ON THE LEAST COMMON MULTIPLE OF Q-BINOMIAL COEFFICIENTS

Victor J. W. Guo ${ }^{1}$
Department of Mathematics, East China Normal University, Shanghai 200062, People's Republic of China
jwguo@math.ecnu.edu.cn

Received: 1/11/10, Accepted: 3/16/10, Published: 7/19/10

Abstract

We first prove the following identity $$
\operatorname{lcm}\left(\left[\begin{array}{l} n \\ 0 \end{array}\right]_{q},\left[\begin{array}{l} n \\ 1 \end{array}\right]_{q}, \ldots,\left[\begin{array}{l} n \\ n \end{array}\right]_{q}\right)=\frac{\operatorname{lcm}\left([1]_{q},[2]_{q}, \ldots,[n+1]_{q}\right)}{[n+1]_{q}}
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ denotes the q-binomial coefficient and $[n]_{q}=\frac{1-q^{n}}{1-q}$. Then we show that this identity is indeed a q-analogue of that of B. Farhi.

1. Introduction

An equivalent form of the prime number theorem states that $\log \operatorname{lcm}(1,2, \ldots, n) \sim n$ as $n \rightarrow \infty$ (see, for example, [4]). Nair [7] gave a nice proof for the well-known estimate $\operatorname{lcm}\{1,2, \ldots, n\} \geq 2^{n-1}$, while Hanson [3] already obtained $\operatorname{lcm}\{1,2, \ldots, n\} \leq$ 3^{n}. Recently, Farhi [1] established the following interesting result.

Theorem 1 (Farhi) For any positive integer n, there holds

$$
\begin{equation*}
\operatorname{lcm}\left(\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}\right)=\frac{\operatorname{lcm}(1,2, \ldots, n+1)}{n+1} \tag{1}
\end{equation*}
$$

As an application, Farhi shows that the inequality $\operatorname{lcm}\{1,2, \ldots, n\} \geq 2^{n-1}$ follows immediately from (1).

[^0]The purpose of this note is to give a q-analogue of (1) by using cyclotomic polynomials. Recall that a natural q-analogue of the nonnegative integer n is given by $[n]_{q}=\frac{1-q^{n}}{1-q}$. The corresponding q-factorial is $[n]_{q}!=\prod_{k=1}^{n}[k]_{q}$ and the q binomial coefficient $\left[\begin{array}{c}M \\ N\end{array}\right]_{q}$ is defined as

$$
\left[\begin{array}{c}
M \\
N
\end{array}\right]_{q}= \begin{cases}\frac{[M]_{q}!}{[N]_{q}![M-N]_{q}!}, & \text { if } 0 \leq N \leq M \\
0, & \text { otherwise }\end{cases}
$$

Let lcm also denote the least common multiple of a sequence of polynomials in $\mathbb{Z}[q]$. Our main results can be stated as follows:

Theorem 2 For any positive integer n, there holds

$$
\operatorname{lcm}\left(\left[\begin{array}{l}
n \tag{2}\\
0
\end{array}\right]_{q},\left[\begin{array}{l}
n \\
1
\end{array}\right]_{q}, \ldots,\left[\begin{array}{l}
n \\
n
\end{array}\right]_{q}\right)=\frac{\operatorname{lcm}\left([1]_{q},[2]_{q}, \ldots,[n+1]_{q}\right)}{[n+1]_{q}}
$$

Theorem 3 The identity (2) is a q-analogue of Farhi's identity (1), i.e.,

$$
\lim _{q \rightarrow 1} \operatorname{lcm}\left(\left[\begin{array}{l}
n \tag{3}\\
0
\end{array}\right]_{q},\left[\begin{array}{c}
n \\
1
\end{array}\right]_{q}, \ldots,\left[\begin{array}{l}
n \\
n
\end{array}\right]_{q}\right)=\operatorname{lcm}\left(\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}\right)
$$

and

$$
\begin{equation*}
\lim _{q \rightarrow 1} \frac{\operatorname{lcm}\left([1]_{q},[2]_{q}, \ldots,[n+1]_{q}\right)}{[n+1]_{q}}=\frac{\operatorname{lcm}(1,2, \ldots, n+1)}{n+1} \tag{4}
\end{equation*}
$$

Although it is clear that

$$
\lim _{q \rightarrow 1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\binom{n}{k}
$$

the identities (3) and (4) are not trivial. For example, we have

$$
4=\lim _{q \rightarrow 1} \operatorname{lcm}\left(1+q, 1+q^{2}\right) \neq \operatorname{lcm}\left(\lim _{q \rightarrow 1}(1+q), \lim _{q \rightarrow 1}\left(1+q^{2}\right)\right)=2
$$

2. Proof of Theorem 2

Let $\Phi_{n}(x)$ be the n-th cyclotomic polynomial. The following easily proved result can be found in $[5,(10)]$ and $[2]$.

Lemma 4 The q-binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ can be factorized into

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\prod_{d} \Phi_{d}(q)
$$

where the product is over all positive integers $d \leq n$ such that $\lfloor k / d\rfloor+\lfloor(n-k) / d\rfloor<$ $\lfloor n / d\rfloor$.

Lemma 5 Let n and d be two positive integers with $n \geq d$. Then there exists at least one positive integer k such that

$$
\begin{equation*}
\lfloor k / d\rfloor+\lfloor(n-k) / d\rfloor<\lfloor n / d\rfloor \tag{5}
\end{equation*}
$$

if and only if d does not divide $n+1$.
Proof. Suppose that (5) holds for some positive integer k. Let

$$
k \equiv a \quad(\bmod d), \quad(n-k) \equiv b \quad(\bmod d)
$$

for some $1 \leq a, b \leq d-1$. Then $n \equiv a+b(\bmod d)$ and $d \leq a+b \leq 2 d-2$. Namely, $n+1 \equiv a+b+1 \not \equiv 0(\bmod d)$. Conversely, suppose that $n+1 \equiv c(\bmod d)$ for some $1 \leq c \leq d-1$. Then $k=c$ satisfies (5). This completes the proof.
Proof of Theorem 2. By Lemma 4, we have

$$
\operatorname{lcm}\left(\left[\begin{array}{l}
n \tag{6}\\
0
\end{array}\right]_{q},\left[\begin{array}{l}
n \\
1
\end{array}\right]_{q}, \ldots,\left[\begin{array}{l}
n \\
n
\end{array}\right]_{q}\right)=\prod_{d} \Phi_{d}(q)
$$

where the product is over all positive integers $d \leq n$ such that for some $k(1 \leq k \leq n)$ there holds $\lfloor k / d\rfloor+\lfloor(n-k) / d\rfloor<\lfloor n / d\rfloor$. On the other hand, since

$$
[k]_{q}=\frac{q^{k}-1}{q-1}=\prod_{d \mid k, d>1} \Phi_{d}(q)
$$

we have

$$
\begin{equation*}
\frac{\operatorname{lcm}\left([1]_{q},[2]_{q}, \ldots,[n+1]_{q}\right)}{[n+1]_{q}}=\prod_{d \leq n, d \nmid(n+1)} \Phi_{d}(q) . \tag{7}
\end{equation*}
$$

By Lemma 5, one sees that the right-hand sides of (6) and (7) are equal. This proves the theorem.

3. Proof of Theorem 3

We need the following property.
Lemma 6 For any positive integer n, there holds

$$
\Phi_{n}(1)= \begin{cases}p, & \text { if } n=p^{r} \text { is a prime power } \\ 1, & \text { otherwise }\end{cases}
$$

Proof. See for example [6, p. 160].
In view of (6), we have

$$
\lim _{q \rightarrow 1} \operatorname{lcm}\left(\left[\begin{array}{c}
n \tag{8}\\
0
\end{array}\right]_{q},\left[\begin{array}{c}
n \\
1
\end{array}\right]_{q}, \ldots,\left[\begin{array}{l}
n \\
n
\end{array}\right]_{q}\right)=\prod_{d} \Phi_{d}(1)
$$

where the product is over all positive integers $d \leq n$ such that for some $k(1 \leq k \leq n)$ there holds $\lfloor k / d\rfloor+\lfloor(n-k) / d\rfloor<\lfloor n / d\rfloor$. By Lemma 6, the right-hand side of (8) can be written as

$$
\begin{equation*}
\prod_{\text {primes } p \leq n} p^{\sum_{r=1}^{\infty} \max _{0 \leq k \leq n}\left\{\left\lfloor n / p^{r}\right\rfloor-\left\lfloor k / p^{r}\right\rfloor-\left\lfloor(n-k) / p^{r}\right\rfloor\right\}} \tag{9}
\end{equation*}
$$

We now claim that

$$
\begin{align*}
& \sum_{r=1}^{\infty} \max _{0 \leq k \leq n}\left\{\left\lfloor n / p^{r}\right\rfloor-\left\lfloor k / p^{r}\right\rfloor-\left\lfloor(n-k) / p^{r}\right\rfloor\right\} \\
& \quad=\max _{0 \leq k \leq n} \sum_{r=1}^{\infty}\left(\left\lfloor n / p^{r}\right\rfloor-\left\lfloor k / p^{r}\right\rfloor-\left\lfloor(n-k) / p^{r}\right\rfloor\right) \tag{10}
\end{align*}
$$

Let $n=\sum_{i=0}^{M} a_{i} p^{i}$, where $0 \leq a_{0}, a_{1}, \ldots, a_{M} \leq p-1$ and $a_{M} \neq 0$. By Lemma 5 , the left-hand side of (10) (denoted LHS(10)) is equal to the number of r 's such that $p^{r} \leq n$ and $p^{r} \nmid n+1$. It follows that

$$
L H S(10)= \begin{cases}0, & \text { if } n=p^{M+1}-1 \\ M-\min \left\{i: a_{i} \neq p-1\right\}, & \text { otherwise }\end{cases}
$$

It is clear that the right-hand side of (10) is less than or equal to LHS(10). If $n=p^{M+1}-1$, then both sides of (10) are equal to 0 . Assume that $n \neq p^{M+1}-1$ and $i_{0}=\min \left\{i: a_{i} \neq p-1\right\}$. Taking $k=p^{M}-1$, we have

$$
\left\lfloor n / p^{r}\right\rfloor-\left\lfloor k / p^{r}\right\rfloor-\left\lfloor(n-k) / p^{r}\right\rfloor= \begin{cases}0, & \text { if } r=1, \ldots, i_{0}, \\ 1, & \text { if } r=i_{0}+1, \ldots, M\end{cases}
$$

and so

$$
\sum_{r=1}^{\infty}\left(\left\lfloor n / p^{r}\right\rfloor-\left\lfloor k / p^{r}\right\rfloor-\left\lfloor(n-k) / p^{r}\right\rfloor\right)=M-i_{0}
$$

Thus (10) holds. Namely, the expression (9) is equal to

$$
\begin{aligned}
& \prod_{\text {primes } p \leq n} p^{\max _{0 \leq k \leq n} \sum_{r=1}^{\infty}\left(\left\lfloor n / p^{r}\right\rfloor-\left\lfloor k / p^{r}\right\rfloor-\left\lfloor(n-k) / p^{r}\right\rfloor\right)} \\
& =\operatorname{lcm}\left(\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}\right)
\end{aligned}
$$

This proves (3). To prove (4), we apply (7) to get

$$
\lim _{q \rightarrow 1} \frac{\operatorname{lcm}\left([1]_{q},[2]_{q}, \ldots,[n+1]_{q}\right)}{[n+1]_{q}}=\prod_{d \leq n, d \nmid(n+1)} \Phi_{d}(1),
$$

which, by Lemma 6, is clearly equal to

$$
\frac{\operatorname{lcm}(1,2, \ldots, n+1)}{n+1}
$$

Finally, we mention that (10) has the following interesting conclusion.
Corollary 7 Let p be a prime number and let $k_{1}, k_{2}, \ldots, k_{m} \leq n, r_{1}<r_{2}<\cdots<$ r_{m} be positive integers such that

$$
\left\lfloor n / p^{r_{i}}\right\rfloor-\left\lfloor k_{i} / p^{r_{i}}\right\rfloor-\left\lfloor\left(n-k_{i}\right) / p^{r_{i}}\right\rfloor=1 \quad \text { for } i=1,2, \ldots, m
$$

Then there exists a positive integer $k \leq n$ such that

$$
\left\lfloor n / p^{r_{i}}\right\rfloor-\left\lfloor k / p^{r_{i}}\right\rfloor-\left\lfloor(n-k) / p^{r_{i}}\right\rfloor=1 \quad \text { for } i=1,2, \ldots, m
$$

References

[1] B. Farhi, An identity involving the least common multiple of binomial coefficients and its application, Amer. Math. Monthly 116 (2009), 836-839.
[2] V.J.W. Guo and J. Zeng, Some arithmetic properties of the q-Euler numbers and q-Salié numbers, European J. Combin. 27 (2006), 884-895.
[3] D. Hanson, On the product of primes, Canad. Math. Bull. 15 (1972), 33-37.
[4] G.H. Hardy and E.M. Wright, The Theory of Numbers, 5th Ed., Oxford University Press, London, 1979.
[5] D. Knuth and H. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math. 396 (1989), 212-219.
[6] T. Nagell, Introduction to Number Theory, Wiley, New York, 1951.
[7] M. Nair, On Chebyshev-type inequalities for primes, Amer. Math. Monthly 89 (1982), 126129.

[^0]: ${ }^{1}$ This work was partially supported by Shanghai Educational Development Foundation under the Chenguang Project (\#2007CG29), Shanghai Rising-Star Program (\#09QA1401700), Shanghai Leading Academic Discipline Project (\#B407), and the National Science Foundation of China (\#10801054).

