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Abstract
Let K be a field of characteristic # 2 and G the additive group of K x K. In 2004,
Haddad and Helou constructed an additive basis B of G for which the number of
representations of g € G as a sum by + ba(by, by € B) is bounded by 18. In this
paper, we proceed to investigate the parallel problem for differences.

1. Introduction
Let G be a semi-group. For A, B C G and g € G, we define
oa.8(9) =|{(a,b) e Ax B:a+b=g},

64,8(9) ={(a,b) EAx B:a—b=g}|.

Let 04(9) =04.4(9), 64a(9) =04,4(9),and A—B={a—b:ac Abe B}.

The celebrated Erdés-Turdn conjecture [3] states that if A C N is an additive
asymptotic basis of N, then the representation function o 4(n) must be unbounded.
This conjecture has had an important impact in additive number theory. In 1954,
Erdés [2] proved the function o4(n) can have logarithmic growth. In 1990, Ruzsa
[7] constructed a basis of A C N for which o4(n) is bounded in the square mean.
These results indicate the difficulty involved in the conjecture and leads to the
consideration of the problem in other semigroups. Pus [6] first established that
the analogue of the Erdgs-Turdn conjecture fails to hold in some abelian groups.
Nathanson [4] constructed a family of arbitrarily sparse unique representation bases
for Z. In 2004, Haddad and Helou [5] showed that the analogue of the Erdés-
Turdn conjecture does not hold in a variety of additive groups derived from those of
certain fields. In [8], Tang and Chen showed that the analogue of the Erdds-Turdn
conjecture fails to hold in (Z,,,+). For the related problems see [1,9].
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It is natural to consider the parallel problems for differences. In this paper, based
on the methods of Haddad and Helou, we obtain the following result.

Theorem 1. Let K be a finite field of characteristic # 2 and G the additive group
of K x K. Then there exists a set B C G such that B— B = G, and dg(g) < 14
for all g £ 0.

Remark 2. This result is a generalization of the result obtained by Tang [10,
Lemma 3]. For example, let p be prime with p > 3. By the theorem, there exists a
set B C Zy, x Zy, such that B — B = G and dg(g) < 14 for all g # 0.

Throughout this paper, let K be a field of characteristic # 2 and G the additive
group of K x K. We denote by K* = K \ {0} the multiplicative group of K and by
S(K*) = {2? : 2 € K*} the subgroup of the square elements of K*. For k € K*,
let Q = {(u,ku?):ue K} CG.

2. Proofs
Lemma 3. For g = (a,b) € G and fized k,l € K*, consider the equation

g=z—9y, x€QL y<Q.

If k — 1 # 0, then the set Qr — Q; consists of all the elements (a,b) € G such that
b(k — 1) + a®kl is a square in K, and for any g € G, 6¢g,.q,(9) <2. Ifk—1=0, it
has at most one solution except if g = 0, when it has | K| solutions.

Proof. Let g = (a,b) € G. Consider the system of equations
a=u-—v, (1)
b= ku® — lv*. (2)
Substituting the value of u from (1) into (2), we get the equation
b= (k—1)v*+ 2kav + ka®. (3)

Case 1. k—1# 0. This is a quadratic equation in v, and it has exactly one or two
solutions in the field K if and only if its discriminant 4a2k? — 4(k — 1)(a®k — b) =
4((k—1)b+kla?) is a square in K. Since the characteristic of K is # 2, the non-zero
square factor 4 can be discarded in the latter condition. Thus for any g = (a,b) € G,
we have dg, o,(g9) < 2.

Case 2. Case 2. k— 1 =0. Then (3) is an equation of degree 1. If a # 0, (3) has
one solution. If a = b = 0, (3) has | K| solutions. If a = 0,b # 0, (3) has no solution.

This completes the proof of Lemma 3. a
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Lemma 4 [5, Lemma 3.7]. If K is a finite field of characteristic # 2, then the index
of the subgroup S(K*) in the multiplicative group of K* is 2. Thus the product of
two non-square elements of K* is a square element of K*.

Lemma 5. If K is a finite field of characteristic # 2 and |K| > 5, then there exist
elements j, k € K* such that j € S(K*), k & S(K*), and k # —j.

Proof. By Lemma 4, S(K*) # K* and |S(K™*)| = |K*|/2 > 2, thus we can choose
jeS(K*), ke K*\ S(K*), and k # —j. O
Proof of Theorem 1. If K = F3 = {0,1,2}, put B = {(0,0), (0,1), (0,2),
(1,1), (2,0)} € F3 x F3. Then we have B— B = G and dp(g) < 3 for all g # 0.

Now we consider K to be a finite field of characteristic # 2 and |K| > 5.

Let j, k € K* such that j € S(K*), k & S(K*), and k # —j. Put n = 2jk/(j+k),
B =Q;UQrUQ,. By the fact that k # j, we have j # n, k # n.

By Lemma 3, Q; — Q, = {(a,b) € G : b(j —n) +a?jn € S(K*)U{0}}; similarly,
Qn — Qr = {(a,b) € G:b(n — k) + a*nk € S(K*) U {0}}.

Let

e="b(j —n)+a’jn, f=>bn—k)+a*nk.

Thus an element (a,b) # (0,0) of G lies in Q; — Q,, (respectively, in @, — Qy) if
and only if e (respectively, f) is a square in K.

By simple calculation, we have f = kj~le. Since j € S(K*), j~! € S(K*), by
Lemma 4, we have kj~! ¢ S(K*), and thus f € S(K*) if and only if e & S(K*).
Hence, if an element (a,b) # (0,0) of G does not lie in Q; — @, then it lies in
Qn — Qi. Therefore, G = (Q; — Qn) U (@n — Qk), which is stronger than the
required B — B = G.

By the above discussion, for g(# 0) € G, we have the following two cases.

Case 1. e € S(K*) and f € S(K*). If g € Q; — Qn, then e = 0, and by the proof
of Lemma 3 we have g, g, (9) = 1.

Case 2. e € S(K*) and f & S(K*). If g € @, — Q, then f =0, and by the proof
of Lemma 3 we have dg,, o, (9) = 1.

Hence,

Be) < Y, do.e.9)= D, do.e@+ D, bolg) <14

r,s€{j,k,n} r,s€{jk,n} re{j.k,n}
r#s

This completes the proof of the theorem. O
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