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Abstract
In this article we prove a result about sets of coefficients of cyclotomic polynomials.
We then give corollaries related to flat cyclotomic polynomials and establish the
first known infinite family of flat cyclotomic polynomials of order four. We end
with some questions related to flat cyclotomic polynomials of order four and five.

1. Introduction

The nth cyclotomic polynomial is the monic polynomial whose roots are the prim-
itive nth roots of unity. It is defined by

Φn(x) =
n∏

a=1
(a,n)=1

(x− e2πia/n).

The degree of Φn is φ(n), where φ is the Euler totient function. We say that the
order of a cyclotomic polynomial is the number of odd primes dividing n.

We can factor
xn − 1 =

∏

d|n

Φd(x).

The following proposition allows us to focus on odd squarefree values of n for the
rest of the paper. See [8] for a proof of this and for other general results about
cyclotomic polynomials.

Proposition 1. Let p be a prime.
If p | n then Φpn(x) = Φn(xp).
If p ! n then Φpn(x) = Φn(xp)/Φn(x).
If n > 1 is odd then Φ2n(x) = Φn(−x).
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Let Φn(x) =
∑φ(n)

k=0 an(k)xk. We put an(k) = 0 if k < 0 or k > φ(n). Let Vn =
{an(k) : 0 ≤ k ≤ φ(n)} denote the set of coefficients of Φn(x). It is easy to verify
from the definition of Φn(x) that for n > 1, Φn(x) = xφ(n)Φn(x−1). This implies
that for n > 1, Vn = {an(k) : 0 ≤ k ≤ φ(n)

2 }. We say that A(n) = max
k

{|an(k)|} is
the height of Φn(x). Several recent papers have studied n for which A(n) is large,
for example, [1, 6]. It is also interesting to attempt to classify n such that A(n) is
small. If A(n) = 1 we say that Φn(x) is flat. It is easy to show that, for odd primes
p < q, we have V (p) = {1} and V (pq) = {−1, 0, 1} and therefore A(p) = A(pq) = 1.
Bachman gave the first infinite family of flat cyclotomic polynomials of order three
[3], and this family was expanded by Kaplan [7], who proved the following.

Theorem 2. ([7]) Let p < q < r be primes such that r ≡ ±1 (mod pq). Then
A(pqr) = 1.

There exist flat cyclotomic polynomials of order three that are not of this form. It
would be an interesting and difficult problem to classify them. Beiter has classified
all flat cyclotomic polynomials of the form Φ3qr(x) [4], but not much is known
about flat cyclotomic polynomials of the form Φpqr(x) for p ≥ 5 or flat cyclotomic
polynomials of order greater than three.

Recently, Broadhurst [5] has made some conjectures about flat cyclotomic poly-
nomials of order three. Let p < q < r be odd primes with w the unique integer
0 < w ≤ pq−1

2 satisfying r ≡ ±w (mod pq).

(i) If w = 1 then we say that [p, q, r] is of Type 1.

(ii) If w > 1, q ≡ 1 (mod pw), and p ≡ 1 (mod w) then we say that [p, q, r] is of
Type 2.

(iii) If w > p, q > p(p − 1), q ≡ ±1 (mod p) and w ≡ ±1 (mod p), and in the
case where w ≡ 1 (mod p) we have wp ! q + 1 and wp ! q − 1, then we say
that [p, q, r] is of Type 3.

Conjecture. ([5])

(i) If [p, q, r] is of Type 1 or 2, then A(pqr) = 1.

(ii) If [p, q, r] is not of Type 1,2, or 3, then A(pqr) > 1.

(iii) If [p, q, r] is of Type 3, then A(pqr) = 1 if and only if Φpq(xs)
Φpq(x) is flat for the

smallest positive integer s such that s ≡ 1 (mod p) and s ≡ ±r (mod pq).

Note that Theorem 2 states that if [p, q, r] is of Type 1, then A(pqr) = 1. This
conjecture, if true, goes a long way towards a complete classification of flat cyclo-
tomic polynomials of order three. It would remain to give conditions on [p, q, r] of
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Type 3 for which Φpq(xs)
Φpq(x) is flat for the s described in the conjecture. Broadhurst

has also conjectured bounds on the number of [p, q, r] of Type 3 which give flat
cyclotomic polynomials [5].

The main result of this paper, Theorem 4, is a natural generalization of Theorem
2 in [7].

Theorem 3. (Kaplan, 2007) Let p < q < r < s be primes such that r ≡ ±s
(mod pq). Then A(pqr) = A(pqs).

Let

Ψn(x) =
xn − 1
Φn(x)

=
n−φ(n)∑

k=0

ckxk

denote the nth inverse cyclotomic polynomial. We can easily see that deg(Ψn(x)) =
n − φ(n). We put ck = 0 if k < 0 or k > n − φ(n). These polynomials have been
studied recently by Moree [10]. They will be used in the proof of Theorem 4.

2. The Main Result

In this paper we will prove the following result which applies to cyclotomic polyno-
mials of arbitrary order, but requires slightly stronger assumptions than Theorem 3.

Theorem 4. Let 2 < p1 < p2 < · · · < pr be primes and n = p1 · · · pr. Let s, t be
primes satisfying n < s < t and s ≡ t (mod n). Then Vns = Vnt.

Proof. We may suppose that r ≥ 2 and therefore n ≥ 15 since for any odd primes
p < q we have V (pq) = {−1, 0, 1}.

For simplicity we will change our notation slightly. Let

Φns(x) =
(p1−1)···(pr−1)(s−1)∑

i=0

bix
i,

and

Φnt(x) =
(p1−1)···(pr−1)(t−1)∑

i=0

dix
i.

We will first show that Vns ⊆ Vnt by showing that for any coefficient bl ∈ Vns, there
is a coefficient dm ∈ Vnt with dm = bl.
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We have

Φns(x) =
Φn(xs)
Φn(x)

=

(
xn−1
Φn(x)

)
Φn(xs)

xn − 1
=

Ψn(x)Φn(xs)
xn − 1

.

Note that deg(Ψn(x)) = n− φ(n) = n− (p1 − 1) · · · (pr − 1). We have assumed
that s > deg(Ψn(x)).

Similarly, we have

Φnt(x) =
Φn(xt)
Φn(x)

=
Ψn(x)Φn(xt)

xn − 1
.

By expanding 1
xn−1 = −(1 + xn + x2n + · · · ), we have

Φns(x) = −Ψn(x)Φn(xs)(1 + xn + x2n + · · · ),

and
Φnt(x) = −Ψn(x)Φn(xt)(1 + xn + x2n + · · · ).

Let

Φn(x) =
(p1−1)···(pr−1)∑

j=0

ajx
j , and Ψn(x) =

n−φ(n)∑

i=0

cix
i.

The terms of Ψn(x)Φn(xs) are of the form ciajxi+js. Similarly the terms of
Ψn(x)Φn(xt) are of the form ciajxi+jt. Since s ≡ t (mod n), i + js ≡ i + jt
(mod n).

For a fixed l, consider the set of (i, j) such that ci '= 0 and i + js = l. Since
ci '= 0 implies that 0 ≤ i ≤ n− φ(n) < s, there is at most one pair (i, j) in this set.
Similarly for a fixed m, the set of (i, j) such that ci '= 0 and i+ jt = m has at most
one element.

We see that

bl = −
∑

(i,j)

ciaj ,

where the sum is taken over all pairs (i, j) such that i+ js ≤ l, i+ js ≡ l (mod n),
and ci '= 0. Similarly,

dm = −
∑

(i,j)

ciaj ,

where the sum is taken over all pairs (i, j) such that i+jt ≤ m, i+jt ≡ m (mod n),
and ci '= 0.
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For any integer l with 0 ≤ l ≤ deg(Φns(x)) = φ(n)(s−1), we can write l = ks+α
where k,α ∈ Z and 0 ≤ α < s, in a unique way. Note that k < φ(n). Now let
m = kt + α. Since ks + α ≤ φ(n)(s− 1), we have

kt + α ≤ φ(n)(s− 1) + k(t− s) < φ(n)(s− 1) + φ(n)(t− s) = deg(Φnt(x)).

Suppose ci '= 0. We have i + js ≤ ks + α if and only if j ≤ k + α−i
s . Since j is

always an integer we have i+js ≤ ks+α if and only if j ≤ k+(α−i
s ). If α ≥ i, then

(α−i
s ) = 0. Since α ≥ 0 and ci '= 0 implies i ≤ n− φ(n) < s, we have (α−i

s ) = −1
for α < i.

Similarly i + jt ≤ kt + α if and only if j ≤ k + (α−i
t ). Since −t < −s < −i ≤

α − i ≤ α < s < t we see that (α−i
s ) = (α−i

t ). Therefore i + js ≤ ks + α if and
only if i + jt ≤ kt + α, and bl = dm. So for any coefficient bl of Φns(x), there is a
coefficient dm of Φnt(x) with dm = bl and Vns ⊆ Vnt.

Now we will show that Vnt ⊆ Vns by showing that for any coefficient dm ∈ Vnt

there is a coefficient bl ∈ Vns such that bl = dm. If m ≥ deg(Φnt(x))
2 then m′ =

deg(Φnt(x))−m ≤ deg(Φnt(x))
2 . Since dm = dm′ , without loss of generality we may

suppose that m ≤ deg(Φnt(x))
2 . Given m we can write m = kt + β where k,β ∈ Z

and 0 ≤ β < t in a unique way. Note that k < φ(n)
2 . Suppose ci '= 0. As in the

previous paragraphs we have i + jt ≤ kt + β if and only if j ≤ k + (β−i
t ).

Let α ≡ β (mod n) with 0 ≤ α < n < s. Now consider l = ks + α. We have
ks + α < (φ(n)

2 + 1)s ≤ (φ(n)− 1)s < φ(n)(s− 1) = deg(Φns(x)) since 4 ≤ φ(n) for
all n ≥ 7.

If β < i, then β < n and so α = β. We see that (β−i
t ) = (α−i

s ) = −1 and
bl = dm. Suppose that β ≥ i. Then (β−i

t ) = 0. Since α < n < s, we have
(α−i

s ) ≤ 0. If (α−i
s ) = 0, then clearly i + js ≤ l if and only if i + jt ≤ m, and

bl = dm.

Suppose there exists a pair (i, j) such that i + js ≡ l (mod n), ci '= 0, i + jt ≤
kt + β, but i + js > ks + α. This implies that j ≤ k and j > k + (α−i

s ). Therefore
(α−i

s ) = −1 and j = k. So i + ks ≡ ks + α (mod n) and i > α. This implies
i − α ≡ 0 (mod n). Since i − α > 0 we have i ≥ n > n − φ(n), which contradicts
ci '= 0. This implies that such a pair (i, j) does not exist. So i + jt ≤ kt + β if and
only if i + js ≤ ks + α, and therefore bl = dm. So for any coefficient dm of Φnt(x),
there is a coefficient bl of Φns(x) with bl = dm, and thus Vnt ⊆ Vns.
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3. Some Consequences and Open Questions

Several corollaries follow directly from Theorem 4.

Corollary 5. Let 2 < p1 < p2 < · · · < pr be primes and n = p1 · · · pr. Let s, t be
primes satisfying n < s < t and s ≡ t (mod n). We have A(ns) = A(nt).

It is unclear how much we can weaken the assumption in Theorem 4 that n <
s < t. The result is not true if we simply require that pr < s < t. For example
V (5 · 7 · 13 · 17) " V (5 · 7 · 13 · 4567).

Corollary 6. Let n = p1p2 · · · pr be a product of distinct odd primes. If there exists
a prime s > n such that Φns(x) is flat, then there are infinitely many flat cyclotomic
polynomials of order r + 1. In particular, A(nt) = 1 whenever t is a prime such
that t > n and t ≡ s (mod n).

This corollary follows from Dirichlet’s theorem for primes in arithmetic progres-
sions.

We note that A(3 · 5 · 31 · 929) = 1.

Corollary 7. There are infinitely many flat cyclotomic polynomials of order four.
In particular, given any prime s congruent to −1 modulo 465, A(3 · 5 · 31 · s) = 1.

Recently Arnold and Monagan have introduced improved methods for quickly
computing the heights of cyclotomic polynomials and have made much of their data
available online [1, 2]. In particular, there are 1389 flat cyclotomic polynomials of
order four with n < 3·108. They are all of the form n = pqrs where q ≡ −1 (mod p),
r ≡ ±1 (mod pq) and s ≡ ±1 (mod pqr). We suspect that all flat cyclotomic
polynomials of order four are of this form. In our limited computations it appears
that all of these polynomials are flat. We also have reason to believe the following.

Conjecture. If A(n) > 1 then for any prime p, A(pn) > 1.

It is unknown whether there are any flat cyclotomic polynomials of order greater
than four. There are none of order five with n < 6.26 · 108 [1, 2]. For primes
(p, q, r, s, t) satisfying q ≡ −1 (mod p), r ≡ −1 (mod pq), s ≡ −1 (mod pqr) and
t ≡ −1 (mod pqrs), Φpqrst(x) is not necessarily flat. Andrew Arnold recently
computed the height of a cyclotomic polynomial satisfying these congruence condi-
tions. For (p, q, r, s, t) = (3, 5, 29, 2609, 2269829), A(pqrst) = A(2576062979535) =
2. Many of the above observations are based on computations done by Tiankai Liu
[9].



INTEGERS: 10 (2010) 363

Acknowledgments. I would like to thank Joe Gallian for running the University
of Minnesota Duluth summer research program where I was first introduced to this
topic. I would like to thank Tiankai Liu for performing calculations which were
very helpful for the last section of this paper and Andrew Arnold for answering
some computational questions. I would like to thank the referee for several useful
comments and Sam Elder for helpful discussions related to this project.

References

[1] A. Arnold, M. Monagan, Calculating cyclotomic polynomials of very large height, submitted
to Math. Comp.

[2] A. Arnold, M. Monagan, Data on the heights and lengths of cyclotomic polynomials, avail-
able: http://www.cecm.sfu.ca/∼ada26/cyclotomic/.

[3] G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006),
53-60.

[4] M. Beiter, Coefficients of the cyclotomic polynomial, F3qr(x), Fibonacci Quart., 16 (1978),
302-306.

[5] D. Broadhurst, Flat ternary cyclotomic polynomials,
http://tech.groups.yahoo.com/group/primenumbers/message/20305.

[6] Y. Gallot, P. Moree, Ternary cyclotomic polynomials having a large coefficient, J. Reine
Angew. Math. 632 (2009), 105-125.

[7] N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007), 118-
126.

[8] H.W. Lenstra, Vanishing sums of roots of unity, in: Proceedings, Bicentennial Congress
Wiskundig Genootschap (Vrije Univ., Amsterdam, 1978), Part II, 1979, pp. 249-268.

[9] T. Liu, personal communication.

[10] P. Moree, Inverse cyclotomic polynomials, J. Number Theory 129 (2009), 667-680.


