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Abstract
For given integers a, b and j ≥ 1 we determine the set R(j)

a,b of integers n for which
an − bn is divisible by nj . For j = 1, 2, this set is usually infinite; we determine
explicitly the exceptional cases for which a, b the set R(j)

a,b (j = 1, 2) is finite. For
j = 2, we use Zsigmondy’s Theorem for this. For j ≥ 3 and gcd(a, b) = 1, R(j)

a,b is
probably always finite; this seems difficult to prove, however.

We also show that determination of the set of integers n for which an + bn is
divisible by nj can be reduced to that of R(j)

a,b.

1. Introduction

Let a, b and j be fixed integers, with j ≥ 1. The aim of this paper is to find the set
R(j)

a,b of all positive integers n such that nj divides an − bn. For j = 1, 2, . . . , these
sets are clearly nested, with common intersection {1}. Our first results (Theorems
1 and 2) describe this set in the case that gcd(a, b) = 1. In Section 4 we describe
(Theorem 15) the set in the general situation where gcd(a, b) is unrestricted.

Theorem 1. Suppose that gcd(a, b) = 1. Then the elements of the set R(1)
a,b consist

of those integers n whose prime factorization can be written in the form

n = pk1
1 pk2

2 . . . pkr
r (p1 < p2 < · · · < pr, all ki ≥ 1), (1)

where pi | (ani − bni) (i = 1, . . . , r), with n1 = 1 and ni = pk1
1 pk2

2 . . . pki−1
i−1

(i = 2, . . . , r).

In this theorem, the ki are arbitrary positive integers. This result is a more
explicit version of that proved in Győry [5], where it was shown that if a − b > 1
then for any positive integer r the number of elements of R(1)

a,b having r prime
factors is infinite. The result is also essentially contained in [11], which described
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the indices n for which the generalized Fibonacci numbers un are divisible by n.
However, we present a self-contained proof in this paper.

On the other hand, for j ≥ 2, the exponents ki are more restricted.

Theorem 2. Suppose that gcd(a, b) = 1, and j ≥ 2. Then the elements of the set
R(j)

a,b consist of those integers n whose prime factorization can be written in the form
(1), where

p(j−1)k1
1 divides

{
a− b if p1 > 2;
lcm(a− b, a + b) if p1 = 2,

and p(j−1)ki

i | ani − bni , with ni = pk1
1 pk2

2 . . . pki−1
i−1 (i = 2, . . . , r).

Again, the result was essentially contained in [5], where it was proved that for
a− b > 1 and for any given r, there exists an n ∈ R(j)

a,b with r distinct prime factors.
Further, the number of these n is finite, and all of them can be determined. The
paper [5] was stimulated by a problem from the 31st International Mathematical
Olympiad, which asked for all those positive integers n > 1 for which 2n + 1 was
divisible by n2. (For the answer, see [5], or Theorem 16.)

Thus we see that construction of n ∈ R(j)
a,b depends upon finding a prime pi not

used previously with ani − bni being divisible by pj−1
i . This presents no problem

for j = 2, so that R(2)
a,b, as well as R(1)

a,b, are usually infinite. See Section 5 for de-
tails, including the exceptional cases when they are finite. However, for j ≥ 3 the
condition pj−1

i | ani − bni is only rarely satisfied. This suggests strongly that in
this case R(j)

a,b is always finite for gcd(a, b) = 1. This seems very difficult to prove,
even assuming the ABC Conjecture. A result of Ribenboim and Walsh [10] implies
that, under ABC, the powerful part of an − bn cannot often be large. But this is
not strong enough for what is needed here. On the other hand, R(j)

a,b (j ≥ 3) can be
made arbitrarily large by choosing a and b such that a − b is a powerful number.
For instance, choosing a = 1 + (q1q2 . . . qs)j−1 and b = 1, where q1, q2, . . . , qs are
distinct primes, then R(j)

a,b contains the 2s numbers qε1
1 qε2

2 . . . qεs
s where the εi are 0

or 1. See Example 6 in Section 7.

In the next section we give preliminary results needed for the proof of the the-
orems. We prove them in Section 3. In Section 4 we describe (Theorem 15) R(j)

a,b,
where gcd(a, b) is unrestricted. In Section 5 we find all a, b for which R(2)

a,b is finite
(Theorem 16). In Section 6 we discuss the divisibility of an + bn by powers of n. In
Section 7 we give some examples, and make some final remarks in Section 8.
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2. Preliminary Results

We first prove a version of Fermat’s Little Theorem that gives a little bit more
information in the case x ≡ 1 (mod p).

Lemma 3. For x ∈ Z and p an odd prime we have

xp−1 + xp−2 + · · ·+ x + 1 ≡
{

p (mod p2) if x ≡ 1 (mod p);
1 (mod p) otherwise .

(2)

Proof. If x ≡ 1 (mod p), say x = 1 + kp, then xj ≡ 1 + jkp (mod p2), so that

xp−1 + xp−2 + · · ·+ x + 1 ≡ p + kp
p−1∑

j=0

j ≡ p (mod p2). (3)

Otherwise
x(x− 1)(xp−2 + · · ·+ x + 1) = xp − x ≡ 0 (mod p), (4)

so that for x %≡ 1 (mod p) we have x(xp−2 + · · ·+ x + 1) ≡ 0 (mod p), and hence

xp−1 + xp−2 + · · ·+ x + 1 ≡ x(xp−2 + · · ·+ x + 1) + 1 ≡ 1 (mod p). (5)

The following is a result of Birkoff and Vandiver [2, Theorem III]. It is also special
case of Lucas [9, p. 210], as corrected for p = 2 by Carmichael [3, Theorem X].

Lemma 4. Let gcd(a, b) = 1 and p be prime with p | (a − b). Define t > 0 by
pt‖(a− b) for p > 2 and 2t‖ lcm(a− b, a + b) if p = 2. Then for " > 0

pt+"‖(ap!

− bp!

). (6)

On the other hand, if p ! a− b then for " ≥ 0

p ! a(p" − bp!

). (7)

Proof. Put x = a/b. First suppose that p is odd and pt‖a− b for some t > 0. Then
as gcd(a, b) = 1, b is not divisible by p, and we have x ≡ 1 (mod pt). Then from

ap − bp = (a− b)bp−1(xp−1 + xp−2 + · · ·+ x + 1) (8)
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we have by Lemma 3 that pt+1‖(ap − bp). Applying this result " times, we obtain
(6).

For p = 2, we have pt+1‖a2 − b2 and from a2 ≡ b2 ≡ 1 (mod 8), we obtain
21‖(a2 + b2), and so pt+2‖(a4 − b4). An easy induction then gives the required
result.

Now suppose that p ! (a − b). Since gcd(a, b) = 1, (7) clearly holds if p | a or
p | b, as must happen for p = 2. So we can assume that p is odd and p ! b. Then
x %≡ 1 (mod p) so that, by Lemma 3 and (8), we have p ! (ap − bp). Applying this
argument " times, we obtain (7).

For n ∈ R(j)
a,b, we now define the set P(j)

a,b(n) to be the set of all prime powers pk

for which npk ∈ R(j)
a,b. Our next result describes this set precisely. (Compare with

[11, Theorem 1(a)]).

Proposition 5. Suppose that j ≥ 1, gcd(a, b) = 1, n ∈ R(j)
a,b and

an − bn = 2e′2
∏

p>2

pep , n =
∏

p

pkp (9)

and define e2 by 2e2‖ lcm(an − bn, an + bn). Then

P(1)(n) =
⋃

p|an−bn

{pk, k ∈ N}, (10)

and for j ≥ 2

P(j)
a,b(n) =

⋃

p:pj−1|an−bn

{
pk : 1 ≤ k ≤

⌊
ep − jkp

j − 1

⌋}
. (11)

Note that e2 is never 1. Consequently, if 2m ∈ R(2)
a,b, where m is odd, then

4m ∈ R(2)
a,b. Also, 2 ∈ R(j)

a,b for j ≤ 3 when a− b is even.

Proof. Taking n ∈ R(j)
a,b we have, from (9) and the definition of e2, that jkp ≤ ep

for all primes p. Hence, applying Lemma 4 with a, b replaced by an, bn we have for
p dividing an − bn that for " > 0

pep+"‖(anp!

− bnp!

). (12)

So (np")j | (anp! − bnp!
) is equivalent to j(kp + ") ≤ ep + ", or (j − 1)" ≤ ep − jkp.

Thus we obtain (10) for j ≥ 2, with " unrestricted for j = 1, giving (10).
On the other hand, if p ! (an − bn), then by Lemma 4 again, p" ! (anp! − bnp!

),
so that certainly (np")j ! (anp! − bnp!

).
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We now recall some facts about the order function ord. For m an integer greater
than 1 and x an integer prime to m, we define ordm(x), the order of x modulo m, to
be the least positive integer h such that xh ≡ 1 (mod m). The next three lemmas,
containing standard material on the ord function, are included for completeness.

Lemma 6. For x ∈ N and prime to m, we have m | (xn − 1) if and only if
ordm(x) | n.

Proof. Let ordm(x) = h, and assume that m | (xn − 1). Then as m | (xh − 1), also
m | (xgcd(h,n) − 1). By the minimality of h, gcd(h, n) = h, i.e., h | n. Conversely, if
h | n then (xh − 1) | (xn − 1), so that m | (xn − 1).

Corollary 7. Let j ≥ 1. We have nj | (xn − 1) if and only if gcd(x, n) = 1 and
ordnj (x) | n.

Lemma 8. For m =
∏

p pfp and x ∈ N and prime to m we have

ordm(x) = lcmp ordpfp (x). (13)

Proof. Put hp = ordpfp (x), h = ordm(x) and h′ = lcmp hp. Then by Lemma 6 we
have pfp | (xh′ − 1) for all p, and hence m | (xh′ − 1). Hence h | h′. On the other
hand, as pfp | n and m | (xh − 1), we have pfp | (xh − 1), and so hp | h, by Lemma
6. Hence h′ = lcmp hp | h.

Now put p∗ = ordp(x), and define t > 0 by pt‖(xp∗ − 1).

Lemma 9. For gcd(x, n) = 1 and " > 0 we have p∗ | (p − 1) and ordp!(x) =
pmax("−t,0)p∗.

Proof. Since p | (xp−1 − 1), we have p∗ | (p − 1), by Lemma 6. Also, from p" |
(xordp! (x)− 1) we have p | (xordp! (x)− 1), and so, by Lemma 6 again, p∗ = ordp(x) |
ordp!(x). Further, if " ≤ t then from p" | (xp∗ − 1) we have by Lemma 6 that
ordp!(x) | p∗, so ordp!(x) = p∗. Further, by Lemma 4 for u ≥ t

pu‖(xpu−tp∗ − 1), (14)

so that, taking u = " ≥ t and using Lemma 6, ordp!(x) | p"−tp∗. Also, if t ≤ u < ",
then, from (14), xpt−up∗ %≡ 1 (mod p"). Hence ordp!(x) = p"−tp∗ for " ≥ t.



INTEGERS: 10 (2010) 324

Corollary 10. Let j ≥ 1. For n =
∏

p pkp and x ∈ N prime to n we have nj | xn−1
if and only if gcd(x, n) = 1 and

lcmp pk′pp∗ |
∏

p

pkp . (15)

Here the k′p = max(jkp − tp, 0) are integers with tp > 0.

Note that p∗, k′p and tp in general depend on x and j as well as on p.

What we actually need in our situation is the following variant of Corollary 10.

Corollary 11. Let j ≥ 1. For n =
∏

p pkp and integers a, b with gcd(a, b) = 1 we
have nj | an − bn if and only if gcd(n, a) = gcd(n, b) = 1 and

lcmp pk′pp∗ |
∏

p

pkp . (16)

Here the k′p = max(jkp − tp, 0) are integers with tp > 0.

In this corollary, the x used to define p∗ and t = tp (see after Lemma 8) is cho-
sen to satisfy bx ≡ a (mod nj). The result is then easily deduced from Corollary 10.

By contrast with Proposition 5, our next proposition allows us to divide an
element n ∈ R(j)

a,b by a prime, and remain within R(j)
a,b.

Proposition 12. Let n ∈ R(j)
a,b with n > 1, and suppose that pmax is the largest

prime factor of n. Then n/pmax ∈ R(j)
a,b.

Proof. Suppose n ∈ R(j)
a,b, so that (15) holds, with x = a/b, and put q = pmax.

Then, since for every p all prime factors of p∗ are less than p, the only possible
term on the left-hand side that divides qkq on the right-hand side is the term qk′q .
Now reducing kq by 1 will reduce k′q by at least 1, unless it is already 0, when it
does not change. In either case (15) will still hold with n replaced by n/q, and so
n/q ∈ R(j)

a,b.

Various versions and special cases of Proposition 12 for j = 1 have been known
for some time, in the more general setting of Lucas sequences, due to Somer [12,
Theorem 5(iv)], Jarden [7, Theorem E], Hoggatt and Bergum [6], Walsh [14], André-
Jeannin [1] and others. See also Smyth [11, Theorem 3].

In order to work out for which a, b the set R(j)
a,b is finite, we need the following

classical result. Recall that an− bn is said to have a primitive prime divisor p if the
prime p divides an − bn but does not divide ak − bk for any k with 1 ≤ k < n.
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Theorem 13 (Zsigmondy [15]). Suppose that a and b are nonzero coprime integers
with a > b and a + b > 0. Then, except when

• n = 2 and a + b is a power of 2

or

• n = 3, a = 2, b = −1

or

• n = 6, a = 2, b = 1,

an − bn has a primitive prime divisor.

(Note that in this statement we have allowed b to be negative, as did Zsigmondy.
His theorem is nowadays often quoted with the restriction a > b > 0 and so has the
second exceptional case omitted.)

3. Proof of Theorems 1 and 2

Let n ∈ R(j)
a,b have a factorisation (1), where p1 < p2 < · · · < pr and all ki > 0.

First take j ≥ 1. Then, by Proposition 12, n/pkr
r = nr ∈ R(j)

a,b, and hence

(n/pkr
r )/pkr−1

r−1 = nr−1, . . . , pk1
1 = n2, 1 = n1

are all in R(j)
a,b. Now separate the two cases j = 1 and j ≥ 2 for Theorems 1 and 2

respectively. Now for j = 1 Proposition 5 gives us that pi | ani − bni (i = 1, . . . , r),
while for j ≥ 2 we have, again from Proposition 5, that

p(j−1)k1
1 divides

{
a− b if p1 > 2;
lcm(a− b, a + b) if p1 = 2,

and p(j−1)ki

i | ani−bni (i = 2, . . . , r). Here we have used the fact that gcd(pi, ni) = 1,
so that if pki

i | (ani − bni)/n2
i then pki

i | ani − bni (i.e., we are applying Proposition
5 with all the exponents kp equal to 0.)

4. Finding R(j)
a,b When gcd(a, b) > 1.

For a > 1, define the set Fa to be the set of all n ∈ N whose prime factors all divide
a. To find R(j)

a,b in general, we first consider the case b = 0.
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Proposition 14. We have R(1)
a,0 = R(2)

a,0 = Fa, while for j ≥ 3 the set R(j)
a,0 =

Fa \ S(j)
a , where S(j)

a is a finite set.

Proof. From the condition nj | an, all prime factors of n divide a, so R(j)
a,0 ⊂ Fa, say

R(j)
a,0 = Fa \S(j)

a . We need to prove that S(j)
a is finite. Suppose that a = pa1

1 . . . par
r ,

with p1 the smallest prime factor of a. Then n = pk1
1 . . . pkr

r for some ki ≥ 0. From
nj | an we have

ki ≤
ai

j
pk1
1 . . . pkr

r (i = 1, . . . , r). (17)

For these r conditions to be satisfied it is sufficient that

r∑

i=1

ki ≤
minr

i=1 ai

j
p

∑r
i=1 ki

1 . (18)

Now (18) holds if j = 1 or 2, as in this case, from the simple inequality k ≤ 2k−1

valid for all k ∈ N, we have

r∑

i=1

ki ≤
1
2
2

∑r
i=1 ki ≤ minr

i=1 ai

j
p

∑r
i=1 ki

1 . (19)

Hence S(j)
a is empty if j = 1 or 2.

Now take j ≥ 3, and let K = K(j)
a be the smallest integer such that Kp−K

1 ≤
(minr

i=1 ai)/j. Then (18) holds for
∑r

i=1 ki ≥ K, and S(j)
a is contained in the finite

set S′′ = {n ∈ N, n = pk1
1 . . . pkr

r :
∑r

i=1 ki < K}. (To compute S(j)
a precisely,

one need just check for which r-tuples (k1, . . . , kr) with
∑r

i=1 ki < K any of the r
inequalities of (17) is violated.)

One (at first sight) curious consequence of the equality R(1)
a,0 = R(2)

a,0 above is that
n | an implies n2 | an.

Now let g = gcd(a, b) and a = a1g, b = b1g. Write n = Gn1, where all prime
factors of G divide g and gcd(n1, g) = 1. Then we have the following general result.

Theorem 15. The set R(j)
a,b is given by

R(j)
a,b = {n = Gn1 : G ∈ Fg, n1 ∈ R(j)

aG
1 ,bG

1
and gcd(g, n1) = 1} \R, (20)
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where R is a finite set. Specifically, all n = Gn1 ∈ R have 1 ≤ n1 < j/2 and

G = q"1
1 . . . q"m

m , (21)

where
m∑

i=1

"i < K(j)
gn1 . (22)

Here the qi are the primes dividing g, and K(j)
gn1 is the constant in the proof of

Proposition 14 above.

Proof. Supposing that n ∈ R(j)
a,b we have

nj | an − bn (23)

and so nj | gn(an
1 − bn

1 ). Writing n = Gn1, as above, we have

nj
1 | (aG

1 )n1 − (bG
1 )n1 (24)

and
Gj | gGn1

(
(aG

1 )n1 − (bG
1 )n1

)
. (25)

Thus (23) holds with n, a, b replaced by n1, aG
1 , bG

1 . So we have reduced the problem
of (23) to a case where gcd(a, b) = 1, which we can solve for n1 prime to g, along
with the extra condition (25). Now, from the fact that R(2)

g,0 = Fg from Proposition
14, we have G2 | gG and hence Gj | gGn1 for all G ∈ Fg , provided that n1 ≥ j/2.
Hence (25) can fail to hold for all G ∈ Fg only for 1 ≤ n1 < j/2.

Now fix n1 with 1 ≤ n1 < j/2. Then note that by Proposition 14, Gj | gGn1 and
hence (23) holds for all G ∈ Fgn1 \S, where S is a finite set of G’s contained in the
set of all G’s given by (21) and (22).

Note that (taking n1 = 1 and using (25)) we always have R(j)
g,0 ⊂ R(j)

a,b. See
example in Section 7.

5. When Are R(1)
a,b and R(2)

a,b Finite?

First consider R(1)
a,b. From Theorem 1 it is immediate that R(1)

a,b contains all powers
of any primes dividing a− b. Thus R(1)

a,b is infinite unless a− b = ±1, in which case
R(1)

a,b = {1}. This was pointed out earlier by André-Jeannin [1, Corollary 4].

Next, take j = 2. Let us denote by P(2)
a,b the set of primes that divide some

n ∈ R(2)
a,b and, as before, put g = gcd(a, b).
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Theorem 16. The set R(2)
a,b = {1} if and only if a and b are consecutive integers,

and R(2)
a,b = {1, 3} if and only if ab = −2. Otherwise, R(2)

a,b is infinite.

If R(2)
a/g,b/g = {1} (respectively, = {1, 3}) then P(2)

a,b is the set of all prime divisors

of g (respectively, 3g). Otherwise P(2)
a,b is infinite.

For coprime positive integers a, b with a− b > 1, the infiniteness of R(2)
a,b already

follows from the above-mentioned results of [5].

The application of Zsigmondy’s Theorem that we require is the following.

Proposition 17. If R(2)
a,b contains some integer n ≥ 4 then both R(2)

a,b and P(2)
a,b are

infinite sets.

Proof. First note that if a = 2, b = 1 (or more generally a − b = ±1) then by
Theorem 2, R(2) = {1}. Hence, taking n ∈ R(2)

a,b with n ≥ 4 we have, by Zsig-
mondy’s Theorem, that an − bn has a primitive prime divisor, p say. Now if p | n
then, by applying Proposition 12 as many times as necessary we find p | n′, where
n′ ∈ R(2)

a,b and now p is the maximal prime divisor of n′. Hence, by Proposition 12
again, n′′ = n′/p ∈ R(2)

a,b and so, from n′ = pn′′ and Proposition 5 we have that
p | an′′ − bn′′ , contradicting the primitivity of p.

Now using Proposition 5 again, np ∈ R(2)
a,b. Repeating the argument with n

replaced by np and continuing in this way we obtain an infinite sequence

n, np, npp1, npp1p2, . . . , npp1p2 . . . p", . . .

of elements of R(2)
a,b, where p < p1 < p2 < · · · < p" < . . . are primes.

Proof of Theorem 16. Assume gcd(a, b) = 1, and, without loss of generality, that
a > 0 and a > b. (We can ensure this by interchanging a and b and/or changing
both their signs.) If a−b is even, then a and b are odd, and a2−b2 ≡ 1 (mod 2t+1),
where t ≥ 2. Hence 4 ∈ R(2)

a,b, by Proposition 5, and so both R(2)
a,b and P(2)

a,b are
infinite sets, by Proposition 17.

If a− b = 1 then R(2) = {1}, as we have just seen, above.

If a − b is odd and at least 5, then a − b must either be divisible by 9 or by a
prime p ≥ 5. Hence 9 or p belong to R(2)

a,b, by Proposition 5, and again both R(2)
a,b

and P(2)
a,b are infinite sets, by Proposition 17.

If a − b = 3 then 3 ∈ R(2)
a,b, and a3 − b3 = 9(b2 + 3b + 3). If b = −1

(and a = 2, ab = −2) or −2 (and a = 1, ab = −2) then a3 − b3 = 9 and
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so, by Theorem 2, so R(2) = {1, 3}. Otherwise, using gcd(a, b) = 1 we see that
a3 − b3 ≥ 5, and so the argument for a − b ≥ 5 but with a, b replaced by a3, b3

applies.

6. The Powers of n Dividing an + bn

Define R(j)+
a,b to be the set {n ∈ N : nj divides an + bn}. Take j ≥ 1, and assume

that gcd(a, b) = 1. (The general case gcd(a, b) ≥ 1 can be handled as in Section 4.)
We then have the following result.

Theorem 18. Suppose that j ≥ 1, gcd(a, b) = 1, a > 0 and a ≥ |b|. Then

(a) R(1)+
a,b consists of the odd elements of R(1)

a,−b, along with the numbers of the
form 2n1, where n1 is an odd element of R(1)

a2,−b2 ;

(b) If j ≥ 2 the set R(j)+
a,b consists of the odd elements of R(j)

a,−b only .

Furthermore, for j = 1 and 2, the set R(j)+
a,b is infinite, except in the following cases:

• If a + b is 1 or a power of 2, (j, a, b) %= (1, 1, 1), when it is {1};

• R(1)+
1,1 = {1, 2};

• R(2)+
2,1 = {1, 3}.

Proof. If n is even and j ≥ 2, or if 4 | n and j = 1, then nj | an + bn implies that
4 | an + bn, contradicting the fact that, as a and b are not both even, an + bn ≡ 1
or 2 (mod 8). So either

• n is odd, in which case nj | an + bn is equivalent to finding the odd elements
of the set R(j)

a,−b;

or

• j = 1 and n = 2n1, where n1 is odd, and belongs to R(1)
a2,−b2 .

Now suppose that j = 1 or 2. If a + b is ±1 or ±2i for some i > 0, then, by
Theorem 2, all n ∈ R(j)

a,−b with n > 1 are even, so for j = 2 there are no n > 1 with
nj | an + bn in this case. Otherwise, a + b will have an odd prime factor, and so
at least one odd element greater than 1. By Theorem 16 and its proof, we see that
R(2)

a,−b will have infinitely many odd elements unless a(−b) = −2, i.e., a = 2, b = 1
(using a > 0 and a ≥ |b|).
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For j = 1 there will be infinitely many n with n | an + bn, except when both
a+ b and a2 + b2 are 1 or a power of 2. It is an easy exercise to check that, this can
happen only for a = b = 1 or a = 1, b = 0.

If g = gcd(a, b) > 1, then, since R(j)+
a,b contains the set R(j)

g,0, it will be infinite, by
Proposition 14. For j ≥ 3 and gcd(a, b) = 1, the finiteness of the set R(j)+

a,b would
follow from the finiteness of R(j)

a,b, using Theorem 16(b).

7. Examples

The set R(j)
a,b has a natural labelled, directed-graph structure, as follows: take the

vertices to be the elements of R(j)
a,b, and join a vertex n to a vertex np as n →p np,

where p ∈ P(j)
a,b(n). We reduce this to a spanning tree of this graph by taking only

those edges n →p np for which p is the largest prime factor of np. For our first
example we draw this tree (Figure 1).

1. Consider the set

R(2)
3,1 ={1, 2, 4, 20, 220, 1220, 2420, 5060, 13420, 14740, 23620, 55660,

145420, 147620, 162140, 237820, 259820, 290620, 308660,
339020, 447740, 847220, 899140, 1210220, . . . }

(sequence A127103 in Neil Sloane’s Integer Sequences website). Now

320 − 1 = 24 · 52 · 112 · 61 · 1181,

showing that P(2)
3,1 (20) = {11, 112, 61, 1181}. Also

3220 − 1 = 24 · 52 · 113 · 23 · 61 · 67 · 661 · 1181 · 1321 · 3851 · 5501
· 177101 · 570461 · 659671 · 24472341743191 · 560088668384411
· 927319729649066047885192700193701,

so that the elements of P(2)
3,1 (220) less than 106/220, needed for Figure 1, are

11, 23, 61, 67, 661, 1181, 1321, 3851.
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Figure 1: Part of the spanning tree for R(2)
3,1, showing all elements below 106.

2. Now
R(2)

5,−1 = {1, 2, 3, 4, 6, 12, 21, 42, 52, 84, 156, 186, 372, . . . },

whose odd elements give

R(2)+
5,−1 = {1, 3, 21, 609, 903, 2667, 9429, 26187, . . . }.

See Section 6.

3. We have
R(2)+

3,2 = R(2)
3,−2 = {1, 5, 55, 1971145, . . . },

as all elements of R(2)
3,−2 are odd. Although this set is infinite by Theorem 16,

the next term is 1971145p where p is the smallest prime factor of 31971145 +
21971145 not dividing 1971145. This looks difficult to compute, as it could be
very large.

4. We have
R(2)

4,−3 = R(2)+
4,3 = {1, 7, 2653, . . . }.

Again, this set is infinite, but here only the three terms given are readily
computable. The next term is 2653p where p is the smallest prime factor of
42653 + 32653 not dividing 2653.

5. This is an example of a set with more than one odd prime as a squared factor
in elements of the set, in this case the primes 3 and 7. Every element greater
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than 9 is of one of the forms 21m, 63m, 147m, or 441m, where m is prime to
21;

R(2)
11,2 ={1, 3, 9, 21, 63, 147, 441, 609, 1827, 4137, 4263, 7959,

8001, 12411, 12789, 23877, 28959, 35931, 55713, 56007,
86877, 107793, 119973, 167139, 212541, 216237, 230811,
232029, 251517, 359919, 389403, . . . }.

6. R(4)
27001,1 = {1, 2, 3, 5, 6, 10, 15, 30}. This is because 27001 − 1 = 23 · 33 · 53,

and none of 27001n − 1 has a factor p3 for any prime p > 5 for any n =
1, 2, 3, 5, 6, 10, 15, 30.

7. R(3)
19,1 = {1, 2, 3, 6, 42, 1806}? Is this the entire set? Yes, unless 191806 − 1 is

divisible by p2 for some prime p prime to 1806, in which case 1806p would
also be in the set. But determining whether or not this is the case seems to
be a hard computational problem.

8. R(4)
56,2, an example with gcd(a, b) > 1. It seems highly probable that

R(4)
56,2 = (F2 \ {2, 4, 8}) ∪ (3F2)

= 1, 3, 6, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, . . . .

However, in order to prove this, Theorem 15 tells us that we need to know
that 282! %≡ 1 (mod p3) for every prime p > 3 and every " > 0. This seems
very difficult! Note that R(4)

2,0 = F2 \ {2, 4, 8} and R(4)
28,1 = {1, 3}.

8. Final Remarks

1. By finding R(j)
a,b, we are essentially solving the exponential Diophantine equa-

tion xjy = ax − bx, since any solutions with x ≤ 0 are readily found.

2. It is known that

R(1)
a,b =

{
n ∈ N : n divides

an − bn

a− b

}
.

See [11, Proposition 12] (and also André-Jeannin [1, Theorem 2] for some
special cases.) This result shows that R(1)

a,b = {n ∈ N : n divides un}, where
the un are the generalized Fibonacci numbers of the first kind defined by the
recurrence u0 = 1, u1 = 1, and un+2 = (a + b)un+1 − abun (n ≥ 0). This
provides a link between Theorem 1 of the present paper and the results of
[11].
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The set R(1)+
a,b is a special case of a set {n ∈ N : n divides vn}, also studied in

[11]. Here (vn) is the sequence of generalized Fibonacci numbers of the second
kind. For earlier work on this topic see Somer [13].

3. Earlier and related work. The study of factors of an − bn dates back at least
to Euler, who proved that all primitive prime factors of an − bn were ≡ 1
(mod n). See [2, Theorem 1]. Chapter 16 of Dickson [4] is devoted to the
literature on factors of an ± bn.

More specifically, Kennedy and Cooper [8] studied the set R(1)
10,1. André-

Jeannin [1, Corollary 4] claimed (erroneously – see Theorem 18) that the
congruence an + bn ≡ 0 (mod n) always has infinitely many solutions n for
gcd(a, b) = 1.

References
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