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ON CONGRUENCE CONDITIONS FOR PRIMALITY
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Abstract
For any k ≥ 0, all primes n satisfy the congruence nσk(n) ≡ 2 mod ϕ(n). We show
that this congruence in fact characterizes the primes, in the sense that it is satisfied
by only finitely many composite n. This characterization generalizes the results of
Lescot and Subbarao for the cases k = 0 and k = 1. For 0 ≤ k ≤ 14, we enumerate
the composite n satisfying the congruence. We also prove that any composite n
which satisfies the congruence for some k satisfies it for infinitely many k.

1. Introduction

Lescot [1] and Subbarao [2] showed that, for k ∈ {0, 1}, the congruence

nσk(n) ≡ 2 mod ϕ(n), (1)

in some sense characterizes the set P of primes. Specifically, they respectively
showed the k = 0 and k = 1 cases of the following theorem.

Theorem 1. For k ∈ {0, 1} and n ∈ N, the congruence (1) holds if and only if
n ∈ P ∪ {1} ∪ Sk, where S0 = {4, 6, 14} and S1 = {4, 6, 22}.

Here, σk and ϕ respectively denote the divisor and totient functions, defined by

σk(n) =
∑

d|n

dk =
r∏

i=1

p(αi+1)k
i − 1

pk
i − 1

,

ϕ(n) = |{d ∈ N : 1 ≤ d < n and (d, n) = 1}| =
r∏

i=1

pαi−1
i (pi − 1),

for k ≥ 0 and N ' n = pα1
1 · · · pαr

r (with the pi ∈ P distinct).
1Corresponding author.
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It is clear that if n ∈ P, then σk(n) = nk + 1 and ϕ(n) = n− 1. In this case, we
have

nσk(n) ≡ n(nk + 1) ≡ 2 mod (n− 1),

as p ≡ 1 mod (p− 1). We therefore see that, for any k ≥ 0, all n ∈ P satisfy (1).
In this note, we present the following result generalizing the reverse direction of

Theorem 1.

Theorem 2. For any k ≥ 0, let Sk be the set of composite n ∈ N satisfying (1).
Then,

(i) Sk ⊂ 2P,

(ii) Sk is finite, and

(iii) the maximal element of Sk is at most 2k+3 + 6.

We prove Theorem 2 in Section 2. Then, in Section 3, we enumerate the sets
Sk for 0 ≤ k ≤ 14. There, we also prove that any n ∈ N which appears in Sk for
some k ≥ 0 appears in infinitely many of the sets {Sk′}∞k′=0.

2. Proof of Theorem 2

We suppose that n ∈ Sk, i.e., that n is composite and satisfies (1). Upon writing
n = 2αpα1

1 · · · pαr
r with the pi ∈ P distinct and odd, we have

ϕ(n) = 2α−1
r∏

i=1

pαi−1
i (pi − 1). (2)

For any i (1 ≤ i ≤ r) such that αi > 1, we see from the expression (2) that pi | ϕ(n).
Since clearly pi | n, the congruence (1) then gives that pi | 2—an impossibility.
Thus, we must have αi = 1. An analogous argument shows that α ∈ {1, 2}.

Now, as pi − 1 is even for each i (1 ≤ i ≤ r), we see from (2) that 2r | ϕ(n).
Furthermore, the expression

σk(n) =
2(α+1)k − 1

2k − 1

r∏

i=1

p(αi+1)k
i − 1

pk
i − 1

=
2(α+1)k − 1

2k − 1

r∏

i=1

p2k
i − 1
pk

i − 1
=

2(α+1)k − 1
2k − 1

r∏

i=1

(pk
i + 1) (3)
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yields that 2r | σk(n) since 2 | pk
i +1. We then obtain from the congruence (1) that

2r | 2, whence we see that r ≤ 1.
Since n is composite, we are left with only two possibilities: n = 2p (with p ∈ P)

or n = 4p (with p ∈ P). The second case is impossible, as when n = 4p we have (1)
and 4 | ϕ(n), together implying 4 | 2; the fact that Sk ⊂ 2P follows. In the first case,
if p = 2, then n = 4 ≤ 2k+3+6. If p is odd, then we have nσk(n) = 2p(2k+1)(pk+1)
and ϕ(n) = p− 1. Because p ≡ 1 mod (p− 1), we see that

nσk(n) ≡ 2p(2k + 1)(pk + 1) ≡ 4(2k + 1) mod (p− 1). (4)

Combining (1) and (4), we see that

(p− 1) | 2k+2 + 2. (5)

As n = 2p and (5) implies that p ≤ 2k+2 + 3, we have the stated bound on the size
of n ∈ Sk; the finitude of Sk follows.

3. The Sets Sk

Table 1 presents the exceptional sets Sk for 0 ≤ k ≤ 14. It is clear that 4, 6 ∈ Sk

for each k ≥ 0, since ϕ(4) = ϕ(6) = 2, and 4σk(4) and 6σk(6) are even for all k.
Beyond this observation, however, the behavior of the sets Sk appears to be quite
erratic.

Nonetheless, we obtain the following partial characterization result for the Sk.

Corollary 3. If n ∈ N is in Sk for some k ≥ 0, then it is in infinitely many of the
sets {Sk′}∞k′=0.

Proof. It is easily seen in the proof of Theorem 2 that n ∈ Sk if and only if n = 2p
for p ∈ P satisfying

(p− 1) | (2k+2 + 2),

or equivalently,
p− 1

2
| (2k+1 + 1).

But this means that 2k+1 ≡ −1 mod p−1
2 , hence 22k+2 ≡ 1 mod p−1

2 . It follows that
we have

2(2j+1)(k+1)−1 = 2(2k+2)j+k ≡ 2k mod
p− 1

2
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k Sk

0 {4,6,14}

1 {4,6,22}

2 {4,6,14,38}

3 {4,6}

4 {4,6,14,46,134}

5 {4,6,22,262}

6 {4,6,14}

7 {4,6}

8 {4,6,14,38}

9 {4,6,22,166}

10 {4,6,14,2734}

11 {4,6}

12 {4,6,14}

13 {4,6,22,118,454}

14 {4,6,14,38,46,134,398,3974,14566}

Table 1: The exceptional sets Sk (0 ≤ k ≤ 14)

for any j ∈ N. Then, for any k′ ∈ {(2j + 1)(k + 1)− 1}∞j=1, we have

(p− 1) | (2k′+2 + 2),

hence n ∈ Sk′ . We have therefore produced infinitely many k′ such that n ∈ Sk′ . !
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