 4: A poset on three elements with the only relation 1 < 2.

The notion of a POP allows us to collect under one roof (to provide a uniform
notation for) several combinatorial structures such as peaks, valleys, modified max-
ima and modified minima in permutations, Horse permutations and p-descents in
permutations. See [9, 10, 11] for results, including a survey paper, on POPs in
permutations and [12] on POPs on words.
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In the literature on permutation patterns, there are several publications involv-
ing so called barred patterns. For example, in [2] a conjecture is settled on the
number of permutations avoiding the barred pattern 3-1̄-5-2-4̄. A permutation π
avoids 3-1̄-5-2-4̄ if every occurrence of the pattern 2-3-1 plays the role of 352 in an
occurrence of the pattern 3-1-5-2-4. In some cases, barred patterns can be expressed
in terms of generalized patterns. E.g., to avoid 4-1-3̄-5-2 is the same as to avoid
3-14-2. However, in many cases, one cannot express the barred patterns in terms
of other patterns. The pattern 3-1̄-5-2-4̄ is an example of such pattern. Another
example is the barred pattern 3-5̄-2-4-1 (it is shown in [27] that the set of 2-stack
sortable permutations mentioned above is described by avoidance of 3-5̄-2-4-1 and
2-3-4-1). In general, one can consider distributions, rather than just avoidance, of
barred patterns. For example, the pattern 2-3̄-1 occurs in a permutation π k times,
if there are exactly k occurrences ba in π of the pattern 2-1 such that there is no
element c > b in π between b and a.

It is straightforward to define place-difference-value partially order patterns,
PDVPOPs, or place-difference-value barred patterns, PDVBP, since our place, dif-
ference, and value restrictions just limit where and what values are required for a
pattern match. In particular, formula (1) holds for PDVPOPs. We shall not pursue
the study of PDVPOPs or PDVBPs in this paper. Instead, we shall leave it as a
topic for further research.

Finally, we should observe that our definition of PDVP’s does not cover the most
general types of restrictions on patterns that one can consider. For example, one
can easily imagine cases where there are restrictions on the values in occurrences of
patterns that are a function of the places occupied by the occurrence or there are
restrictions on the places which an occurrence occupied that are functions of the
values in the occurrence. Thus the most general type of restriction for a pattern
p ∈ Sm would be to just give a set S of 2m-tuples (x1, . . . , xm : y1, . . . , ym) where
1 ≤ x1 < · · · < xm and where y1, . . . , ym is order isomorphic to p. In such a
situation, we can say (p,S) occurs in a permutation π = π1 . . .πn if and only if
there is a 2m-tuple (x1, . . . , xm : y1, . . . , ym) ∈ S such that πxi = yi for i = 1, . . . ,m.
While this is the most general type of pattern condition that we can think of, in
most cases this would be a very cumbersome notation. Our definition of PDVP’s
was motivated by our attempts to cover all the different types of pattern matching
conditions that have appeared in the literature that still allows for a relatively
compact notation.

References
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