ON A VARIANT OF VAN DER WAERDEN'S THEOREM

Sujith Vijay
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
sujith@math.uiuc.edu

Received: 6/11/08, Revised: 1/13/10, Accepted: 1/19/10, Published: 5/12/10

Abstract

Given positive integers n and k, a k-term quasi-progression of diameter n is a sequence $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ such that $d \leq x_{j+1}-x_{j} \leq d+n, 1 \leq j \leq k-1$, for some positive integer d. Thus an arithmetic progression is a quasi-progression of diameter 0 . Let $Q_{n}(k)$ denote the least integer for which every coloring of $\left\{1,2, \ldots, Q_{n}(k)\right\}$ yields a monochromatic k-term quasi-progression of diameter n. We obtain an exponential lower bound on $Q_{1}(k)$ using probabilistic techniques and linear algebra.

1. Introduction

A cornerstone of Ramsey theory is the theorem of van der Waerden [5], stating that for every positive integer k, there exists an integer $W(k)$ such that any 2-coloring of $\{1,2, \ldots, W(k)\}$ yields a monochromatic k-term arithmetic progression. It is known that $W(k)$ is at least exponential in k, but the upper and lower bounds are nowhere close to each other. Indeed, the best known upper bound on $W(k)$ is a five-times iterated tower of exponents.

Given positive integers n and k, a k-term quasi-progression of diameter n is a sequence $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ such that for some positive integer d,

$$
d \leq x_{j+1}-x_{j} \leq d+n, \quad 1 \leq j \leq k-1
$$

The integer d is called the low-difference of the quasi-progression. Analogous to the van der Waerden number $W(k)$, we can define $Q_{n}(k)$ as the least integer for which any 2-coloring of $\left\{1,2, \ldots, Q_{n}(k)\right\}$ yields a monochromatic k-term quasi-progression of diameter n. Note that $Q_{n}(k) \leq W(k)$ with equality if $n=0$.

2. An Exponential Lower Bound for $Q_{1}(k)$

Landman [3] showed that $Q_{1}(k) \geq 2(k-1)^{2}+1$. We improve this to an exponential lower bound, using elementary probabilistic techniques (see [1]) and some linear algebra.
Theorem. Let $k \geq 3$. Then, $Q_{1}(k) \geq 1.08^{k}$.
Proof. Let $S=\{1,2, \ldots, N\}$. (The value of N will be specified later.) Define $m=\lfloor(k-1) / 2\rfloor$. We group the elements of S from left to right in zones of size $2 m$, and subdivide each zone into two blocks of size m. We color each zone randomly and uniformly in one of two ways: left block red, right block blue; or left block blue, right block red. Let $A \subseteq S$ be a monochromatic k-term quasi-progression of diameter 1 under this coloring. Since the coloring ensures that no three consecutive blocks have the same color, A must consist of elements from different blocks. Thus A is monochromatic only if the associated block sequence is monochromatic.

Observe that there are $N-k+1$ ways to choose the first term of A and at most $N /(k-1)$ ways to choose the low difference. Suppose we are able to show, for a fixed first-term and low difference, that there are at most c^{k} block sequences corresponding to k-term quasi-progressions of diameter 1 , with $c<2$. Since a block sequence is monochromatic with probability 2^{1-k}, the linearity of expectation implies that the expected number of monochromatic k-term quasi-progressions under a random coloring is at most $2 N^{2}(c / 2)^{k} /(k-1)$. When $N=\left\lfloor(2 / c)^{k / 2}\right\rfloor$, the expected number is less than 1 , so that there must exist some coloring under which there are no monochromatic k-term quasi-progressions. Thus $Q_{1}(k) \geq(2 / c)^{k / 2}$. From what follows, it will be clear that we may take $c<1.71$. We remark, in passing, that the number of k-term quasi-progressions of diameter 1 contained in S far exceeds 2^{k}, dooming the naive approach of randomly coloring the elements themselves.

For $1 \leq j \leq k$, let $B_{a, d}^{j}=\left\{\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right\}$ be the set of all possible block sequences corresponding to j-term quasi-progressions $\left\{a_{1}, a_{2}, \ldots, a_{j}\right\}$ with first term $a_{1}=a$ and low-difference d, where a_{i} belongs to the block numbered b_{i}. Since the possible values of a_{j} lie in an interval consisting of $j \leq k$ integers, there are at most three possible values for each b_{j}. (In fact, for $j \leq\lceil k / 2\rceil$, there are at most two possible values for each b_{j}.) We claim that $\left|B_{a, d}^{k}\right|<1.71^{k}$.

Given a and d, we can compute $\left|B_{a, d}^{j}\right|$ as follows. Let a_{j} and a_{j+1} be consecutive terms of a quasi-progression of diameter 1 and low difference d. Note that there are at most two possible values for the difference in block numbers of successive terms of a quasi-progression of diameter 1 and low-difference d.

Consider a k-partite digraph G_{k}, with three vertices in each part corresponding to possible values of b_{j} (including dummy vertices if there are fewer than three possible values of b_{j}), and a directed edge from a vertex in part j to a vertex in part $j+1$ if and only if there exists a block sequence containing the corresponding blocks in positions j and $j+1$. We now assign a unit weight to the non-dummy vertex corresponding to b_{1} and recursively define the weight of a vertex v to be
the sum of the weights of all vertices w such that there is a directed edge from w to v (dummy vertices have weight 0). It follows that $\left|B_{a, d}^{j}\right|$ equals the sum of weights of vertices in the $j^{t h}$ part. We encode the weights of vertices in the $j^{\text {th }}$ part with 3×1 column vectors $\left[x_{j}, y_{j}, z_{j}\right]$, starting with $\left[x_{1}, y_{1}, z_{1}\right]=[1,0,0]$. (An example corresponding to $k=7, a=15$ and $d=4$ is shown in Figure 1. Note that $\left|B_{a, d}^{k}\right|=3+8+7=18$.)

Figure 1: The computation of $\left|B_{15,4}^{7}\right|(m=3)$.

We will now show that there are only nine labelled digraphs that could be induced on adjacent partite sets of G_{k} (five of these can be seen in Figure 1). This will imply, in turn, that $\left[x_{j+1}, y_{j+1}, z_{j+1}\right]^{T}=A\left[x_{j}, y_{j}, z_{j}\right]^{T}$ where A is one of the following nine (0,1)-matrices:

$$
\begin{gathered}
A_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad A_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=A_{3}^{T} \quad A_{4}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]=A_{5}^{T} \\
A_{6}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]=A_{7}^{T} \quad A_{8}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=A_{9}^{T} .
\end{gathered}
$$

Let $I_{r}=[a+(r-1) d, a+(r-1)(d+1)]$ denote the interval of possible values of the $r^{t h}$ term of a quasi-progression of diameter 1 with first term a and low-difference d. In keeping with our division of the set of positive integers into blocks of size m, we say that the interval I_{r} straddles block $B+1$ if $I_{r} \cap[B m+1,(B+1) m] \neq \emptyset$. Note that each interval I_{r} straddles at most three blocks. That the matrices A_{1} through A_{9} form an exhaustive list of action matrices is a consequence of the following observations:

- If I_{r} straddles one block, then I_{r+1} straddles either one block (matrix A_{1}) or two blocks (matrix A_{2}).
- If I_{r} straddles two blocks, then I_{r+1} straddles one (matrix A_{3}), two (matrices A_{4} and A_{5}) or three (matrix A_{6}) blocks.
- If I_{r} straddles three blocks, then I_{r+1} straddles two (matrix A_{7}) or three blocks (matrices A_{8} and A_{9}).

In other words, $\left[x_{k}, y_{k}, z_{k}\right]$ can be written as the product of a sequence of $k-1$ matrices, each selected from the nine matrices A_{i} listed above, acting on the vector $[1,0,0]$. We now recall the definition of the spectral norm $\|A\|_{2}$ of an $n \times n$ matrix A :

$$
\|A\|_{2}=\sup _{\|\mathbf{x}\|_{2}=1}\|A \mathbf{x}\|_{2}=\sqrt{\lambda_{\max }\left(A^{T} A\right)}
$$

where \mathbf{x} varies over all $n \times 1$ column vectors, $\|\mathbf{x}\|_{2}$ denotes the Euclidean norm of \mathbf{x}, and $\lambda_{\max }(M)$ denotes the largest eigenvalue of a symmetric matrix M with non-negative diagonal entries. The following properties of the spectral norm are well-known, and are immediate consequences of the definition:

$$
\begin{aligned}
\|A \mathbf{x}\|_{2} & \leq\|A\|_{2}\|\mathbf{x}\|_{2} \\
\|A B\|_{2} & \leq\|A\|_{2}\|B\|_{2}
\end{aligned}
$$

Evaluating the spectral norms, we find that $\left\|A_{1}\right\|_{2}=1,\left\|A_{2}\right\|_{2}=\left\|A_{3}\right\|_{2}=\sqrt{2},\left\|A_{4}\right\|_{2}=$ $\left\|A_{5}\right\|_{2}=(1+\sqrt{5}) / 2<1.619,\left\|A_{6}\right\|_{2}=\left\|A_{7}\right\|_{2}=\sqrt{3}$ and $\left\|A_{8}\right\|_{2}=\left\|A_{9}\right\|_{2}<1.803$. Note that the matrix that takes $\left[x_{1}, y_{1}, z_{1}\right]=[1,0,0]$ to $\left[x_{2}, y_{2}, z_{2}\right]$ must be A_{1} or A_{2}. Moreover, A_{6}, A_{7}, A_{8} and A_{9} come into play only if $j>m=\lfloor(k-1) / 2\rfloor$. It follows from the submultiplicativity of the spectral norm that

$$
\sqrt{x_{k}^{2}+y_{k}^{2}+z_{k}^{2}}<\sqrt{2}(1.619)^{m-1}(1.803)^{k-m-1}
$$

Finally, by the Cauchy-Schwarz inequality,

$$
\left|B_{a, d}^{k}\right|=x_{k}+y_{k}+z_{k} \leq \sqrt{3}\left(\sqrt{x_{k}^{2}+y_{k}^{2}+z_{k}^{2}}\right)<1.71^{k}
$$

Thus $Q_{1}(k)>(2 / 1.71)^{k / 2}>1.08^{k}$, completing the proof.

3. Concluding Remarks

While numerical evidence seems to indicate that $Q_{1}(k)=O\left(c^{k}\right)$ for some absolute constant c, there is no reason to believe that the constant 1.08 is even close to optimal; more delicate computations and an application of the Local Lemma will very likely push it to around 1.2 . However, it would be far more interesting to have a reasonable upper bound for quasi-progressions of small diameter, if not for diameter 1. Landman [3] has shown that $Q_{\lceil 2 k / 3\rceil}(k) \leq \frac{43 k^{3}}{324}+o\left(k^{3}\right)$, but no upper bound for $Q_{n}(k)$ is known when $n=o(k)$.

We end with a table of known values of $Q_{1}(k)$ (see [4]):

k	3	4	5	6	7	8	9
$Q_{1}(k)$	9	19	33	67	≥ 124	≥ 190	≥ 287

Acknowledgement

I thank the referee for a careful and thorough reading of the article, and for several helpful comments that helped improve the overall clarity of presentation.

References

[1] N. Alon and J. H. Spencer, The Probabilistic Method. Academic Press, New York, 1992.
[2] T. C. Brown, P. Erdős and A. R. Freedman, Quasi-progressions and Descending Waves, Journal of Combinatorial Theory Series A 53 (1990), 81-95.
[3] B. M. Landman, Ramsey Functions for Quasi-progressions, Graphs and Combinatorics 14 (1998), 131-142.
[4] B. M. Landman and A. Robertson, Ramsey Theory on the Integers. American Mathematical Society, Providence, 2004.
[5] B. L. van der Waerden, Beweis einer Baudetschen Vermutung, Niew Archief voor Wiskunde 15 (1927), 212-216.

