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Abstract
We show that for any integers n ≥ 2 and 0 ≤ k ≤ n, one may find k distinct nth
roots of unity whose sum is 0 if and only if both k and n − k are expressible as
linear combinations of prime factors of n with nonnegative coefficients.

1. The Main Result

The inspiration for this problem is the following question: given a centrifuge with n
buckets, for which k can we fill k of the buckets such that the centrifuge is balanced?
An equivalent formulation asks for which k may we pick k distinct nth roots of unity
whose sum is 0; we will say that n is k-balancing when this is possible.

T. Y. Lam and K. H. Leung proved in [2] that, if we allow repetition of roots
(which we will not), then n is k-balancing if and only if k is expressible as a sum of
the prime factors of n. Since we restrict to a subset of these cases, this is again a
necessary condition. Additionally, since the sum of all nth roots vanishes, if a subset
of nth roots has vanishing sum, so does its complement. Using the notation of Lam
and Leung, and adopting their convention that 0 ∈ N, the complement condition
implies the following:

Proposition 1 Write n = pe1
1 · · · per

r , with each pi prime and each ei positive.
Then n is k-balancing only if both k and n− k are in Np1 + . . . + Npr.

Our goal is to show that this condition is also sufficient; i.e.,

Theorem 2 (Main Theorem) Write n = pe1
1 · · · per

r as above. Then n is k-balancing
if and only if both k and n− k are in Np1 + . . . + Npr.

This will be proven in several stages, depending on the prime factorization of n.
This first lemma will be useful in all cases:
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Lemma 3 If gcd(n, k) > 1, then n is k-balancing.

Proof. For convenience here and for the rest of this paper, let ζn := exp 2πi
n . The

cases k = 0 and k = n are trivial, so assume 1 ≤ k ≤ n − 1, and take any prime
p dividing both n and k. The pth roots of unity are also nth roots of unity and
have sum 0, and multiplying them all by some other root of unity preserves the
sum while effectively rotating the roots. Since k < n, we have k/p < n/p, so
we may rotate the pth roots of unity by ζn k/p times without seeing any one root
twice. Thus the set {ζa

p · ζb
n | 0 ≤ a < p, 0 ≤ b < k/p} has k distinct elements with

sum 0. !

This, combined with Proposition 1, proves the main theorem for all prime powers.
Next, we look at products of two primes.

Proposition 4 The main theorem holds for any product n = pq of two distinct
primes.

Proof. Fix k ≤ n and suppose we may write k = ap + bq and n − k = cp + dq
for some a, b, c, d ∈ N. Then n = (a + c)p + (b + d)q = pq, so p divides b + d
and q divides a + c. If both coefficient sums are positive, then we must have
n = (a + c)p + (b + d)q ≥ pq + pq = 2n, a contradiction, so either a + c = 0 or
b + d = 0, hence either a = c = 0 or b = d = 0. Thus k is either a multiple of p or a
multiple of q, and n is k-balancing by Lemma 3. !

To complete the proof of the main theorem, we introduce two more lemmas that
will aid in the construction of vanishing sums.

Lemma 5 If gcd(p, q) = 1 and k ≥ (p− 1)(q − 1), then k ∈ Np + Nq.

Proof. This is a classical result, dating back to [4]. !

Lemma 6 Suppose two concentric disks are each divided into n equal wedges. If a
wedges are colored in the first disk and b in the second, and ab < n, then the disks
may be rotated such that no two colored wedges overlap.

Proof. Fix one of the b wedges on the second disk. In the course of the n rotated
positions, it overlaps a colored wedge from the first disk a different times. Consid-
ering each wedge and each rotation, we see a total of ab overlaps. Since ab < n,
there must be some rotation which has no overlaps. !
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The application of this lemma will be to vanishing sets of roots of size a and b,
since with ab < n we can rotate the second set so that the rotated set does not
intersect the first set, and then the union gives a set of a + b roots whose sum
vanishes. In practice, we may restrict to the case where b is a prime dividing n
and the roots correspond to a rotation of the bth roots of unity, in which case the
exponents of ζn in the set of a roots cannot cover all possible residues modulo n/b
and we may use the b roots in the remaining residue class.

Proof of the Main Theorem. The cases where n is a prime power or a product of
two distinct primes have already been proven, so assume we are in neither case. Let
p < q be the two smallest distinct primes dividing n, and write n = pqm, where
m ≥ p ≥ 2. If n is even, then the case k = n/2 follows from Lemma 3. If n is
arbitrary and k > n/2, then (p − 1)(q − 1) < n/m ≤ n/2 < k, so k ∈ Np + Nq by
Lemma 5. Thus we may reduce the problem to showing that n is k-balancing if k
is a sum of prime factors of n and k < n/2.

First, suppose k < (p−1)(q−1). Writing the prime factorization as n = pe1
1 · · · per

r

with p1 < p2 < · · · < pr, so that p1 = p and p2 = q, and writing k = a1p1+. . .+arpr

with each ai ∈ N, we can show by induction on
∑

ai that n is k-balancing. The base
case corresponds to a single prime factor of n and follows from Lemma 3. Assume
that n is k-balancing whenever

∑
ai = s, and now consider k < (p− 1)(q− 1) with∑

ai = s + 1. Choose the least i such that ai is positive, and by hypothesis n is
(k − pi)-balancing. Pick distinct roots {ζb1

n , . . . , ζ
bk−pi
n } whose sum vanishes, and

take separately the balanced set {1, ζpi , . . . , ζ
pi−1
pi

}. The first set has cardinality less
than (p− 1)(q− 1), and the second set has cardinality pi, so if (p− 1)(q− 1)pi < n
then by Lemma 6 we are done. Observe that pi must divide at least one of p, q,
and m. If pi = p or pi|m then pi ≤ m, so (p − 1)(q − 1)pi < pqm = n. If pi = q
then either q ≤ m and we proceed as before, or m < q, in which case m is a power
of p. Then n = pe1q (e1 > 1), and we may write k = ap + bq; by minimality of i we
have a = 0, and n is k-balancing by Lemma 3, completing the induction.

Next, suppose (p− 1)(q− 1) ≤ k < n/2. By Lemma 5 we may write k = ap + bq
with a, b ∈ N; this will simplify the construction of a balanced set of k roots of
unity. If b ≥ p we may also write k = (a + q)p + (b − p)q and repeat; it then
suffices to assume 0 ≤ b < p. Take the set of pqth roots of unity, and from those
select b rotations of the qth roots; call their union S. Now there are at most q
rotations of the pth roots of unity among the nth roots which intersect S, leaving
at least n/p − q = qm − q disjoint collections of p balanced roots which do not
intersect S. Then we can add these sets one at a time to find a balanced set of
as many as bq + p(qm − q) = bq + n − pq roots. Since m ≥ 2, n − pq ≥ n/2, so
bq + p(qm− q) ≥ n/2 > k and we can balance k roots by including fewer sets of p,
and the theorem follows. !
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