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Abstract
A finite set partition is said to have a descent at i if it has a descent at i in its
canonical representation as a restricted growth function (and likewise for level and
rise). In this note, we provide direct combinatorial proofs as well as extensions
of recent formulas for the total number of rises, levels, and descents in all the
partitions of an n-set with a prescribed number of blocks. In addition, we supply
direct proofs of formulas for the number of partitions having a fixed number of
levels.

1. Introduction

A partition of [n] = {1, 2, . . . , n} is a decomposition of [n] into non-overlapping
subsets B1, B2, . . . , Bk, called blocks, which are listed in increasing order of their
least elements (1 ! k ! n). We will represent a partition π = B1, B2, . . . , Bk

in the canonical sequential form π = π1π2 · · ·πn such that j ∈ Bπj , 1 ! j ! n.
Therefore, a sequence π = π1π2 · · ·πn over the alphabet [k] represents a partition
of [n] with k blocks if and only if it is a restricted growth function of [n] onto
[k] (see, e.g., [1, 4, 6, 7] for details). For instance, 123214154 is the canonical
sequential form of the partition {1, 5, 7}, {2, 4}, {3}, {6, 9}, {8} of [9]. Partitions
will be identified with their corresponding canonical sequences throughout.

Let π = π1π2 · · ·πn be any given partition represented by its canonical se-
quence. Given an integer t > 1, we say that π has a t-rise at i if πi <
πi+1 < · · · < πi+t−1, a t-descent if πi > πi+1 > · · · > πi+t−1, and a t-level
if πi = πi+1 = · · · = πi+t−1. For example, if t = 3, then the partition 1222345322
of [10] has two 3-rises (at i = 4 and i = 5), one 3-level (at i = 2), and one
3-descent (at i = 7). The set of partitions of [n] will be denoted by Bn and the
subset of partitions with k blocks by Bn,k. The cardinality of Bn,k is the Stirling
number of the second kind S(n, k), following the notation of [5].
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Mansour and Munagi [3] found formulas for the total number of 2-rises, 2-
descents, and t-levels in all the members of Bn,k. More specifically, they showed

# of 2-rises in Bn,k = (k − 1)S(n, k) +
k∑

j=2

(
j

2

) n−2∑

i=k

jn−2−iS(i, k), (1)

# of 2-descents in Bn,k =
(

k

2

)
S(n− 1, k) +

k∑

j=2

(
j

2

) n−2∑

i=k

jn−2−iS(i, k), (2)

and

# of t-levels in Bn,k = kS(n− t + 1, k) +
k∑

j=1

j
n−t∑

i=k

jn−t−iS(i, k). (3)

(Formula (3) is a slight correction over that appearing in [3]). Formulas (1)–(3)
were obtained algebraically by partially differentiating certain joint generating
functions and the question of finding direct combinatorial proofs is raised. Here,
we provide the requested combinatorial proofs of (1)–(3). The arguments may
be extended to yield formulas for the total number of t-descents as well as for the
total number of 3-rises. In addition, we supply direct proofs of formulas which
count the members of Bn,k having a fixed number of levels.

2. Proofs of (1)–(3)

Proof of (1): Upon replacing i by n− i in the inner sum of the right side of (1),
we’ll show that the total number of 2-rises in all members of Bn,k is given by

(k − 1)S(n, k) +
k∑

j=2

(
j

2

) n−k∑

i=2

ji−2S(n− i, k).

First consider the rises occurring each time a new block is started; there are
clearly k − 1 such rises within each member of Bn,k and hence their total is
(k − 1)S(n, k). So to complete the proof we must show that the number of rises
caused by two members of [n] belonging to different blocks where neither member
is the smallest element of its block is given by the double sum above. We’ll call
such rises non-trivial.

Given i and j, where 2 ! i ! n− k and 2 ! j ! k, consider all the members
of Bn,k which may be decomposed uniquely as

π = π′jαβ, (4)
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where π′ is a partition with j − 1 blocks, α is a word of length i in the alphabet
[j] whose last two letters form a rise, and β is possibly empty. For example, if
i = 5, j = 3, and π = 122323113342 ∈ B12,4, then π′ = 122, α = 23113, and
β = 342. The total number of non-trivial rises can then be obtained by finding
the number of partitions which may be expressed as in (4) for each i and j and
then summing over all possible values of i and j. And there are

(j
2

)
ji−2S(n− i, k)

members of Bn,k which may be expressed as in (4) since there are ji−2 choices
for the first i − 2 letters of α,

(j
2

)
choices for the final two letters in α (as the

last letter must exceed its predecessor), and S(n− i, k) choices for the remaining
letters π′jβ which necessarily constitute a partition of an (n−i)-set into k blocks.

Proof of (2): The sum on the right side of (2) above counts all 2-descents where
neither element is the smallest (= first) member of its block, upon reasoning as
above. To show that

(k
2

)
S(n−1, k) counts all descents at i for some i where i is the

smallest member of its block in some member of Bn,k, first choose two numbers
a and b in [k], where a < b. Given λ ∈ Bn−1,k, let m denote the smallest member
of block b. Increase all members of [m + 1, n− 1] = {m + 1,m + 2, . . . , n− 1} in
λ by one (leaving them within their blocks) and then add m+1 to block a. This
produces a descent between the first element of block b and an element of block
a within some member of Bn,k. For example, if n = 7, k = 4, a = 1, and b = 3,
then λ = {1, 5}, {2}, {3, 4}, {6} ∈ B6,4 would give rise to the descent between 3
and 4 in {1, 4, 6}, {2}, {3, 5}, {7} ∈ B7,4.

Proof of (3): Reasoning as above, the sum on the right side of (3) counts all
t-levels which do not start with a number that is the smallest element of a block,
upon replacing i with n− t + 1− i in the inner sum. (Decompose a partition π
exactly as in (4) above except now α is a j-ary word of length i + t − 1 whose
final t letters are the same.) To see that there are kS(n − t + 1, k) t-levels that
do start with the smallest element of a block, let λ ∈ Bn−t+1,k and suppose %
is the smallest element of block a, where 1 ! a ! k. Increase all members of
[% + 1, n − t + 1] by t − 1 within λ and add all members of [% + 1, % + t − 1] to
block a to obtain a t-level at %.

Remark 1. One may also count the total number of t-levels in Bn,k by consider-
ing those t-levels caused by each set of the form [i, i+t−1], 1 ! i ! n−t+1. Note
that there are S(n− t + 1, k) t-levels in Bn,k caused by a set [i, i + t− 1], upon
regarding it as a single element, and hence (n− t+1)S(n− t+1, k) t-levels in all.
Equating this with the right-hand side of (3) above, re-indexed, and replacing
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n− t + 1 by m yields the Stirling number recurrence

(m− k)S(m,k) =
k∑

j=1

m−k∑

i=1

jiS(m− i, k), (5)

which seems to be new. Finally, trying to count the total number of 2-rises and
2-descents in a similar manner by considering those caused by each doubleton
{i, i + 1} does not seem to yield any interesting alternative formulas to (1) and
(2).

Remark 2. A straightforward generalization of the proof of (2) yields

# of t-descents in Bn,k =
(

k

t

)
S(n− t + 1, k) +

k∑

j=t

(
j

t

) n−k∑

i=t

ji−tS(n− i, k)

(6)

for any t > 1.

3. An Explicit Formula for 3-Rises

In this section, we establish an explicit formula for the total number of 3-rises
taken over all the members of Bn,k. If π ∈ Bn and i ∈ [n], we will say that i
is minimal if i is the smallest element of a block within π, i.e., if the ith slot of
the canonical representation of π corresponds to the first occurrence of a letter.
Unlike the case for t-levels and t-descents, there does not seem to be a simple
explicit formula for the total number of t-rises within all the members of Bn,k

for general t.

Proposition 3. The number of 3-rises in all the partitions of [n] with k blocks
is given by

n−2∑

r=1

∑

a,b!0

(
n− r − 2

a, b

)
S(n− 2− a− b, k − 2) +

k∑

j=3

(
j

3

) n−k∑

i=3

ji−3S(n− i, k)

+
k−1∑

j=2

(
j

2

) n−k+1∑

i=3

ji−3 [(k − j)S(n− i, k) + S(n− i, k − 1)] .

Proof. Suppose a 3-rise occurs at r in π ∈ Bn,k for some r " 1. We consider
three cases. First assume that both r + 1 and r + 2 are minimal. The first sum
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above then counts all such rises, upon choosing a elements of [r + 3, n] to go in
the block with r+1 and b additional elements of [r+3, n] to go in the block with
r +2 and then partitioning the remaining n− 2− a− b members of [n] into k− 2
blocks. The second sum above counts all 3-rises where none of {r, r + 1, r + 2}
are minimal, by the same reasoning used to count non-trivial 2-rises in the prior
section.

To complete the proof, we must show that the third sum counts all 3-rises
where r + 2 is minimal, but r + 1 is not. Suppose i and j are given, where
3 ! i ! n − k + 1 and 2 ! j ! k − 1. Consider those members of Bn,k which
may be decomposed uniquely as

π = π′jαj + 1β, (7)

where π′ is a partition with j − 1 blocks, α is a j-ary word of length i− 1 whose
last two letters form a 2-rise, and β is possibly empty. So counting all possible
3-rises at some r where r +2 is minimal but r +1 is not is equivalent to counting
all members of Bn,k which may be expressed as in (7) for each i and j and then
summing over all possible values of i and j.

So it suffices to show that there are
(j
2

)
ji−3 [(k − j)S(n− i, k) + S(n− i, k − 1)]

members of Bn,k which may be expressed as in (7). Suppose first that the
(j + 1)st block of π is a singleton. Then there are ji−3 choices for the first i− 3
letters of α,

(j
2

)
choices for the last two letters of α, and S(n− i, k−1) choices for

the remaining letters π′jβ of π which together necessarily constitute a partition
of an (n− i)-set into k − 1 blocks, which explains the second term.

Now suppose that the (j + 1)st block of π is not a singleton and say that π′

is a partition of [t] for some t " 1. Then the same reasoning as before applies
except now the remaining letters π′jβ constitute a partition having k blocks with
the number t + i + 1 ∈ [n] to be added to one of the final k − j blocks of this
partition.

4. Partitions with a Fixed Number of Levels

In [3], formulas were given which counted the members of Bn,k having a fixed
number of levels. For example, there are

(n−1
r

)
S(n − r − 1, k − 1) members of

Bn,k with exactly r occurrences of 2-levels. When r = 0, this reduces to the
well-known fact that there are S(n− 1, k − 1) members of Bn,k where no block
contains two consecutive integers (see [2] for a bijective proof). The r = 0 case
implies the general case as follows. First select r members of {2, 3, . . . , n} to be
the second numbers in r 2-levels. Partition the remaining n − r members of [n]
into k blocks so that no two “consecutive” elements go in the same block, which
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can be done in S(n− r − 1, k − 1) ways. Then add the chosen r members of [n]
to the appropriate blocks so as to create r 2-levels.

On the other hand, there do not appear to be simple formulas for the number
of partitions of [n] with k blocks having r 2-rises or r 2-descents for general r. The
following proposition gives the number of members of Bn,k having r 3-levels and
was established in [3] algebraically using generating functions. Here, we provide
a combinatorial proof.

Proposition 4. The number of partitions of [n] with k blocks without three levels
is given by

#n
2 $∑

j=0

(
n− j

j

)
S(n− j − 1, k − 1),

and the number of partitions of [n] with k blocks with r occurrences of 3-levels,
r " 1, is given by

r∑

v=1

#n−r
2 $∑

j=v

(
r − 1
v − 1

)(
j

v

)(
n− r − j

j

)
S(n− r − j − 1, k − 1).

Proof. We prove only the second formula, rewritten as

r∑

v=1

(
r − 1
v − 1

)#n−r
2 $−v∑

j=0

(
n− r − j − v

v

)(
n− r − j − 2v

j

)
S(n− r− j− v− 1, k− 1),

upon replacing j by j + v in the inner sum and using trinomial revision. Given
λ ∈ Bn,k with exactly r 3-levels, let v denote the number of maximal sets of
consecutive integers of length at least three belonging to a single block in λ and let
S1, S2, . . . , Sv denote these sets. For example, if λ = 122223331222123 ∈ B15,3,
then S1 = {2, 3, 4, 5}, S2 = {6, 7, 8}, S3 = {10, 11, 12}, and v = 3. Let j be the
number of 2-levels in λ involving two members of [n]−

⋃v
i=1 Si. Let xi = |Si|−3,

1 ! i ! v. Since there are to be r 3-levels and since all 3-levels must involve
members of some Si, we have x1 + x2 + · · · + xv = r − v, where xi " 0 ∀i.
So there are

((r−v)+v−1
v−1

)
=

(r−1
v−1

)
choices for the cardinalities of the Si and

(r − v) + 3v = r + 2v members of [n] used to form the Si.
Within λ, we will call any member of [n] not involved in a t-level for any

t > 1 a 1-level. Outside of the Si, there are to be exactly j 2-levels and hence
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n − r − 2v − 2j 1-levels, which we will regard as doubleton and singleton sets.
Therefore, there are

(n−r−2v−j
j

)
choices concerning the relative order of the 1-

and 2-levels outside of the Si. Once this is determined, one needs to decide how
the n − r − j − 2v 1- and 2-levels are to be arranged relative to the v sets Si,
which is equivalent to finding the number of nonnegative integer solutions to
y1 + y1 + · · · + yv+1 = n− r − j − 2v, whence there are

(n−r−j−v
v

)
ways.

Finally, the 1- and 2-levels and the sets Si must be arranged in a partition
having k blocks without any levels (so as not to create any additional 3-levels).
Since there are S(n− 1,m− 1) partitions of an n-object set having m blocks and
no 2-levels, it follows that there are S(n− r − j − v − 1, k − 1) ways to arrange
these n − r − j − v items in a partition having k blocks (one compares 1- and
2-levels and the sets Si by comparing smallest elements). Summing over i and j
yields all members of Bn,k having r 3-levels.
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