

THE DIVISIBILITY OF $a^n - b^n$ BY POWERS OF n

Kálmán Győry

Institute of Mathematics, University of Debrecen and the Number Theory Research Group of the Hungarian Academy of Sciences, Debrecen H-4010, Hungary. gyory@math.klte.hu

Chris Smyth

School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ, UK. c.smyth@ed.ac.uk

Received: 9/14/09, Revised: 2/26/10, Accepted: 3/10/10, Published: 7/16/10

Abstract

For given integers a, b and $j \ge 1$ we determine the set $R_{a,b}^{(j)}$ of integers n for which $a^n - b^n$ is divisible by n^j . For j = 1, 2, this set is usually infinite; we determine explicitly the exceptional cases for which a, b the set $R_{a,b}^{(j)}$ (j = 1, 2) is finite. For j = 2, we use Zsigmondy's Theorem for this. For $j \ge 3$ and gcd(a, b) = 1, $R_{a,b}^{(j)}$ is probably always finite; this seems difficult to prove, however.

We also show that determination of the set of integers n for which $a^n + b^n$ is divisible by n^j can be reduced to that of $R_{a,b}^{(j)}$.

1. Introduction

Let a, b and j be fixed integers, with $j \ge 1$. The aim of this paper is to find the set $R_{a,b}^{(j)}$ of all positive integers n such that n^j divides $a^n - b^n$. For $j = 1, 2, \ldots$, these sets are clearly nested, with common intersection $\{1\}$. Our first results (Theorems 1 and 2) describe this set in the case that gcd(a, b) = 1. In Section 4 we describe (Theorem 15) the set in the general situation where gcd(a, b) is unrestricted.

Theorem 1. Suppose that gcd(a,b) = 1. Then the elements of the set $R_{a,b}^{(1)}$ consist of those integers n whose prime factorization can be written in the form

$$n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r} \quad (p_1 < p_2 < \dots < p_r, \ all \ k_i \ge 1), \tag{1}$$

where $p_i \mid (a^{n_i} - b^{n_i}) (i = 1, ..., r)$, with $n_1 = 1$ and $n_i = p_1^{k_1} p_2^{k_2} ... p_{i-1}^{k_{i-1}}$ (i = 2, ..., r).

In this theorem, the k_i are arbitrary positive integers. This result is a more explicit version of that proved in Győry [5], where it was shown that if a - b > 1 then for any positive integer r the number of elements of $R_{a,b}^{(1)}$ having r prime factors is infinite. The result is also essentially contained in [11], which described

the indices n for which the generalized Fibonacci numbers u_n are divisible by n. However, we present a self-contained proof in this paper.

On the other hand, for $j \ge 2$, the exponents k_i are more restricted.

Theorem 2. Suppose that gcd(a, b) = 1, and $j \ge 2$. Then the elements of the set $R_{a,b}^{(j)}$ consist of those integers n whose prime factorization can be written in the form (1), where

$$p_1^{(j-1)k_1} \ divides \ \begin{cases} a-b & \text{if } p_1 > 2;\\ lcm(a-b,a+b) \ \text{if } p_1 = 2, \end{cases}$$

and $p_i^{(j-1)k_i} \mid a^{n_i} - b^{n_i}$, with $n_i = p_1^{k_1} p_2^{k_2} \dots p_{i-1}^{k_{i-1}} (i = 2, \dots, r)$.

Again, the result was essentially contained in [5], where it was proved that for a-b > 1 and for any given r, there exists an $n \in R_{a,b}^{(j)}$ with r distinct prime factors. Further, the number of these n is finite, and all of them can be determined. The paper [5] was stimulated by a problem from the 31st International Mathematical Olympiad, which asked for all those positive integers n > 1 for which $2^n + 1$ was divisible by n^2 . (For the answer, see [5], or Theorem 16.)

Thus we see that construction of $n \in R_{a,b}^{(j)}$ depends upon finding a prime p_i not used previously with $a^{n_i} - b^{n_i}$ being divisible by p_i^{j-1} . This presents no problem for j = 2, so that $R_{a,b}^{(2)}$, as well as $R_{a,b}^{(1)}$, are usually infinite. See Section 5 for details, including the exceptional cases when they are finite. However, for $j \ge 3$ the condition $p_i^{j-1} \mid a^{n_i} - b^{n_i}$ is only rarely satisfied. This suggests strongly that in this case $R_{a,b}^{(j)}$ is always finite for gcd(a,b) = 1. This seems very difficult to prove, even assuming the ABC Conjecture. A result of Ribenboim and Walsh [10] implies that, under ABC, the powerful part of $a^n - b^n$ cannot often be large. But this is not strong enough for what is needed here. On the other hand, $R_{a,b}^{(j)}$ $(j \ge 3)$ can be made arbitrarily large by choosing a and b such that a - b is a powerful number. For instance, choosing $a = 1 + (q_1q_2 \dots q_s)^{j-1}$ and b = 1, where q_1, q_2, \dots, q_s are distinct primes, then $R_{a,b}^{(j)}$ contains the 2^s numbers $q_1^{\varepsilon_1}q_2^{\varepsilon_2}\dots q_s^{\varepsilon_s}$ where the ε_i are 0 or 1. See Example 6 in Section 7.

In the next section we give preliminary results needed for the proof of the theorems. We prove them in Section 3. In Section 4 we describe (Theorem 15) $R_{a,b}^{(j)}$, where gcd(a, b) is unrestricted. In Section 5 we find all a, b for which $R_{a,b}^{(2)}$ is finite (Theorem 16). In Section 6 we discuss the divisibility of $a^n + b^n$ by powers of n. In Section 7 we give some examples, and make some final remarks in Section 8.

2. Preliminary Results

We first prove a version of Fermat's Little Theorem that gives a little bit more information in the case $x \equiv 1 \pmod{p}$.

Lemma 3. For $x \in \mathbb{Z}$ and p an odd prime we have

$$x^{p-1} + x^{p-2} + \dots + x + 1 \equiv \begin{cases} p \pmod{p^2} & \text{if } x \equiv 1 \pmod{p}; \\ 1 \pmod{p} & \text{otherwise} \end{cases}$$
(2)

Proof. If $x \equiv 1 \pmod{p}$, say x = 1 + kp, then $x^j \equiv 1 + jkp \pmod{p^2}$, so that

$$x^{p-1} + x^{p-2} + \dots + x + 1 \equiv p + kp \sum_{j=0}^{p-1} j \equiv p \pmod{p^2}.$$
 (3)

Otherwise

$$x(x-1)(x^{p-2}+\dots+x+1) = x^p - x \equiv 0 \pmod{p},$$
(4)

so that for $x \not\equiv 1 \pmod{p}$ we have $x(x^{p-2} + \dots + x + 1) \equiv 0 \pmod{p}$, and hence

$$x^{p-1} + x^{p-2} + \dots + x + 1 \equiv x(x^{p-2} + \dots + x + 1) + 1 \equiv 1 \pmod{p}.$$
 (5)

The following is a result of Birkoff and Vandiver [2, Theorem III]. It is also special case of Lucas [9, p. 210], as corrected for p = 2 by Carmichael [3, Theorem X].

Lemma 4. Let gcd(a,b) = 1 and p be prime with $p \mid (a-b)$. Define t > 0 by $p^t \parallel (a-b)$ for p > 2 and $2^t \parallel lcm(a-b,a+b)$ if p = 2. Then for $\ell > 0$

$$p^{t+\ell} \| (a^{p^{\ell}} - b^{p^{\ell}}).$$
(6)

On the other hand, if $p \nmid a - b$ then for $\ell \geq 0$

$$p \nmid a^{(}p^{\ell} - b^{p^{\ell}}). \tag{7}$$

Proof. Put x = a/b. First suppose that p is odd and $p^t || a - b$ for some t > 0. Then as gcd(a, b) = 1, b is not divisible by p, and we have $x \equiv 1 \pmod{p^t}$. Then from

$$a^{p} - b^{p} = (a - b)b^{p-1}(x^{p-1} + x^{p-2} + \dots + x + 1)$$
(8)

INTEGERS: 10 (2010)

we have by Lemma 3 that $p^{t+1} || (a^p - b^p)$. Applying this result ℓ times, we obtain (6).

For p = 2, we have $p^{t+1} ||a^2 - b^2$ and from $a^2 \equiv b^2 \equiv 1 \pmod{8}$, we obtain $2^1 ||(a^2 + b^2)$, and so $p^{t+2} ||(a^4 - b^4)$. An easy induction then gives the required result.

Now suppose that $p \nmid (a - b)$. Since gcd(a, b) = 1, (7) clearly holds if $p \mid a$ or $p \mid b$, as must happen for p = 2. So we can assume that p is odd and $p \nmid b$. Then $x \not\equiv 1 \pmod{p}$ so that, by Lemma 3 and (8), we have $p \nmid (a^p - b^p)$. Applying this argument ℓ times, we obtain (7).

For $n \in R_{a,b}^{(j)}$, we now define the set $\mathcal{P}_{a,b}^{(j)}(n)$ to be the set of all prime powers p^k for which $np^k \in R_{a,b}^{(j)}$. Our next result describes this set precisely. (Compare with [11, Theorem 1(a)]).

Proposition 5. Suppose that $j \ge 1$, gcd(a, b) = 1, $n \in R_{a,b}^{(j)}$ and

$$a^n - b^n = 2^{e'_2} \prod_{p>2} p^{e_p}, \quad n = \prod_p p^{k_p}$$
 (9)

and define e_2 by $2^{e_2} \| \operatorname{lcm}(a^n - b^n, a^n + b^n)$. Then

$$\mathcal{P}^{(1)}(n) = \bigcup_{p|a^n - b^n} \{p^k, k \in \mathbb{N}\},\tag{10}$$

and for $j \geq 2$

$$\mathcal{P}_{a,b}^{(j)}(n) = \bigcup_{p:p^{j-1}|a^n - b^n} \left\{ p^k : 1 \le k \le \left\lfloor \frac{e_p - jk_p}{j - 1} \right\rfloor \right\}.$$
(11)

Note that e_2 is never 1. Consequently, if $2m \in R_{a,b}^{(2)}$, where *m* is odd, then $4m \in R_{a,b}^{(2)}$. Also, $2 \in R_{a,b}^{(j)}$ for $j \leq 3$ when a - b is even.

Proof. Taking $n \in R_{a,b}^{(j)}$ we have, from (9) and the definition of e_2 , that $jk_p \leq e_p$ for all primes p. Hence, applying Lemma 4 with a, b replaced by a^n, b^n we have for p dividing $a^n - b^n$ that for $\ell > 0$

$$p^{e_p+\ell} \| (a^{np^{\ell}} - b^{np^{\ell}}).$$
(12)

So $(np^{\ell})^j \mid (a^{np^{\ell}} - b^{np^{\ell}})$ is equivalent to $j(k_p + \ell) \leq e_p + \ell$, or $(j-1)\ell \leq e_p - jk_p$. Thus we obtain (10) for $j \geq 2$, with ℓ unrestricted for j = 1, giving (10).

On the other hand, if $p \nmid (a^n - b^n)$, then by Lemma 4 again, $p^{\ell} \nmid (a^{np^{\ell}} - b^{np^{\ell}})$, so that certainly $(np^{\ell})^j \nmid (a^{np^{\ell}} - b^{np^{\ell}})$.

We now recall some facts about the order function ord. For m an integer greater than 1 and x an integer prime to m, we define $\operatorname{ord}_m(x)$, the order of x modulo m, to be the least positive integer h such that $x^h \equiv 1 \pmod{m}$. The next three lemmas, containing standard material on the ord function, are included for completeness.

Lemma 6. For $x \in \mathbb{N}$ and prime to m, we have $m \mid (x^n - 1)$ if and only if $\operatorname{ord}_m(x) \mid n$.

Proof. Let $\operatorname{ord}_m(x) = h$, and assume that $m \mid (x^n - 1)$. Then as $m \mid (x^h - 1)$, also $m \mid (x^{\operatorname{gcd}(h,n)} - 1)$. By the minimality of h, $\operatorname{gcd}(h,n) = h$, i.e., $h \mid n$. Conversely, if $h \mid n$ then $(x^h - 1) \mid (x^n - 1)$, so that $m \mid (x^n - 1)$.

Corollary 7. Let $j \ge 1$. We have $n^j \mid (x^n - 1)$ if and only if gcd(x, n) = 1 and $ord_{n^j}(x) \mid n$.

Lemma 8. For $m = \prod_{p} p^{f_p}$ and $x \in \mathbb{N}$ and prime to m we have

$$\operatorname{ord}_{m}(x) = \operatorname{lcm}_{p} \operatorname{ord}_{p^{f_{p}}}(x).$$
(13)

Proof. Put $h_p = \operatorname{ord}_{p^{f_p}}(x)$, $h = \operatorname{ord}_m(x)$ and $h' = \operatorname{lcm}_p h_p$. Then by Lemma 6 we have $p^{f_p} \mid (x^{h'} - 1)$ for all p, and hence $m \mid (x^{h'} - 1)$. Hence $h \mid h'$. On the other hand, as $p^{f_p} \mid n$ and $m \mid (x^h - 1)$, we have $p^{f_p} \mid (x^h - 1)$, and so $h_p \mid h$, by Lemma 6. Hence $h' = \operatorname{lcm}_p h_p \mid h$.

Now put $p_* = \operatorname{ord}_p(x)$, and define t > 0 by $p^t || (x^{p_*} - 1)$.

Lemma 9. For gcd(x,n) = 1 and $\ell > 0$ we have $p_* \mid (p-1)$ and $ord_{p^{\ell}}(x) = p^{\max(\ell-t,0)}p_*$.

Proof. Since $p \mid (x^{p-1}-1)$, we have $p_* \mid (p-1)$, by Lemma 6. Also, from $p^{\ell} \mid (x^{\operatorname{ord}_{p^{\ell}}(x)}-1)$ we have $p \mid (x^{\operatorname{ord}_{p^{\ell}}(x)}-1)$, and so, by Lemma 6 again, $p_* = \operatorname{ord}_p(x) \mid \operatorname{ord}_{p^{\ell}}(x)$. Further, if $\ell \leq t$ then from $p^{\ell} \mid (x^{p_*}-1)$ we have by Lemma 6 that $\operatorname{ord}_{p^{\ell}}(x) \mid p_*$, so $\operatorname{ord}_{p^{\ell}}(x) = p_*$. Further, by Lemma 4 for $u \geq t$

$$p^{u} \| (x^{p^{u-t}p_{*}} - 1), \tag{14}$$

so that, taking $u = \ell \ge t$ and using Lemma 6, $\operatorname{ord}_{p^{\ell}}(x) \mid p^{\ell-t}p_*$. Also, if $t \le u < \ell$, then, from (14), $x^{p^{t-u}p_*} \not\equiv 1 \pmod{p^{\ell}}$. Hence $\operatorname{ord}_{p^{\ell}}(x) = p^{\ell-t}p_*$ for $\ell \ge t$.

Corollary 10. Let $j \ge 1$. For $n = \prod_p p^{k_p}$ and $x \in \mathbb{N}$ prime to n we have $n^j \mid x^n - 1$ if and only if gcd(x, n) = 1 and

$$\operatorname{lcm}_{p} p^{k'_{p}} p_{*} \mid \prod_{p} p^{k_{p}}.$$
(15)

Here the $k'_p = \max(jk_p - t_p, 0)$ are integers with $t_p > 0$.

Note that p_* , k'_p and t_p in general depend on x and j as well as on p.

What we actually need in our situation is the following variant of Corollary 10.

Corollary 11. Let $j \ge 1$. For $n = \prod_p p^{k_p}$ and integers a, b with gcd(a, b) = 1 we have $n^j \mid a^n - b^n$ if and only if gcd(n, a) = gcd(n, b) = 1 and

$$\operatorname{lcm}_{p} p^{k'_{p}} p_{*} \mid \prod_{p} p^{k_{p}}.$$
(16)

Here the $k'_p = \max(jk_p - t_p, 0)$ are integers with $t_p > 0$.

In this corollary, the x used to define p_* and $t = t_p$ (see after Lemma 8) is chosen to satisfy $bx \equiv a \pmod{n^j}$. The result is then easily deduced from Corollary 10.

By contrast with Proposition 5, our next proposition allows us to *divide* an element $n \in R_{a,b}^{(j)}$ by a prime, and remain within $R_{a,b}^{(j)}$.

Proposition 12. Let $n \in R_{a,b}^{(j)}$ with n > 1, and suppose that p_{\max} is the largest prime factor of n. Then $n/p_{\max} \in R_{a,b}^{(j)}$.

Proof. Suppose $n \in R_{a,b}^{(j)}$, so that (15) holds, with x = a/b, and put $q = p_{\text{max}}$. Then, since for every p all prime factors of p_* are less than p, the only possible term on the left-hand side that divides q^{k_q} on the right-hand side is the term $q^{k'_q}$. Now reducing k_q by 1 will reduce k'_q by at least 1, unless it is already 0, when it does not change. In either case (15) will still hold with n replaced by n/q, and so $n/q \in R_{a,b}^{(j)}$.

Various versions and special cases of Proposition 12 for j = 1 have been known for some time, in the more general setting of Lucas sequences, due to Somer [12, Theorem 5(iv)], Jarden [7, Theorem E], Hoggatt and Bergum [6], Walsh [14], André-Jeannin [1] and others. See also Smyth [11, Theorem 3].

In order to work out for which a, b the set $R_{a,b}^{(j)}$ is finite, we need the following classical result. Recall that $a^n - b^n$ is said to have a *primitive prime divisor* p if the prime p divides $a^n - b^n$ but does not divide $a^k - b^k$ for any k with $1 \le k < n$.

Theorem 13 (Zsigmondy [15]). Suppose that a and b are nonzero coprime integers with a > b and a + b > 0. Then, except when

- *n* = 2 and *a* + *b* is a power of 2 or
- n = 3, a = 2, b = -1
- n = 6, a = 2, b = 1,

 $a^n - b^n$ has a primitive prime divisor.

(Note that in this statement we have allowed b to be negative, as did Zsigmondy. His theorem is nowadays often quoted with the restriction a > b > 0 and so has the second exceptional case omitted.)

3. Proof of Theorems 1 and 2

Let $n \in R_{a,b}^{(j)}$ have a factorisation (1), where $p_1 < p_2 < \cdots < p_r$ and all $k_i > 0$. First take $j \ge 1$. Then, by Proposition 12, $n/p_r^{k_r} = n_r \in R_{a,b}^{(j)}$, and hence

$$(n/p_r^{k_r})/p_{r-1}^{k_{r-1}} = n_{r-1}, \quad \dots, \quad p_1^{k_1} = n_2, \quad 1 = n_1$$

are all in $R_{a,b}^{(j)}$. Now separate the two cases j = 1 and $j \ge 2$ for Theorems 1 and 2 respectively. Now for j = 1 Proposition 5 gives us that $p_i \mid a^{n_i} - b^{n_i} (i = 1, ..., r)$, while for $j \ge 2$ we have, again from Proposition 5, that

$$p_1^{(j-1)k_1} \text{ divides } \begin{cases} a-b & \text{if } p_1 > 2;\\ \text{lcm}(a-b,a+b) & \text{if } p_1 = 2, \end{cases}$$

and $p_i^{(j-1)k_i} | a^{n_i} - b^{n_i} (i = 2, ..., r)$. Here we have used the fact that $gcd(p_i, n_i) = 1$, so that if $p_i^{k_i} | (a^{n_i} - b^{n_i})/n_i^2$ then $p_i^{k_i} | a^{n_i} - b^{n_i}$ (i.e., we are applying Proposition 5 with all the exponents k_p equal to 0.)

4. Finding $R_{a,b}^{(j)}$ When gcd(a,b) > 1.

For a > 1, define the set \mathcal{F}_a to be the set of all $n \in \mathcal{N}$ whose prime factors all divide a. To find $R_{a,b}^{(j)}$ in general, we first consider the case b = 0.

INTEGERS: 10 (2010)

Proposition 14. We have $R_{a,0}^{(1)} = R_{a,0}^{(2)} = \mathcal{F}_a$, while for $j \geq 3$ the set $R_{a,0}^{(j)} = \mathcal{F}_a \setminus S_a^{(j)}$, where $S_a^{(j)}$ is a finite set.

Proof. From the condition $n^j | a^n$, all prime factors of n divide a, so $R_{a,0}^{(j)} \subset \mathcal{F}_a$, say $R_{a,0}^{(j)} = \mathcal{F}_a \setminus S_a^{(j)}$. We need to prove that $S_a^{(j)}$ is finite. Suppose that $a = p_1^{a_1} \dots p_r^{a_r}$, with p_1 the smallest prime factor of a. Then $n = p_1^{k_1} \dots p_r^{k_r}$ for some $k_i \geq 0$. From $n^j | a^n$ we have

$$k_i \le \frac{a_i}{j} p_1^{k_1} \dots p_r^{k_r} \quad (i = 1, \dots, r).$$
 (17)

For these r conditions to be satisfied it is sufficient that

$$\sum_{i=1}^{r} k_i \le \frac{\min_{i=1}^{r} a_i}{j} p_1^{\sum_{i=1}^{r} k_i}.$$
(18)

Now (18) holds if j = 1 or 2, as in this case, from the simple inequality $k \leq 2^{k-1}$ valid for all $k \in \mathbb{N}$, we have

$$\sum_{i=1}^{r} k_i \le \frac{1}{2} 2^{\sum_{i=1}^{r} k_i} \le \frac{\min_{i=1}^{r} a_i}{j} p_1^{\sum_{i=1}^{r} k_i}.$$
(19)

Hence $S_a^{(j)}$ is empty if j = 1 or 2.

Now take $j \ge 3$, and let $K = K_a^{(j)}$ be the smallest integer such that $Kp_1^{-K} \le (\min_{i=1}^r a_i)/j$. Then (18) holds for $\sum_{i=1}^r k_i \ge K$, and $S_a^{(j)}$ is contained in the finite set $S'' = \{n \in \mathbb{N}, n = p_1^{k_1} \dots p_r^{k_r} : \sum_{i=1}^r k_i < K\}$. (To compute $S_a^{(j)}$ precisely, one need just check for which r-tuples (k_1, \dots, k_r) with $\sum_{i=1}^r k_i < K$ any of the r inequalities of (17) is violated.)

One (at first sight) curious consequence of the equality $R_{a,0}^{(1)} = R_{a,0}^{(2)}$ above is that $n \mid a^n$ implies $n^2 \mid a^n$.

Now let $g = \gcd(a, b)$ and $a = a_1g$, $b = b_1g$. Write $n = Gn_1$, where all prime factors of G divide g and $\gcd(n_1, g) = 1$. Then we have the following general result.

Theorem 15. The set $R_{a,b}^{(j)}$ is given by

$$R_{a,b}^{(j)} = \{ n = Gn_1 : G \in \mathcal{F}_g, n_1 \in R_{a_1^G, b_1^G}^{(j)} \text{ and } \gcd(g, n_1) = 1 \} \setminus R,$$
 (20)

where R is a finite set. Specifically, all $n = Gn_1 \in R$ have $1 \le n_1 < j/2$ and

$$G = q_1^{\ell_1} \dots q_m^{\ell_m},\tag{21}$$

where

$$\sum_{i=1}^{m} \ell_i < K_{g^{n_1}}^{(j)}.$$
(22)

Here the q_i are the primes dividing g, and $K_{g^{n_1}}^{(j)}$ is the constant in the proof of Proposition 14 above.

Proof. Supposing that $n \in R_{a,b}^{(j)}$ we have

$$n^j \mid a^n - b^n \tag{23}$$

and so $n^j \mid g^n(a_1^n - b_1^n)$. Writing $n = Gn_1$, as above, we have

$$n_1^j \mid (a_1^G)^{n_1} - (b_1^G)^{n_1} \tag{24}$$

and

$$G^{j} \mid g^{Gn_{1}} \left((a_{1}^{G})^{n_{1}} - (b_{1}^{G})^{n_{1}} \right).$$

$$(25)$$

Thus (23) holds with n, a, b replaced by n_1, a_1^G, b_1^G . So we have reduced the problem of (23) to a case where gcd(a, b) = 1, which we can solve for n_1 prime to g, along with the extra condition (25). Now, from the fact that $R_{g,0}^{(2)} = \mathcal{F}_g$ from Proposition 14, we have $G^2 \mid g^G$ and hence $G^j \mid g^{Gn_1}$ for all $G \in \mathcal{F}_g$, provided that $n_1 \geq j/2$. Hence (25) can fail to hold for all $G \in \mathcal{F}_g$ only for $1 \leq n_1 < j/2$.

Now fix n_1 with $1 \le n_1 < j/2$. Then note that by Proposition 14, $G^j \mid g^{Gn_1}$ and hence (23) holds for all $G \in \mathcal{F}_{g^{n_1}} \setminus S$, where S is a finite set of G's contained in the set of all G's given by (21) and (22).

Note that (taking $n_1 = 1$ and using (25)) we always have $R_{g,0}^{(j)} \subset R_{a,b}^{(j)}$. See example in Section 7.

5. When Are $R_{a,b}^{(1)}$ and $R_{a,b}^{(2)}$ Finite?

First consider $R_{a,b}^{(1)}$. From Theorem 1 it is immediate that $R_{a,b}^{(1)}$ contains all powers of any primes dividing a - b. Thus $R_{a,b}^{(1)}$ is infinite unless $a - b = \pm 1$, in which case $R_{a,b}^{(1)} = \{1\}$. This was pointed out earlier by André-Jeannin [1, Corollary 4].

Next, take j = 2. Let us denote by $\mathcal{P}_{a,b}^{(2)}$ the set of primes that divide some $n \in R_{a,b}^{(2)}$ and, as before, put $g = \gcd(a, b)$.

INTEGERS: 10 (2010)

Theorem 16. The set $R_{a,b}^{(2)} = \{1\}$ if and only if a and b are consecutive integers, and $R_{a,b}^{(2)} = \{1,3\}$ if and only if ab = -2. Otherwise, $R_{a,b}^{(2)}$ is infinite.

If $R_{a/g,b/g}^{(2)} = \{1\}$ (respectively, $=\{1,3\}$) then $\mathcal{P}_{a,b}^{(2)}$ is the set of all prime divisors of g (respectively, 3g). Otherwise $\mathcal{P}_{a,b}^{(2)}$ is infinite.

For coprime positive integers a, b with a - b > 1, the infiniteness of $R_{a,b}^{(2)}$ already follows from the above-mentioned results of [5].

The application of Zsigmondy's Theorem that we require is the following.

Proposition 17. If $R_{a,b}^{(2)}$ contains some integer $n \ge 4$ then both $R_{a,b}^{(2)}$ and $\mathcal{P}_{a,b}^{(2)}$ are infinite sets.

Proof. First note that if a = 2, b = 1 (or more generally $a - b = \pm 1$) then by Theorem 2, $R^{(2)} = \{1\}$. Hence, taking $n \in R^{(2)}_{a,b}$ with $n \ge 4$ we have, by Zsigmondy's Theorem, that $a^n - b^n$ has a primitive prime divisor, p say. Now if $p \mid n$ then, by applying Proposition 12 as many times as necessary we find $p \mid n'$, where $n' \in R^{(2)}_{a,b}$ and now p is the maximal prime divisor of n'. Hence, by Proposition 12 again, $n'' = n'/p \in R^{(2)}_{a,b}$ and so, from n' = pn'' and Proposition 5 we have that $p \mid a^{n''} - b^{n''}$, contradicting the primitivity of p.

Now using Proposition 5 again, $np \in R_{a,b}^{(2)}$. Repeating the argument with n replaced by np and continuing in this way we obtain an infinite sequence

$$n, np, npp_1, npp_1p_2, \dots, npp_1p_2\dots p_\ell, \dots$$

of elements of $R_{a,b}^{(2)}$, where $p < p_1 < p_2 < \dots < p_\ell < \dots$ are primes.

Proof of Theorem 16. Assume gcd(a, b) = 1, and, without loss of generality, that a > 0 and a > b. (We can ensure this by interchanging a and b and/or changing both their signs.) If a-b is even, then a and b are odd, and $a^2-b^2 \equiv 1 \pmod{2^{t+1}}$, where $t \geq 2$. Hence $4 \in R_{a,b}^{(2)}$, by Proposition 5, and so both $R_{a,b}^{(2)}$ and $\mathcal{P}_{a,b}^{(2)}$ are infinite sets, by Proposition 17.

If a - b = 1 then $R^{(2)} = \{1\}$, as we have just seen, above.

If a-b is odd and at least 5, then a-b must either be divisible by 9 or by a prime $p \geq 5$. Hence 9 or p belong to $R_{a,b}^{(2)}$, by Proposition 5, and again both $R_{a,b}^{(2)}$ and $\mathcal{P}_{a,b}^{(2)}$ are infinite sets, by Proposition 17.

If a - b = 3 then $3 \in R_{a,b}^{(2)}$, and $a^3 - b^3 = 9(b^2 + 3b + 3)$. If b = -1 (and a = 2, ab = -2) or -2 (and a = 1, ab = -2) then $a^3 - b^3 = 9$ and

so, by Theorem 2, so $R^{(2)} = \{1, 3\}$. Otherwise, using gcd(a, b) = 1 we see that $a^3 - b^3 \ge 5$, and so the argument for $a - b \ge 5$ but with a, b replaced by a^3, b^3 applies.

6. The Powers of n Dividing $a^n + b^n$

Define $R_{a,b}^{(j)+}$ to be the set $\{n \in \mathbb{N} : n^j \text{ divides } a^n + b^n\}$. Take $j \ge 1$, and assume that gcd(a, b) = 1. (The general case $gcd(a, b) \ge 1$ can be handled as in Section 4.) We then have the following result.

Theorem 18. Suppose that $j \ge 1$, gcd(a, b) = 1, a > 0 and $a \ge |b|$. Then

- (a) $R_{a,b}^{(1)+}$ consists of the odd elements of $R_{a,-b}^{(1)}$, along with the numbers of the form $2n_1$, where n_1 is an odd element of $R_{a^2,-b^2}^{(1)}$;
- (b) If $j \ge 2$ the set $R_{a,b}^{(j)+}$ consists of the odd elements of $R_{a,-b}^{(j)}$ only.

Furthermore, for j = 1 and 2, the set $R_{a,b}^{(j)+}$ is infinite, except in the following cases:

- If a + b is 1 or a power of 2, $(j, a, b) \neq (1, 1, 1)$, when it is $\{1\}$;
- $R_{1,1}^{(1)+} = \{1,2\};$
- $R_{21}^{(2)+} = \{1,3\}.$

Proof. If n is even and $j \ge 2$, or if $4 \mid n$ and j = 1, then $n^j \mid a^n + b^n$ implies that $4 \mid a^n + b^n$, contradicting the fact that, as a and b are not both even, $a^n + b^n \equiv 1$ or 2 (mod 8). So either

- *n* is odd, in which case $n^j | a^n + b^n$ is equivalent to finding the odd elements of the set $R_{a-b}^{(j)}$;
 - or
- j = 1 and $n = 2n_1$, where n_1 is odd, and belongs to $R_{a^2, -b^2}^{(1)}$.

Now suppose that j = 1 or 2. If a + b is ± 1 or $\pm 2^i$ for some i > 0, then, by Theorem 2, all $n \in R_{a,-b}^{(j)}$ with n > 1 are even, so for j = 2 there are no n > 1 with $n^j \mid a^n + b^n$ in this case. Otherwise, a + b will have an odd prime factor, and so at least one odd element greater than 1. By Theorem 16 and its proof, we see that $R_{a,-b}^{(2)}$ will have infinitely many odd elements unless a(-b) = -2, i.e., a = 2, b = 1(using a > 0 and $a \ge |b|$). For j = 1 there will be infinitely many n with $n \mid a^n + b^n$, except when both a + b and $a^2 + b^2$ are 1 or a power of 2. It is an easy exercise to check that, this can happen only for a = b = 1 or a = 1, b = 0.

If g = gcd(a, b) > 1, then, since $R_{a,b}^{(j)+}$ contains the set $R_{g,0}^{(j)}$, it will be infinite, by Proposition 14. For $j \ge 3$ and gcd(a, b) = 1, the finiteness of the set $R_{a,b}^{(j)+}$ would follow from the finiteness of $R_{a,b}^{(j)}$, using Theorem 16(b).

7. Examples

The set $R_{a,b}^{(j)}$ has a natural labelled, directed-graph structure, as follows: take the vertices to be the elements of $R_{a,b}^{(j)}$, and join a vertex n to a vertex np as $n \to_p np$, where $p \in \mathcal{P}_{a,b}^{(j)}(n)$. We reduce this to a spanning tree of this graph by taking only those edges $n \to_p np$ for which p is the largest prime factor of np. For our first example we draw this tree (Figure 1).

1. Consider the set

$$\begin{split} R^{(2)}_{3,1} = & \{1, 2, 4, 20, 220, 1220, 2420, 5060, 13420, 14740, 23620, 55660, \\ & 145420, 147620, 162140, 237820, 259820, 290620, 308660, \\ & 339020, 447740, 847220, 899140, 1210220, \dots \} \end{split}$$

(sequence A127103 in Neil Sloane's Integer Sequences website). Now

 $3^{20} - 1 = 2^4 \cdot 5^2 \cdot 11^2 \cdot 61 \cdot 1181,$

showing that $\mathcal{P}_{3,1}^{(2)}(20) = \{11, 11^2, 61, 1181\}$. Also

 $\begin{aligned} 3^{220} - 1 &= 2^4 \cdot 5^2 \cdot 11^3 \cdot 23 \cdot 61 \cdot 67 \cdot 661 \cdot 1181 \cdot 1321 \cdot 3851 \cdot 5501 \\ &\cdot 177101 \cdot 570461 \cdot 659671 \cdot 24472341743191 \cdot 560088668384411 \\ &\cdot 927319729649066047885192700193701, \end{aligned}$

so that the elements of $\mathcal{P}_{3,1}^{(2)}(220)$ less than 10⁶/220, needed for Figure 1, are

11, 23, 61, 67, 661, 1181, 1321, 3851.

Figure 1: Part of the spanning tree for $R_{3,1}^{(2)}$, showing all elements below 10^6 .

2. Now

$$R_{5,-1}^{(2)} = \{1, 2, 3, 4, 6, 12, 21, 42, 52, 84, 156, 186, 372, \dots\},\$$

whose odd elements give

$$R_{5,-1}^{(2)+} = \{1, 3, 21, 609, 903, 2667, 9429, 26187, \dots\}.$$

See Section 6.

3. We have

$$R_{3,2}^{(2)+} = R_{3,-2}^{(2)} = \{1, 5, 55, 1971145, \dots\}$$

as all elements of $R_{3,-2}^{(2)}$ are odd. Although this set is infinite by Theorem 16, the next term is 1971145*p* where *p* is the smallest prime factor of $3^{1971145} + 2^{1971145}$ not dividing 1971145. This looks difficult to compute, as it could be very large.

4. We have

$$R_{4,-3}^{(2)} = R_{4,3}^{(2)+} = \{1, 7, 2653, \dots\}$$

Again, this set is infinite, but here only the three terms given are readily computable. The next term is 2653p where p is the smallest prime factor of $4^{2653} + 3^{2653}$ not dividing 2653.

5. This is an example of a set with more than one odd prime as a squared factor in elements of the set, in this case the primes 3 and 7. Every element greater than 9 is of one of the forms 21m, 63m, 147m, or 441m, where m is prime to 21;

$$\begin{split} R^{(2)}_{11,2} =& \{1,3,9,21,63,147,441,609,1827,4137,4263,7959,\\ & 8001,12411,12789,23877,28959,35931,55713,56007,\\ & 86877,107793,119973,167139,212541,216237,230811,\\ & 232029,251517,359919,389403,\ldots\}. \end{split}$$

- 6. $R_{27001,1}^{(4)} = \{1, 2, 3, 5, 6, 10, 15, 30\}$. This is because $27001 1 = 2^3 \cdot 3^3 \cdot 5^3$, and none of $27001^n 1$ has a factor p^3 for any prime p > 5 for any n = 1, 2, 3, 5, 6, 10, 15, 30.
- 7. $R_{19,1}^{(3)} = \{1, 2, 3, 6, 42, 1806\}$? Is this the entire set? Yes, unless $19^{1806} 1$ is divisible by p^2 for some prime p prime to 1806, in which case 1806p would also be in the set. But determining whether or not this is the case seems to be a hard computational problem.
- 8. $R_{56,2}^{(4)}$, an example with gcd(a,b) > 1. It seems highly probable that

$$R_{56,2}^{(4)} = (\mathcal{F}_2 \setminus \{2,4,8\}) \cup (3\mathcal{F}_2)$$

= 1, 3, 6, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, ...,

However, in order to prove this, Theorem 15 tells us that we need to know that $28^{2^{\ell}} \not\equiv 1 \pmod{p^3}$ for every prime p > 3 and every $\ell > 0$. This seems very difficult! Note that $R_{2,0}^{(4)} = \mathcal{F}_2 \setminus \{2,4,8\}$ and $R_{28,1}^{(4)} = \{1,3\}$.

8. Final Remarks

- 1. By finding $R_{a,b}^{(j)}$, we are essentially solving the exponential Diophantine equation $x^{j}y = a^{x} b^{x}$, since any solutions with $x \leq 0$ are readily found.
- 2. It is known that

$$R_{a,b}^{(1)} = \left\{ n \in \mathbb{N} : n \text{ divides } \frac{a^n - b^n}{a - b} \right\}.$$

See [11, Proposition 12] (and also André-Jeannin [1, Theorem 2] for some special cases.) This result shows that $R_{a,b}^{(1)} = \{n \in \mathbb{N} : n \text{ divides } u_n\}$, where the u_n are the generalized Fibonacci numbers of the first kind defined by the recurrence $u_0 = 1$, $u_1 = 1$, and $u_{n+2} = (a+b)u_{n+1} - abu_n$ $(n \ge 0)$. This provides a link between Theorem 1 of the present paper and the results of [11].

The set $R_{a,b}^{(1)+}$ is a special case of a set $\{n \in \mathbb{N} : n \text{ divides } v_n\}$, also studied in [11]. Here (v_n) is the sequence of generalized Fibonacci numbers of the second kind. For earlier work on this topic see Somer [13].

3. Earlier and related work. The study of factors of $a^n - b^n$ dates back at least to Euler, who proved that all primitive prime factors of $a^n - b^n$ were $\equiv 1 \pmod{n}$. See [2, Theorem 1]. Chapter 16 of Dickson [4] is devoted to the literature on factors of $a^n \pm b^n$.

More specifically, Kennedy and Cooper [8] studied the set $R_{10,1}^{(1)}$. André-Jeannin [1, Corollary 4] claimed (erroneously – see Theorem 18) that the congruence $a^n + b^n \equiv 0 \pmod{n}$ always has infinitely many solutions n for gcd(a,b) = 1.

References

- ANDRÉ-JEANNIN, R. Divisibility of generalized Fibonacci and Lucas numbers by their subscripts. *Fibonacci Quart. 29*, 4 (1991), 364–366.
- [2] BIRKHOFF, G. D., AND VANDIVER, H. S. On the integral divisors of $a^n b^n$. Ann. of Math. (2) 5, 4 (1904), 173–180.
- [3] CARMICHAEL, R. D. On the Numerical Factors of Certain Arithmetic Forms. Amer. Math. Monthly 16, 10 (1909), 153–159.
- [4] DICKSON, L. E. History of the theory of numbers. Vol. I: Divisibility and primality. Chelsea Publishing Co., New York, 1966.
- [5] GYŐRY, K. Az aⁿ ± bⁿ alakú számok osztóiról két számelméleti feladat kapcsán [On divisors of numbers of the form aⁿ ± bⁿ]. Középiskolai Matematikai Lapok [Mathematical Journal for Secondary Schools] 41 (1991), 193–201.
- [6] HOGGATT, JR., V. E., AND BERGUM, G. E. Divisibility and congruence relations. *Fibonacci Quart.* 12 (1974), 189–195.
- [7] JARDEN, D. Divisibility of Fibonacci and Lucas numbers by their subscripts. In *Recurring sequences: A collection of papers*, Second edition. Revised and enlarged. Riveon Lematematika, Jerusalem (Israel), 1966, pp. 68–75.
- [8] KENNEDY, R. E., AND COOPER, C. N. Niven repunits and $10^n \equiv 1 \pmod{n}$. Fibonacci Quart. 27, 2 (1989), 139–143.
- [9] LUCAS, E. Théorie des Fonctions Numériques Simplement Périodiques. Amer. J. Math., 1 (1878), 184–196, 197–240, 289–321.
- [10] RIBENBOIM, P., AND WALSH, G. The ABC conjecture and the powerful part of terms in binary recurring sequences. J. Number Theory 74, 1 (1999), 134–147.
- [11] SMYTH, C. The terms in Lucas sequences divisible by their indices. J. Integer Sequences 13 (2010), article 10.2.4, 18pp.

- [12] SOMER, L. Divisibility of terms in Lucas sequences by their subscripts. In Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992). Kluwer Acad. Publ., Dordrecht, 1993, pp. 515–525.
- [13] SOMER, L. Divisibility of terms in Lucas sequences of the second kind by their subscripts. In Applications of Fibonacci numbers, Vol. 6 (Pullman, WA, 1994). Kluwer Acad. Publ., Dordrecht, 1996, pp. 473–486.
- [14] WALSH, G. On integers n with the property $n \mid f_n$. 5pp., unpublished, 1986.
- [15] ZSIGMONDY, K. Zur Theorie der Potenzreste. Monatsh. Math. Phys. 3, 1 (1892), 265–284.