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Abstract
Given positive integers n and k, a k-term quasi-progression of diameter n is a

sequence (x1, x2, . . . , xk) such that d ≤ xj+1 − xj ≤ d + n, 1 ≤ j ≤ k − 1, for some
positive integer d. Thus an arithmetic progression is a quasi-progression of diameter
0. Let Qn(k) denote the least integer for which every coloring of {1, 2, . . . , Qn(k)}
yields a monochromatic k-term quasi-progression of diameter n. We obtain an
exponential lower bound on Q1(k) using probabilistic techniques and linear algebra.

1. Introduction

A cornerstone of Ramsey theory is the theorem of van der Waerden [5], stating that
for every positive integer k, there exists an integer W (k) such that any 2-coloring of
{1, 2, . . . ,W (k)} yields a monochromatic k-term arithmetic progression. It is known
that W (k) is at least exponential in k, but the upper and lower bounds are nowhere
close to each other. Indeed, the best known upper bound on W (k) is a five-times
iterated tower of exponents.

Given positive integers n and k, a k-term quasi-progression of diameter n is a
sequence (x1, x2, . . . , xk) such that for some positive integer d,

d ≤ xj+1 − xj ≤ d + n, 1 ≤ j ≤ k − 1.

The integer d is called the low-difference of the quasi-progression. Analogous to the
van der Waerden number W (k), we can define Qn(k) as the least integer for which
any 2-coloring of {1, 2, . . . , Qn(k)} yields a monochromatic k-term quasi-progression
of diameter n. Note that Qn(k) ≤ W (k) with equality if n = 0.
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2. An Exponential Lower Bound for Q1(k)

Landman [3] showed that Q1(k) ≥ 2(k−1)2 +1. We improve this to an exponential
lower bound, using elementary probabilistic techniques (see [1]) and some linear
algebra.
Theorem. Let k ≥ 3. Then, Q1(k) ≥ 1.08k.

Proof. Let S = {1, 2, . . . , N}. (The value of N will be specified later.) Define
m = $(k− 1)/2%. We group the elements of S from left to right in zones of size 2m,
and subdivide each zone into two blocks of size m. We color each zone randomly
and uniformly in one of two ways: left block red, right block blue; or left block
blue, right block red. Let A ⊆ S be a monochromatic k-term quasi-progression of
diameter 1 under this coloring. Since the coloring ensures that no three consecutive
blocks have the same color, A must consist of elements from different blocks. Thus
A is monochromatic only if the associated block sequence is monochromatic.

Observe that there are N − k + 1 ways to choose the first term of A and at most
N/(k−1) ways to choose the low difference. Suppose we are able to show, for a fixed
first-term and low difference, that there are at most ck block sequences correspond-
ing to k-term quasi-progressions of diameter 1, with c < 2. Since a block sequence
is monochromatic with probability 21−k, the linearity of expectation implies that
the expected number of monochromatic k-term quasi-progressions under a random
coloring is at most 2N2(c/2)k/(k − 1). When N = $(2/c)k/2%, the expected num-
ber is less than 1, so that there must exist some coloring under which there are
no monochromatic k-term quasi-progressions. Thus Q1(k) ≥ (2/c)k/2. From what
follows, it will be clear that we may take c < 1.71. We remark, in passing, that the
number of k-term quasi-progressions of diameter 1 contained in S far exceeds 2k,
dooming the naive approach of randomly coloring the elements themselves.

For 1 ≤ j ≤ k, let Bj
a,d = {(b1, b2, . . . , bj)} be the set of all possible block

sequences corresponding to j-term quasi-progressions {a1, a2, . . . , aj} with first term
a1 = a and low-difference d, where ai belongs to the block numbered bi. Since the
possible values of aj lie in an interval consisting of j ≤ k integers, there are at most
three possible values for each bj . (In fact, for j ≤ 'k/2(, there are at most two
possible values for each bj .) We claim that |Bk

a,d| < 1.71k.
Given a and d, we can compute |Bj

a,d| as follows. Let aj and aj+1 be consecutive
terms of a quasi-progression of diameter 1 and low difference d. Note that there are
at most two possible values for the difference in block numbers of successive terms
of a quasi-progression of diameter 1 and low-difference d.

Consider a k-partite digraph Gk, with three vertices in each part corresponding
to possible values of bj (including dummy vertices if there are fewer than three
possible values of bj), and a directed edge from a vertex in part j to a vertex in
part j + 1 if and only if there exists a block sequence containing the corresponding
blocks in positions j and j + 1. We now assign a unit weight to the non-dummy
vertex corresponding to b1 and recursively define the weight of a vertex v to be
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the sum of the weights of all vertices w such that there is a directed edge from
w to v (dummy vertices have weight 0). It follows that |Bj

a,d| equals the sum of
weights of vertices in the jth part. We encode the weights of vertices in the jth

part with 3 × 1 column vectors [xj , yj , zj ], starting with [x1, y1, z1] = [1, 0, 0]. (An
example corresponding to k = 7, a = 15 and d = 4 is shown in Figure 1. Note that
|Bk

a,d| = 3 + 8 + 7 = 18.)
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Figure 1: The computation of |B7
15,4| (m = 3).

We will now show that there are only nine labelled digraphs that could be induced
on adjacent partite sets of Gk (five of these can be seen in Figure 1). This will imply,
in turn, that [xj+1, yj+1, zj+1]T = A[xj , yj , zj ]T where A is one of the following nine
(0, 1)-matrices:

A1 =




1 0 0
0 0 0
0 0 0



 A2 =




1 0 0
1 0 0
0 0 0



 = AT
3 A4 =




1 1 0
0 1 0
0 0 0



 = AT
5

A6 =




1 0 0
1 1 0
0 1 0



 = AT
7 A8 =




1 0 0
1 1 0
0 1 1



 = AT
9 .
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Let Ir = [a + (r− 1)d, a + (r− 1)(d + 1)] denote the interval of possible values of
the rth term of a quasi-progression of diameter 1 with first term a and low-difference
d. In keeping with our division of the set of positive integers into blocks of size m,
we say that the interval Ir straddles block B+1 if Ir∩ [Bm+1, (B+1)m] += ∅. Note
that each interval Ir straddles at most three blocks. That the matrices A1 through
A9 form an exhaustive list of action matrices is a consequence of the following
observations:

• If Ir straddles one block, then Ir+1 straddles either one block (matrix A1) or
two blocks (matrix A2).

• If Ir straddles two blocks, then Ir+1 straddles one (matrix A3), two (matrices
A4 and A5) or three (matrix A6) blocks.

• If Ir straddles three blocks, then Ir+1 straddles two (matrix A7) or three
blocks (matrices A8 and A9).

In other words, [xk, yk, zk] can be written as the product of a sequence of k − 1
matrices, each selected from the nine matrices Ai listed above, acting on the vector
[1, 0, 0]. We now recall the definition of the spectral norm ||A||2 of an n× n matrix
A:

||A||2 = sup
||x||2=1

||Ax||2 =
√

λmax(AT A)

where x varies over all n × 1 column vectors, ||x||2 denotes the Euclidean norm
of x, and λmax(M) denotes the largest eigenvalue of a symmetric matrix M with
non-negative diagonal entries. The following properties of the spectral norm are
well-known, and are immediate consequences of the definition:

||Ax||2 ≤ ||A||2 ||x||2

||AB||2 ≤ ||A||2 ||B||2 .

Evaluating the spectral norms, we find that ||A1||2 = 1, ||A2||2 = ||A3||2 =
√

2, ||A4||2 =
||A5||2 = (1 +

√
5)/2 < 1.619, ||A6||2 = ||A7||2 =

√
3 and ||A8||2 = ||A9||2 < 1.803.

Note that the matrix that takes [x1, y1, z1] = [1, 0, 0] to [x2, y2, z2] must be A1 or
A2. Moreover, A6, A7, A8 and A9 come into play only if j > m = $(k − 1)/2%. It
follows from the submultiplicativity of the spectral norm that

√
x2

k + y2
k + z2

k <
√

2 (1.619)m−1 (1.803)k−m−1.

Finally, by the Cauchy-Schwarz inequality,

|Bk
a,d| = xk + yk + zk ≤

√
3
(√

x2
k + y2

k + z2
k

)
< 1.71k.

Thus Q1(k) > (2/1.71)k/2 > 1.08k, completing the proof. !
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3. Concluding Remarks

While numerical evidence seems to indicate that Q1(k) = O(ck) for some absolute
constant c, there is no reason to believe that the constant 1.08 is even close to
optimal; more delicate computations and an application of the Local Lemma will
very likely push it to around 1.2. However, it would be far more interesting to
have a reasonable upper bound for quasi-progressions of small diameter, if not for
diameter 1. Landman [3] has shown that Q"2k/3#(k) ≤ 43k3

324 + o(k3), but no upper
bound for Qn(k) is known when n = o(k).

We end with a table of known values of Q1(k) (see [4]):

k 3 4 5 6 7 8 9
Q1(k) 9 19 33 67 ≥ 124 ≥ 190 ≥ 287
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