A NOTE ON THE EXACT EXPECTED LENGTH OF THE K TH PART OF A RANDOM PARTITION

Kimmo Eriksson
School of Education, Culture and Communication, Mälardalen University, Västerås, SE-72123, Sweden
kimmo.eriksson@mdh.se

Received: 11/4/09, Revised: 1/29/10, Accepted: 3/3/10, Published: 6/11/10

Abstract

Kessler and Livingstone proved an asymptotic formula for the expected length of the largest part of a partition drawn uniformly at random. As a first step they gave an exact formula expressed as a weighted sum of Euler's partition function. Here we give a short bijective proof of a generalization of this exact formula to the expected length of the k th part.

1. Results

By $\lambda \vdash n$ we will mean that λ is a partition of n. This means that λ is a finite non-increasing sequence of positive integers, $\lambda_{1} \geq \cdots \geq \lambda_{N}>0$, which sums to n. The number of partitions of n is Euler's famous partition function $p(n)$, with $p(0)=1$ by convention.

Corteel et al. [1] mention a well-known partition identity attributed to Stanley: The expected number of different part sizes of a uniformly drawn partition $\lambda \vdash n$ is

$$
\begin{equation*}
\frac{1}{p(n)} \sum_{\ell \geq 1} \ell \cdot p_{\delta}(n, \ell)=\frac{1}{p(n)} \sum_{m=0}^{n-1} p(m) \tag{1}
\end{equation*}
$$

Here, $p_{\delta}(n, \ell)$ denotes the number of partitions of n with exactly ℓ different part sizes. The combinatorial proof in [1] is very simple: For any partition of $m=$ $0,1, \ldots, n-1$, create a partition of n by adjoining a part of size $n-m$. In so doing, any given partition of n is created in as many copies as it has different part sizes.

First observe that this proof immediately generalizes to give a formula for the expected number of different part sizes $\geq k$ (that is, not counting any parts of size less than k):

$$
\begin{equation*}
\frac{1}{p(n)} \sum_{\ell \geq 1} \ell \cdot p_{\delta}(n, \ell, k)=\frac{1}{p(n)} \sum_{m=0}^{n-k} p(m) \tag{2}
\end{equation*}
$$

Figure 1: The $\lambda_{2}=4$ ways of obtaining partitions by removing a rectangle of height $d \geq 2$ from the Young diagram of partition $\lambda=(5,4,4,4,3,1)$.
where $p_{\delta}(n, \ell, k)$ denotes the number of partitions of n with exactly ℓ different part sizes $\geq k$.

In this note we will make a similar generalization, with a combinatorial proof of the same flavor as above, of a formula of Kessler and Livingstone [3] for the expected length of the largest part λ_{1} (or, equivalently, the number of parts) of a partition $\lambda \vdash n$ drawn uniformly at random:

$$
\begin{equation*}
E\left(\lambda_{1}\right)=\frac{1}{p(n)} \sum_{\lambda \vdash n} \lambda_{1}=\frac{1}{p(n)} \sum_{m=1}^{n} p(n-m) \cdot \#\{d \mid m\} \tag{3}
\end{equation*}
$$

where $\#\{d \mid m\}$ denotes the number of divisors of m. Kessler and Livingstone used generating functions to prove (3). They then used this formula as a stepping stone toward an asympotic formula for $E\left(\lambda_{1}\right)$. For the large and interesting literature on asymptotic formulas for parts of integer partitions, we refer to Fristedt [2] and Pittel [4]. Here we focus on the finite formula (3). We shall present a simple combinatorial proof that immediately generalizes to the expected length of the k th longest part, $\lambda_{k}:$

$$
\begin{equation*}
E\left(\lambda_{k}\right)=\frac{1}{p(n)} \sum_{\lambda \vdash n} \lambda_{k}=\frac{1}{p(n)} \sum_{m=1}^{n} p(n-m) \cdot \#\{d \mid m: d \geq k\} \tag{4}
\end{equation*}
$$

Lemma 1 Let λ be any integer partition with k th part $\lambda_{k}>0$. Then λ_{k} is also the number of pairs of integers $r \geq 1$ and $d \geq k$ such that subtracting r from each of the d largest parts of λ results in a new partition.

Proof. Let N be the number of parts of λ, and temporarily define $\lambda_{N+1}=0$. After subtracting r from each of the d largest parts of λ, what remains is a partition if and only if $\lambda_{d}-r \geq \lambda_{d+1}$. Thus for each value of $d \geq k$ we have $\lambda_{d}-\lambda_{d+1}$ possible values of r. The total number of possibilities is

$$
\left(\lambda_{k}-\lambda_{k+1}\right)+\left(\lambda_{k+1}-\lambda_{k+2}\right)+\cdots+\left(\lambda_{N}-\lambda_{N+1}\right)
$$

which simplifies to $\lambda_{k}-\lambda_{N+1}=\lambda_{k}$.

Figure 1 illustrates the lemma.
Proof of (4). For any partition of $n-m$, with $m=1, \ldots, n$, and any divisor $d \geq k$ of m, create a partition of n by adding the integer $r=m / d \geq 1$ to each of the d largest parts. In so doing, any given partition λ of n is created in exactly λ_{k} copies according to the lemma.

Acknowledgments

This research was supported by the Swedish Research Council.

References

[1] S. Corteel, B Pittel, C.D. Savage, and H.S. Wilf, On the multiplicity of parts in a random partition, Random Structures and Algorithms 14 (1999) 185-197.
[2] B. Fristedt, The structure of random partitions of large integers, Transactions of the American Mathematical Society 337 (1993), 703-735.
[3] I. Kessler and M. Livingston, The expected number of parts in a partition of n, Monatshefte für Mathematik 81 (1976), 203-212.
[4] B. Pittel, Confirming two conjectures about integer partitions, Journal of Combinatorial Theory, Series A 88 (1999), 123-135.

