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Abstract
Diophantine m-tuples with property D(n), for n an integer, are sets of m positive
integers such that the product of any two of them plus n is a square. Triples
and quadruples with this property can be classed as regular or irregular according
to whether they satisfy certain polynomial identities. Given any such m-tuple, a
symmetric integer matrix can be formed with the elements of the set placed in
the diagonal and with corresponding roots off-diagonal. In the case of quadruples,
Jacobi’s theorem for the minors of the adjugate matrix can be used to show that
up to eight new Diophantine quadruples can be formed from the adjugate matrices
with various combinations of signs for the roots. We call these adjugate quadruples.

1. Introduction

Diophantus proposed the problem of finding triples and quadruples of rational num-
bers such that the product of any two is one less than a square, and found several
examples [11]. Fermat considered the problem over positive integers noting the
quadruple (1, 3, 8, 120) [7]. Then Euler showed that an infinite class of quadru-
ples including Fermat’s example can be extended to rational quintuples such as
(1, 3, 8, 120, 777480

8288641) [6]. Computer based searches have more recently yielded a
finite number of rational Diophantine sextuples [10, 2].

Some key questions about Diophantine m-tuples remain unsettled. We do not
know if there exists a Diophantine quintuple in integers or a rational Diophantine
septuple. There are also stronger conjectures on the complete set of quadruples.
Over the last two decades a number of approaches have produced excellent results
that have come tantalizingly close to answering the first question. By using results
from the theory of Diophantine approximations it has been shown that there are no
Diophantine sextuples in integers and only finitely many quintuples [3]. Further-
more the bound on the number of possible quadruples continues to be improved [8]
and it is known that every Diophantine quintuple contains a regular Diophantine
quadruple (see below for definition) [9]. Impressive though these methods are, it
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seems that they are currently limited by gap requirements that make it difficult to
derive stronger results.

It is possible that further progress may follow a better understanding of the
algebraic and factorization properties of Diophantine m-tuples and their general-
izations. Even if it does not, these properties are of interest in their own right.
Using algebraic methods and results from the theory of elliptic curves it is known
that any Diophantine triple can be extended to a quadruple [1]. Furthermore, any
quadruple can be extended to a rational Diophantine quintuple [4]. These results
reveal that the structure of quadruples and quintuples is governed by the existence
of certain polynomials over the m-tuples with useful factorization properties that
are not fully explained. The results described here have grown out of attempts to
better understand these algebraic structures.

2. Basic Definitions

A Diophantine m-tuple with the property D(n) for n an integer is an m-tuple of
distinct positive integers (a1, ..., am) such that

aiaj + n = x2
ij

is always an integer square for i != j . The values of ai are called the components
of the quadruple and the values of xij are called its roots. For a given quadruple
the roots are not unique because the alternatives with different signs are also valid
roots. When we search for rational Diophantine m-tuples this is equivalent to seeking
Diophantine m-tuples with the property D(n) where n is a positive square number.
An improper Diophantine m-tuple is an m-tuple with similar properties but with
the relaxed condition that the elements ai can be any integers and need not be
distinct. A primitive Diophantine m-tuple is one where there is no common factor
greater than 1 that divides all the numbers ai and n. Two Diophantine quadruples
will be called equivalent if they are both integer multiples of the same primitive
quadruple after permutations of the components.

A regular Diophantine triple with the property D(n) is a triple (a, b, c) with the
extra condition that

(c− b− a)2 = 4(ab + n).

This equation is symmetric under permutations of a, b, c.
A regular Diophantine quadruple with the property D(n) is a quadruple (a, b, c, d)

with the extra condition that

n(d + c− a− b)2 = 4(ab + n)(cd + n).
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This is also symmetric under permutations of the variables. Since both sides of
the equation must be square it follows that a Diophantine quadruple with property
D(n) can only be regular if n is square, whereas regular Diophantine triples with
property D(n) exist for all n. When n is square the quadruple formed by adding a
zero to a regular triple is an improper regular quadruple. An irregular Diophantine
m-tuple is one that is not regular. A semi-regular Diophantine quadruple is one
which contains a regular triple, and a twice semi-regular Diophantine quadruple is
one that contains two regular triples. These definitions will help us classify and
understand the quadruples better.

It is also convenient to define a function Z4(n) whose value is the number (possi-
bly infinite) of irregular Diophantine quadruples with property D(n). A number of
conjectures concerning Diophantine quadruples can then be summarized as state-
ments about Z4(n); for example, it is believed to be finite for all n != 0. In particular
Z4(1) = 0. Setting upper limits for Z4(n) is a hard problem but lower limits for
congruence classes of n can be found by constructing polynomial solutions [5].

3. Adjugation and Jacobi’s Theorem

Given a Diophantine m-tuple (a1, ..., am) we can form a symmetric m×m matrix
S with components given by

Sii = ai

Sij = xij(i != j)

For a quadruple (a, b, c, d) the matrix would look like this:

S =





a x y u
x b z v
y z c w
u v w d





A minor MS(I, J) of the matrix S is the determinant of some smaller square
matrix formed by removing one or more rows and columns from S, such that I is
the set of indices of the rows left and J is the set of indices of the columns left. The
principal minors are the ones formed when I = J Because of the D(n) property,
the principal 2× 2 minors of S are equal to −n:

MS({i, j}, {i, j}) = aiaj − x2
ij = −n.
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Given S we can form the adjugate matrix T whose elements are the cofactors of
S given by

Tij = (−1)i+jMS(U − {j}, U − {i}),

where U is the set of all row or column indices.
As a consequence of Laplace’s formula for the determinant of a matrix we can

write the matrix equation as

ST = |S|I

where I is the identity matrix and |S| is the determinant of S, |S| = MS(U,U).
Jacobi’s theorem [13] relates the minors of T to those of S by the formula

MT (I, J) = (−1)
∑

(I,J)MS(U − I, U − J)|S|r−1

where the exponent
∑

(I, J) used to determine the sign factor is just the sum of
all the indices in both sets, and r = |I| = |J | is the number of rows and columns
removed to form the minors. Jacobi’s theorem can be applied to the principal 2× 2
minors of the symmetric matrix S for a Diophantine quadruple with property D(n)
to show that the 2× 2 principle minors of the adjugate matrix T all have the value
n|S|. If we write out the components of −T as

−T =





A X Y U
X B Z V
Y Z C W
U V W D



 ,

then we find that the m-tuple (A,B,C,D) is a (possibly improper) Diophantine
m-tuple with the property D(n|S|). The negative sign is introduced because in
practice we find that the Diophantine quadruple formed in this way is less likely to
be improper due to negative values if we reverse the signs. So we have the following
definition:

Given a (possibly improper) Diophantine quadruple (a1, a2, a3, a4) with property
D(n) and its integer root xij such that aiaj + n = x2

ij , an adjugate quadruple
is defined by constructing the symmetric matrix S with components Sii = ai and
Sij = xij(i != j) and forming its adjugate matrix T . The adjugate quadruple
(A1, A2, A3, A4) and its root Xij are by definition given by Ai = −Tii and Xij =
−Tij . Note that we speak of an adjugate and not the adjugate. This is because for
a given quadruple, the roots xij can be given different combinations of signs which
can provide different adjugates.
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This can be illustrated with an example based on the well-known regular Dio-
phantine quadruple discovered by Fermat, (a, b, c, d) = (1, 3, 8, 120), with property
D(1). Using the positive roots this gives

S =





1 2 3 11
2 3 5 19
3 5 8 31

11 19 31 120



 , T =





−1 2 3 −1
2 −3 5 −1
3 5 −8 1
−1 −1 1 0



 .

So the first adjugate is (A,B,C,D) = (1, 3, 8, 0), which is an improper Diophantine
quadruple with property D(1). By trying all other possibilities for the signs of the
roots we get eight quadruples in total (see Example A in Table 1). Four of the eight
adjugates are distinct proper Diophantine quadruples in this case.

From the definition of adjugates the following theorem follows:

Theorem 1 (a) Given a (possibly improper) Diophantine quadruple (a1, a2, a3, a4)
with the property D(n), any adjugate quadruple (A1, A2, A3, A4) is a (possibly im-
proper) Diophantine quadruple with property D(N) where N = n|S| and S is the
symmetric matrix constructed as described above.

(b) If (A1, A2, A3, A4) is an adjugate quadruple of (a1, a2, a3, a4) then (a1, a2, a3, a4)
is equivalent to an adjugate quadruple of (A1, A2, A3, A4). Here equivalence of
Diopahntine quadruples is as defined above.

(c) A quadruple has at most eight distinct adjugates.

Proof. (a) Given the Diophantine quadruple (a1, a2, a3, a4) with property D(n)
and a choice of signs for its roots, we can construct the symmetric matrix S as
above. The adjugate matrix T can then be constructed using the cofactors of S.
By Jacobi’s theorem as described above the quadruple in the diagonal of T is a
Diophantine quadruple with property D(n|S|)

(b) T is the adjugate matrix of S so ST = |S|I, where I is the 4×4 identity matrix.
Taking S′ to be the adjugate matrix of T , we have TS′ = |T |I . This implies that
S′ = |T |/|S|S. Hence the adjugate of T given by the diagonal of S′ is the same as
the original quadruple times a factor.

(c) This comes from the observation that there are 64 = 26 ways to do the construc-
tion with different combinations of signs for the six roots. However if the matrix
is transformed by reversing the signs on one row and the same column, then the
adjugate matrix is transformed in the same way without affecting the components
of the quadruple. Therefore only 8 = 23 combinations of signs for the roots can
lead to distinct adjugates. !
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Example A Example B
(1, 3, 8, 120)D(1) (1, 8, 19, 208)D(17)
Regular, with one regular triple Semi-regular
(1, 3, 8, 0)D(1) (69, 440, 867, 0)D(14161)
(1, 3, 1680, 120)D(1) (69, 440, 13167, 1560)D(−28679)
(1, 4095, 1680, 0)D(529) (69, 23120, 13167, 0)D(395641)
(1, 4095, 8, 120)D(1) (69, 23120, 867, 1560)D(−55199)
(11781, 4095, 8, 0)D(3721) (134385, 23120, 867, 0)D(4092529)
(11781, 4095, 1680, 120)D(−51831) (134385, 23120, 13167, 1560)D(−14842751)
(11781, 3, 1680, 0)D(1521) (134385, 440, 13167, 0)D(2289169)
(11781, 3, 8, 120)D(1) (134385, 440, 867, 1560)D(−346511)

Example C Example D
(2, 7, 19, 35)D(11) (3, 8, 120, 0)D(1)
Twice semi-regular Improper with a zero
(−3, 0, 24, 0)D(121) (66, 85, 1, 1)D(15)
(−3, 0, 2904, 1680)D(9801) (66, 85, 21, 11781)D(−1385)
(−3, 6552, 2904, 0)D(43681) (66, 161, 21, 1)D(−17)
(−3, 6552, 24, 1680)D(21681) (66, 161, 1, 11781)D(2143)
(19965, 6552, 24, 0)D(314721) (190, 161, 1, 1)D(35)
(19965, 6552, 2904, 1680)D(−2192399) (190, 161, 21, 11781)D(−3365)
(19965, 0, 2904, 0)D(131769) (190, 85, 21, 1)D(−21)
(19965, 0, 24, 1680)D(64009) (190, 85, 1, 11781)D(2619)

Example E Example F
(1, 8, 8, 64)D(17) (0, 0, 1, 8)D(1)
Duplicated component Improper with two zeros
(30, 195, 195,−33)D(6919) (3, 3, 6,−1)D(7)
(30, 195, 4335, 867)D(−2601) (3, 3, 10, 3)D(−5)
(30, 4335, 4335,−33)D(147679) (3, 15, 10,−1)D(19)
(30, 4335, 195, 867)D(−2601) (3, 15, 6, 3)D(9)
(19074, 4335, 195,−33)D(652851) (15, 15, 6,−1)D(31)
(19074, 4335, 4335, 867)D(−2422109) (15, 15, 10, 3)D(−29)
(19074, 195, 4335,−33)D(652851) (15, 3, 10,−1)D(19)
(19074, 195, 195, 867)D(−29189) (15, 3, 6, 3)D(−9)

Table 1: Examples of Adjugate quadruples
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4. Relationship Between Adjugation and Extension of Triples

Suppose (a, b, c) is a Diophantine triple with the property D(1):

ab + 1 = x2

ac + 1 = y2

bc + 1 = z2.

Then a fourth integer d can be added to make a D(1) Diophantine quadruple
(a, b, c, d) using the formula

d = a + b + c + 2abc + 2xyz.

The quadruple is regular because it satisfies the equation

(d + cab)2 = 4(ab + 1)(cd + 1).

This equation shows that (cd + 1) must be a square because (ab + 1) is square.
Similar results follow from permutations of the components to show that (a, b, c, d)
is indeed a D(1) quadruple. In fact there is a second way to extend a triple using
the formula

d = a + b + c + 2abc− 2xyz.

However, this case can lead to an improper quadruple with d = 0. This fourth
degree polynomial equation for regular D(1) quadruples can be interpreted as a
special case of Cayley’s hyperdeterminant which is a quartic invariant of SL(2)3

acting on a 2× 2× 2 hypermatrix A with components Aijk given by the formula

Det(A) = (A000A111 + A001A110 −A010A101 −A100A011)2

−4(A010A100 −A000A110)(A101A011 −A111A001).

So if A111 = −d,A001 = c,A010 = a,A100 = b,A000 = 1, and A110 = A011 =
A101 = −1, then

A =
((

1 a
b −1

)(
c −1

−1 −d

))

and the regularity condition is just Det(A) = 0.
There is a relationship between the process for extending triples to regular

quadruples on the one hand, and adjugation of quadruples on the other. This
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follows from an observation of Holtz and Sturmfels who showed that if all the
principal minors of a symmetric m × m matrix are naturally arranged in a 2m

hypermatrix, then the hyperdeterminant of any 23 segment of the hypermatrix
is equal to zero [12]. To see this take the symmetric matrix S formed from a
Diophantine quadruple and its roots. Then construct a 2× 2× 2× 2 hypermatrix
with its principal minors using the definition of the adjugate quadruple as follows:

A =





(
1 a
b −n

) (
c −n

−n −d

)

(
d −n

−n −C

) (
−n −B
−A |S|

)




.

There are eight different 2× 2× 2 hypermatrix slices that have a zero hyperde-
terminant by the result of Holtz and Sturmfels. If n = 1 this would mean that the
four quadruples with components (a, b, c,D), (a, b, C, d), (a,B, c, d) and (A, b, c, d)
are regular Diophantine quadruples. In other words the four components of the ad-
jugate quadruple are formed from the components used to extend the four subtriples
of the original quadruple.

This also allows us to state some relationships between properties of a quadruple
and its adjugates that can be verified by constructing the possible 2 × 2 × 2 × 2
hypermatrices for each adjugate:

• If a quadruple is regular with property D(1), then four out of its eight ad-
jugates are the regular quadruples formed by dropping one of its four com-
ponents and replacing it with the other extension value. (see Example A in
Table 1).

• If a quadruple is semi-regular, i.e., it contains a regular triple, then four of
its eight adjugates will be improper quadruples with a zero component. Note
that for any D(n) quadruple with a zero component, the value of n must be
square, but this does not need to be the case for its adjugates (see Example
B in Table 1).

• If a quadruple is twice semi-regular, i.e., it contains two regular triples, then
two of its adjugates have two zeros and four others have one zero component
(see Example C).

• If a quadruple is improper with a zero component then all of its adjugates
include a regular triple (see Example D).

• If a quadruple is improper with two duplicate components then it can have at
most six distinct adjugates and four of them are improper with two duplicate
components (Example E).
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• If a quadruple is improper with two zero components then all of its adjugates
are twice semi-regular, but four of them are improper with two duplicate
components and there are only two other distinct adjugates (Example F).

5. Possible Applications of Adjugation for Diophantine Quadruples

A fundamental problem in the theory of Diophantine quadruples is to describe
the function Z4(n) which counts the number of irregular quadruples with property
D(n). In particular it would be good to determine if the function is finite for all
non-zero n and to be able to compute it for specific n.

This is a very hard problem, but the process of adjugation suggests that progress
can be made by characterizing the irregular quadruples into three types: twice semi-
regular, once semi-regular and fully irregular according to the number of regular
triples in the quadruple being two, one, or zero, respectively.

Quadruples that are twice semi-regular are adjugates of improper quadruples
with two zeros. This makes them relatively easy to analyze. Numerical searches
show that most quadruples are of this form for small n.

Quadruples with one regular triple are adjugates of improper quadruples with one
zero. It is therefore possible that we may be able to characterize such quadruples by
characterizing Diophantine triples with property D(n) where n is a square. These
can always be extended to a regular quadruple. Therefore the construction of
quadruples containing one regular triple is related to the easier task of constructing
regular quadruples. However this remains a difficult problem.

Numerically, the rarest type of quadruples for small n is observed to be those
which contain no regular triples. It is less clear whether adjugation can tell us much
about such quadruples but numerical studies might be used to investigate whether
they are always connected by a series of adjugations to semi-regular quadruples.

Adjugation can be used to construct parametric formulae for D(n) Diophantine
quadruples. The principle is to start with a simple polynomial formula for Dio-
phantine quadruples (that may be improper), then apply adjugation to get another
formula. As an example, consider the well known regular polynomial D(1) triple

(a, b, c) = (x− 1, x + 1, 4x), x > 1.

This can be extended to an improper but regular D(1) quadruple by adding a fourth
component d = 0. We find that six of the potential adjugates are improper and the
remaining two are (A,B,C,D) = (9x + 3, 9x− 3, 4x, 4x(2x + 1)(2x− 1)) which is a
D(9−32x2) quadruple, and (A,B,C,D) = (x−1, x+1, 4x, 4x(2x+1)(2x−1)) which
has property D(1). This method could be used to construct polynomial solutions
for quadruples of all types, but that is beyond the scope of this paper.
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