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Abstract
A challenge involving interpreting the numbers ζ(k) − 1 as probabilities, with an
eye to aesthetics, is formalized and an interpretation offered.

1. Introduction

At a recent post-seminar gathering, Herb Wilf casually mentioned to those of us
assembled the fact that the quantities ζ(k)− 1 sum to 1, i.e.,

∞∑

k=2

(( ∞∑

i=1

1
ik

)
− 1

)
= 1 .

He then declared that when a sequence of nonzero positive numbers sums to 1,
the entries of the sequence should be interpretable as the probabilities of something,
and asked what it might be in this case.

Of course, given any such sequence one can assign the nth entry as the probability
of picking the whole number n and call it a day, but this works for everything and
so is worth nothing. The challenge here is to provide events as interesting as the
numbers ζ(k)− 1 themselves: rich with internal relations, with the numbers falling
naturally out of a construction that does not explicitly invoke them. One criterion
for a really good answer to this challenge would be that the response supplies us with
an intuitive feel for the relations among the quantities ζ(k)−1, like the symmetries
exhibited below:

ζ(2)− 1 = 1
22 + 1

32 + 1
42 + 1

52 + . . .

ζ(3)− 1 = 1
23 + 1

33 + 1
43 + 1

53 + . . .

ζ(4)− 1 = 1
24 + 1

34 + 1
44 + 1

54 + . . .

ζ(5)− 1 = 1
25 + 1

35 + 1
45 + 1

55 + . . .

...
...

...
...

...
1 = 1

2 +1
6 + 1

12 + 1
20 + . . . .

(1)
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The context of the discussion was number-theoretic, so we can formalize the
challenge thus:

Problem 1. Partition N into sets {A2,A3, . . . } such that the asymptotic densities
limn→∞

1
n#(Ak ∩ {1, 2, . . . , n}) = ζ(k)− 1.

This note provides one such partition. Among the many such partitions, this one
has the virtue that we can produce an algorithm that can quickly determine the Ak

to which any number belongs.

2. The Classes Bk

The strategy for constructing the classes Ak and to proving that they have the
required densities is to construct classes each of which have asymptotic densities
given by the individual entries of array (1). While N can be partitioned into classes
with any peculiar set of probabilities, intuition does not necessarily leap to service
to identify them; but ask for one-sixth of the integers, and any residue class mod 6
will do, so we will build the numbers ζ(k)− 1 from these.

We begin by producing classes Bj of densities 1
2 , 1

6 , 1
12 , . . . , representing each

column. We then break each Bj into sections Bj,k of densities 1
jk , 2 ≤ j, k < ∞, to

produce the individual entries of the table, and conclude by collecting across rows
to form the Ak.

The constructions we use are often explained nicely by recasting them in terms
of the factorial-base representation of a number, its expansion as x = a1 · 1! + a2 ·
2! + · · · + ann!, 0 ≤ ai ≤ i). This expansion is unique, as the student unfamiliar
with this base system is encouraged to try proving on their own. For more on
such expansions, see [1] or [3]; [3] also has the references [4], [2], and [5], the latter
two of which apply the factorial representation to combinatorial proof of questions
involving permutations. (The author cordially thanks the referee for the pointer to
this useful reference.)

2.1. Construction and Breakdown

The class B2 must have asymptotic density 1
2 . Select it to be x ≡ 1 mod 2.

B3 should have asymptotic density 1
6 . Modulo 6, the classes 1, 3, and 5 have

been assigned, so we select the residue class 2 mod 6.
At first blush, it seems like we should choose one residue class mod n for our

classes of density 1
n , but notice that for B5, no matter what residue class we chose
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mod 12 for B4, every residue class mod 20 would have already had some subpro-
gressions assigned. The moduli j!, however, are nested. Since for m < j, residue
classes modulo m! are the same as j!

m! equally spaced residue classes modulo j!, all
previous assignments can be viewed as multiple assignments modulo j!.

Modulo 24, we require two residue classes in order that B4 should have density
1
12 . We select the first two available: those x ≡ 4 or 6 mod 24. Modulo 120, we
require six residue classes in order that B5 should have density 1

20 , and the first six
available are 10, 12, 16, 18, 22, and 24.

For each Bj , we select the first (j − 2)! residue classes that have not yet been
assigned. What are these in general?

Lemma 1. The assigned residue classes for Bm are

{x ≡ 0! +
m−2∑

j=1

aj · j! mod m! , 1 ≤ aj ≤ j} .

Proof. (Table 1 may make a useful visual for the following argument.) In the
examples above, by the time we have selected component residue classes for Bj

we have assigned membership in some Bi to the natural numbers 1, 2, . . . , (j − 1)!,
as part of residue classes either modulo j! or modulo divisors thereof (previous
factorials). Let us proceed by induction, and suppose that this has been the case
through Bm−1: for each b ≤ m− 1, the numbers 1, 2, . . . (b− 1)! have been assigned
to some Bj , j ≤ b, as part of residue classes modulo j!.

Given this induction hypothesis, what is the first residue class modulo m! avail-
able for assignment to Bm? None of 1 through (m−2)!, to begin with: each of those
classes were assigned to Bm−1 or some previous class. We do know that none of the
next (m− 2)! residue classes mod m!, (m− 2)! + 1 through (m− 2)! + (m− 2)!, are
assigned to Bm−1. Examine this segment.

Since (m − 2)! ≡ 0 mod (m − 2)!, our assumption tells us that the numbers
(m − 2)! + 1 through (m − 2)! + (m − 3)! must have been assigned to Bm−2 or
earlier classes, as residues modulo (m − 2)! or divisors thereof. However, none of
(m−2)!+(m−3)!+1 through (m−2)!+(m−3)!+(m−3)! were assigned to Bm−2,
and this segment is wholly contained within those numbers we already knew were
not assigned to Bm−1. At each stage of the analysis, we have an unbroken segment
of assigned classes for the numbers 1, 2, . . . , (m−2)!+(m−3)!+· · ·+(m−i)!, and we
know that the next (m− i)! numbers are not assigned to Bi through Bm−1. At the
last step, we find that the last number assigned is (m−2)!+ (m−3)!+ · · ·+2!+1!,
an odd number in class B2.

The very next number is in the segment we know has not been assigned to B2

or any previous class, so it is available. Thus the first available residue class
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modulo m! to assign to Bm is (m− 2)! + (m− 3)! + · · ·+ 2! + 1! + 0!, a construction
for which there are unfortunately multiple labels and notations in current usage.
The relevant sequence 1, 2, 4, 10, 34, 154, 874, . . . is Sloane’s A003422 ([6]) missing a
leading zero term, and is there called the left factorial and denoted !n = 0! + · · ·+
(n− 1)!. We will use this notation, so that the first unassigned class modulo m! is
!(m− 1).

Now let us determine the remainder of the assigned classes mod m!. At the
next-to-last step of our analysis previously, assuming m ≥ 4 so that such a step
exists, we determined that !(m − 1) − 2 must have been an assigned class modulo
3!, that is, !(m− 1)− 2 ≡ 2 mod 6. Then !(m− 1) is not such a class and neither
is !(m − 1) + 2: these are the two even classes mod 6 that were not assigned to
B3. Nor can they be assigned to Bi for i ≥ 3 as part of residue classes modulo
multiples of 3!. Thus, we can select these two as our first two residue classes modulo
m! for Bm. If m ≥ 5, we can ascend backward another step: there we find that
!(m − 1) − 4 and !(m − 1) − 6 had to be the assigned residue classes mod 4!. We
already knew !(m− 1) and !(m− 1) + 2 were not in those classes, and here we find
that they can be joined by !(m− 1) + 6 or +12, and !(m− 1) + 2 + 6 or +12. These
are the six residue classes modulo 24 that were left after we assigned two of them
for B4.

At the i-th step of the ascent, we find that to all the entries we previously picked,
we can add as many as i− 1 multiples of i!. Thinking about it in the factorial-base
representation, using a1a2a3 . . . to denote a1 · 1!+ a2 · 2!+ a3 · 3!+ . . . , the assigned
classes will be 02111 · · ·+ 0b2b3b4b5 . . . , with 0 ≤ bi ≤ i− 1. And these are exactly
the numbers claimed in the Lemma.

2.2. A Fast Membership Algorithm

Having assigned the whole numbers to their various Bm, we would like a compu-
tationally simple means of determining which Bm a given x belongs to without
constructing every Bm until we assign x.

Write x in the factorial-base representation, x = x1 ·1!+x2 ·2!+x3 ·3!+· · ·+xj ·j!,
0 ≤ xi ≤ i. We know that if the least positive residue of x modulo any n! is less
than (n−1)!, x must have been assigned to one of the Bj≤n, because from our proof
above, the assigned residue classes for the Bj≤n were an unbroken string from 1 to
(n− 1)!.

A ”carry” in factorial-base addition occurs when the sum of the coefficients on
the two summands on i! is at least i+1, since (i+1)i! = 1 · (i+1)!. But the lemma
tells us that the residues assigned to Bm are of the form 02111 · · · + 0b2b3b4b5 . . . ,
with 0 ≤ bi ≤ i− 1. So in order for a 0 to ever occur at the i! place of the factorial-
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B6

B5 10 12 16 18 22 24
B4 4 6 28 30
B3 2 8 14 20 26 32
B2 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

. . . 34 36 40 42 46 48 58 60. . .

. . .

. . . 52 54

. . . 38 44 50 56

. . . 33 35 37 39 41 43 45 47 49 51 53 55 57 59

Table 1: The Classes Bi.

base expansion of a residue assigned to Bm, when 1 < i ≤ m − 1, we need a very
specific summand 0b2b3b4b5 . . . : we need b2 = 1, so that the addition carries from
2!, leaving a 0. We then need b3 = 2, so that the sum of coefficients on 3! is 1 from
!(m − 1), plus 2 from b3, plus a carried 1, making 4, so we carry 1 and leave a 0
again. This string has to continue up to the i! term where we desire a 0.

Thus we have one of two cases that will diagnose where our base term !(m− 1)
ends for a given x. We have that the least positive residue of x modulo m! is
≤ (m − 1)!. Possibly x ≡ (m − 1)! modulo m! exactly, so the string of xi starts
with a possibly empty string of 0s that terminates with a 1 in position xm−1:
we added the largest possible value for every bi, and carried at every step of the
addition. If we did not carry, then there is some smallest m such that xm−1 = 0
but no previous xi = 0, except for possibly an initial string that does not terminate
with a 1.

Write out x in the factorial-base representation. Check for the first behavior; if
this does not happen, find the first 0. The index where whichever of these occurs
is m− 1, and x is in Bm.

3. The Classes Ak

Now that we have identified the classes Bm, there remain the easier tasks of breaking
them up into subclasses to give us the individual entries of array 1, and collecting
the corresponding parts ”horizontally” to form the Ak.

Each of the columns’ individual entries decrease in geometric progression. The
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class B2 has density 1
2 = 1

2

(
1
2 + 1

4 + 1
8 + . . .

)
. The class B3 has density 1

6

= 1
6

(
2
3 + 2

9 + 2
27 + . . .

)
. The class B4 has density 1

12 = 1
12

(
3
4 + 3

16 + . . .
)
,

etc.
These geometric series give us the subclasses we need. We assign the earliest

fraction m−1
m of Bm to the first subset, the next fraction 1

m
(m−1)

m to the next set,
and so forth. This can be done by a one-step digit test in the factorial basis: it is
analogous to obtaining 9

10 of the integers by taking those ending in 1 through 9,
then obtaining 9

100 of the integers by choosing 9
10 of the remaining tenth, taking

those that end in 0 but have one of 1 through 9 in the tens place.
Since Bm is made up of residue classes modulo m!, rewrite x as x = x0 + m! ·(

b0m0 + b1m1 + b2m2 + . . .
)
, 0 ≤ bi ≤ m − 1. If n is the smallest number such

that bn '= m − 1 assign x to the set Bm,n+2. In table 1, x is part of the set with
asymptotic density given by the entry in column m, row n +1, which represents an
entry in the sum for An+2.

Thus, for example, we break up B2 as follows: B2,2 = {x ≡ 1mod 4(= 2 ·
2!)}, with density 1

4 ; B2,3 = {x ≡ 3mod 8(= 4 · 2!)}, with density 1
8 ; B2,4 =

{x ≡ 7mod 16(= 4 · 2!)}, etc. We break up B3 into fractions of size 2
3 , 2

9 ,
etc.: B3,2 = {x ≡ 2 or 8mod 18(= 3 · 3!)}, B3,3 = {x ≡ 14 or 32mod 54(= 9 · 3!)},
etc.

We now sum up by collecting these subsets across rows: Ak =
⋃

mBm,k. Since
the Bm,k are disjoint and the series of partial sums of their densities converges
absolutely to ζ(k)− 1, Ak has exactly the required asymptotic density.

The algorithm to determine which class Ak a given x belongs to is thus:

Algorithm. Write x = a1 · 1! + a2 · 2! + a3 · 3! + . . . , 0 ≤ ai ≤ i.
Let j be the smallest index such that aj '= 0. If aj = 1, then m = j + 1. If

aj '= 1, then m is the smallest number such that ai '= 0 for j ≤ i < m − 1, and
am−1 = 0. Then x ∈ Bm .

Rewrite x as x = x0 +m! · (b0m0 + b1m1 + b2m2 + . . . ), 0 ≤ bi < m, 0 < x0 < m!.
Let n be the smallest index such that bn '= m− 1. Then k = n + 2, and x ∈ Ak.

4. Data and Speculation

The first few of the sets Bk and Ak are listed below.

B2 = {1, 3, 5, 7, 9, 11, 13, 15, . . . }

B3 = {2, 8, 14, 20, 26, 32, . . . }

B4 = {4, 6, 28, 30, 52, 54, 76, 78, . . . }



INTEGERS: 10 (2010) 239

B5 = {10, 12, 16, 18, 22, 24, 130, 132, 136, 138, 142, 144, . . . }

B6 = {34, 36, 40, 42, 46, 48, 58, 60, 64, 66, 70, 72, . . . , 120, . . . }

A2 = {1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 26, . . . }

A3 = {3, 11, 14, 19, 27, 32, 35, 43, 51, 59, 67, 68, 75, 76, 78, 83, 86, . . . }

A4 = {7, 23, 39, 50, 55, 71, 87, 103, 104, 119, 135, 151, 167, 183, 199, . . . }

A5 = {15, 47, 79, 111, 143, 158, 175, 207, 239, 271, 303, 320, 335, . . . }

More terms, for the series up to A10, have been submitted to Sloane’s database
[6]. In terms of their component residue classes, the sets are:

B2 = {x ≡ 1mod 2}

B3 = {x ≡ 2mod 6}

B4 = {x ≡ 4, 6mod 24}

B5 = {x ≡ 10, 12, 16, 18, 22, 24mod 120}

B6 = {x ≡ 34, 36, 40, 42, 46, 48, 58, 60, 64, 66, 70, 72, . . . , 120mod 720}

A2 = {x ≡ 1mod 4; 2, 8mod 18; 4, 6, 28, 30, 52, 54mod 96 . . . }

A3 = {x ≡ 3mod 8; 14, 32mod 54; 76, 78, 172, 174, 268, 270mod 384 . . . }

A4 = {x ≡ 7mod 16; 50, 104mod 162; 364, 366, . . . , 1134mod 1536 . . . }

Some variations of this construction could be explored. Building Bj , we had
to make a series of choices. We chose the odd numbers to form B2, but the even
numbers would have worked just as well. We chose the residue class x ≡ 2 mod 6
for the class B3, but could just as easily have chosen x ≡ 4 or 6. Choosing the first
available residue class for each factorial modulus gave us classes Bm that could be
determined with a short algorithm, providing a tidy answer to the original problem.
However, other choices lead to answers with different features.

For example, suppose that at each step we choose the last available residue class
modulo j! to construct Bj . Choose those x ≡ 2 mod 2 for B2. Of the three available
odd residue classes mod 6, choose x ≡ 5 mod 6 for B3. Use the classes x ≡ 19, 21
mod 24 for B4.

With such a decision procedure, some numbers are never assigned to any Bj . The
missed set is 1, 3, 7, 9, 13, 15, 25, 27, 31, 33, · · · = 1 +

∑
aii!, 0 ≤ ai < i. All of the Bj

will still have the same densities, summing to 1, so the missed set is ”small” in that
it is of asymptotic density 0. On the other hand, at any given point the missed
set may be rather large for some purposes: 1/n of the numbers smaller than n! are
permanently unassigned.
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These two assignment procedures are in some sense on opposite poles of an entire
ensemble of possible procedures. An interested reader might burrow a layer deeper
than we have: assign some straightforward process for describing and choosing
assignment procedures to construct each Bj from residue classes mod j! and examine
the resulting ensemble of all possible constructions. Does it possess any striking
structural features?

An early stab at this problem involved the powerfree numbers. Squarefree
numbers are those whose prime factors are all distinct: they have density 1

ζ(2) in the
whole numbers. Cubefree numbers have factorizations in which no prime factor is re-
peated more than twice, so squarefree numbers are also cubefree.
Cubefree numbers are of density 1

ζ(3) , and those which are cubefree but not
squarefree are of density 1

ζ(3) −
1

ζ(2) . Those that are 4th-powerfree but not cube-
free are of density 1

ζ(4) −
1

ζ(3) , and so on. Every whole number is (k + 1)st-power-
free but not kth-powerfree for some k, the largest exponent in its prime factoriza-
tion.

These densities seemed to suggest the possibility of defining a simple probability
distribution on N that assigned a total probability of ζ(k) − 1 to the event that
a random integer variable would be (k + 1)st-powerfree but not kth-powerfree. It
is easy to provide such a distribution by brute force – say, giving the nth number
which is (k + 1)st-powerfree but not kth-powerfree a probability of (ζ(k)− 1) · 1

2n .1

But this does not seem to be a particularly illuminating illustration of any relations
between the values ζ(k); indeed, such a construction works with any partitioning
of the integers, and any set of probabilities instead of ζ(k) − 1. A distribution
based on the factorization of x would seem much more natural; can a simple one
be produced?

In closing, I would like to mention a personal recollection. In general, the den-
sity of Bj is 1

j(j−1) . Seeing it written on the wall of my office, I was reminded of
the first place I ever encountered Leibniz’ summation of the triangular series:
William Dunham’s delightful popular-mathematics text, Journey Through Genius
[?]. I read this book in high school, and it motivated in considerable part my de-
cision to pursue mathematics in college. The present note, a simple and amusing
mathematical challenge, gives me an opportunity to thank Mr. Dunham sincerely
for the service.
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