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Abstract
Given a set D = {d1, d2, . . .} of positive integers, one defines a distance graph with
the set of integers Z as the vertex set and xy an edge iff |x−y| ∈ D. We approach dis-
tance graphs by using p-adic methods. This allows us to give general bounds on the
chromatic number that depend on the divisibility properties of the numbers di. Fur-
thermore, the chromatic number is determined for large classes of distance graphs.

1. Introduction

The Hadwiger–Nelson problem asks for the minimum number of colors needed for
coloring the real plane such that no two points at distance 1 receive the same color.
The best known lower and upper bounds are 4 and 7, with no improvement inthe last
50 years. The same question can be asked for any metric space in any dimension; n-
dimensional real space Rn under any norm, n-dimensional integer grid Zn under the
!1-norm, and even the integer line under Archimedian or non-Archimedian norms.
The natural generalization of the Hadwiger–Nelson problem in high dimensions has
been studied for many years. The first breakthrough lower and upper bounds under
the Euclidean norm are by Frankl and Wilson [4], and Larman and Rogers [9]. The
lower bound was improved by Raigorodskii [10, 11, 12]. The problem has been
generalized to other metric spaces by Benda and Perles [1], Raigorodskii [13], and
Woodall [16], and to any normed space by Füredi and Kang [5, 6].

While a coloring of a metric space in high dimensions has the flavor of combi-
natorial geometry, an analogous question asked for the integer line has more of a
flavor of combinatorial number theory. The integer distance graph G(Z,D) with
distance set D = {d1 < d2 < . . .} has the set of integers Z as the vertex set and
two vertices x, y ∈ Z are adjacent if and only if |x−y| ∈ D. Integer distance graphs
were first systematically studied by Eggleton, Erdős and Skilton [2] and have been
studied by others since then [14, 15, 17].
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In this paper, we consider the distance graph on the set of integers Z under the
p-adic norms. Let p be a prime number. Then any non-zero rational number x
can be uniquely written in the form x = r

sp! where ! ∈ Z and r, s are integers not
divisible by p. One defines the p-adic norm of x by ||x||p := 1/p!. This gives rise
to a non-Archimedean norm on the rational numbers Q. Some basic properties of
p-adic norms will be given in Section 2. We define a p-adic distance graph G(Z,D)
with the vertex set of Z and distance set D ⊂ Q such that two integers x, y are
adjacent if and only if ||x−y||p ∈ D for some prime p. Here, distance sets D should
be reasonably chosen subsets of Q and the details will be discussed in Section 3.

The work of this paper is related to that of Ruzsa, Tuza and Voigt [14], so we
first recall some of their results to put our work in perspective.

Theorem 1 [14, Ruzsa, Tuza and Voigt] Let D = {d1, d2, . . .} be an infinite dis-
tance set. The chromatic number χ(G(Z,D)) is finite whenever

inf
di+1

di
> 1.

Moreover, this result is tight in the sense that every growth speed smaller than this
admits a distance set D with infinite chromatic number.

Via p-adic norms, we will give bounds on the chromatic number of distance sets
that are quite dense and have divisibility constraints. Consequently, the chromatic
numbers are applicable even in the case that

inf
di+1

di
= 1.

For example, Theorem 16 in Section 6 gives us a sufficient condition for the
distance graph G(Z,D) to have finite chromatic number:

Theorem 16 Let D := {d1, d2, . . .} be a distance set. For each prime number p,
let D(p) be the set of all powers pn of p such that pn divides di but pn+1 does not
divide di for some i. Then

χ(G(Z,D)) ≤ min{p|D(p)| : p is prime}.

Theorem 16 can be viewed as complementing Theorem 1 of Ruzsa, Tuza and
Voigt which is also a sufficient (but not necessary) condition for χ(G(Z,D)) to
be finite. For example, let p1 < p2 < . . . be an enumeration of the prime num-
bers. Set D = {d1, d2, . . .} where di := (p1p2 . . . pi)i for each i. Then by Theo-
rem 1, χ(G(Z,D)) is finite but Theorem 16 is inconclusive. On the other hand,
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if D is the set of all positive integers not divisible by a fixed prime number p (so
D(p) = {1}), then Theorem 16 implies that χ(G(Z,D)) ≤ p while Theorem 1 is
inconclusive.

In Section 2, we give a brief overview of results from p-adic methods which we will
find useful. In Section 3, we discuss p-adic distance graphs and their relationship
to Euclidean distance graphs. In Section 4, we determine the chromatic number
of distance graphs with various classes of infinite distance sets. A generalization
of p-adic distance sets and its characterization to have finite chromatic number are
discussed in Section 5. As an application, we show how effectively p-adic results
can be applied to Euclidean distance graphs in Section 6. We conclude the paper
with suggestions on possible future research.

2. p-Adic Norms

In this section, we state the basic properties of p-adic norms that we will use. As
excellent introductions to this subject we refer the reader to [7, 8]. The p-adic norm
of 0 is defined to be 0. Equivalently, the p-adic norm can be formulated as follows.
Any rational number x can be uniquely represented in the form

∑∞
i=! aipi where

0 ≤ ai ≤ p − 1 and a! %= 0. Then the p-adic norm of x is given by ||x||p := 1/p!.
Note that the infinite expansion

∑∞
i=! aipi of a rational only makes sense in the

p-adic topology.
Note that the set of possible p-adic norms of integers belongs to the set {1/p! :

! = 0, 1, 2 . . .} ∪ {0}. Furthermore, if x ∈ Z then ||x||p = 1/pi if and only if
x ∈ {api : a ∈ Z with p ! a}.

Let S be a non-empty set of distinct powers of the prime number p. We will say
that x has support in S if the p-adic expansion of x is of the form x =

∑
i aipi

(0 ≤ ai ≤ p−1) where ai = 0 whenever pi %∈ S. Observe that if x and y are distinct
and have support in S, then the p-adic norm of x− y must be of the form 1/pi for
some pi ∈ S.

We will repeatedly use the fact that if x ≡ y mod pn then x − y has support
contained in {pn, pn+1, pn+2, . . .}. Furthermore, we will make use of the result that

||x− y||p ≤ max(||x||p, ||y||p)

with equality when ||x||p %= ||y||p. In general, one has

||x1 + x2 + . . . + xt||p ≤ max(||xi||p : 1 ≤ i ≤ t)

with equality if there exists j such that ||xj ||p > ||xi||p whenever i %= j.
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3. Distance Graphs Arising From p-Adic Norms

Throughout the rest of this paper, a script D signifies that the distance set arises
from the non-Archimedean p-adic distances.

Let p be a fixed prime number. We will denote by D(p) a (finite or infinite)
set of p-adic distances, i.e., D(p) = {1/pn1 , 1/pn2 , . . .} for some positive integers
n1, n2, . . .. The graph G(Z,D) with

D := D(p) (1)

denotes a p-adic distance graph with vertex set Z, and two vertices x, y ∈ Z are
adjacent (i.e., ‖x − y‖ ∈ D) if ||x − y||p ∈ D(p). If D(p) = {1/pn1 , 1/pn2 , . . .}
for nonnegative integers n1 < n2 < · · ·, then one observes that, from Section 2,
it is precisely the same as the distance graph G(Z,D) where D = {apni : i =
1, 2, . . . and a ∈ Z+ with p ! a}.

Let p1, p2, . . . be distinct prime numbers. The p-adic distance graph G(Z,D) on
vertex set Z with

D := D(p1) )D(p2) ) · · · (2)

has an edge xy if ||x− y||pi ∈ D(pi) for some i. Analogously, when

D := D(p1) *D(p2) * · · · , (3)

two vertices x, y ∈ Z are adjacent if ||x − y||pi ∈ D(pi) for each i. If D1,D2, . . .
are p-adic distance sets of types in (1), (2) or (3), we define p-adic distance sets⊔

i Di and *i Di, and corresponding graphs G(Z,
⊔

i Di) and G(Z,*i Di), with two
vertices x, y ∈ Z adjacent if xy is an edge in G(Z,Di) for some i, and for each i,
respectively.

Using these notations, we can give a precise description of a given Euclidean
distance distance graph in terms of non-Archimedean p-adic norms as follows. Let
P denote the set of prime numbers. If d > 1 is an integer, the product formula
[7, 8] states that

|d|
∏

p∈P

||d||p = 1. (4)

In other words, d = pe1
1 pe2

2 . . . pet
t is the factorization of d as a product of

distinct prime numbers p1, p2, . . ., pt iff ||d||pi = 1/pei
i for each i = 1, 2, . . . , t and

||d||p = 1 for all remaining primes. Now put D(pi) = {1/pei
i } for

i = 1, 2, . . . , t, and put D(q) = {1} for primes q %= p1, p2, . . . , pt. Then
the Euclidean distance graph G(Z, {d}) is identical to the distance graph
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G(Z,*p∈PD(p)) arising from p-adic norms. For general cases, let D := {d1, d2, . . .}
be a distance set of positive integers. For each distance di, let ei : P → N0 the
function defined by ei(p) is the power of p that exactly divides di (so if a prime p does
not divide di, then ei(p) = 0). Now put Di := *p∈P {1/pei(p)} and D :=

⊔∞
i=1 Di.

Then the graph G(Z,D) is identical to the graph G(Z,D) described using p-adic
norms.

Thus, by using the product formula, any distance graph G(Z,D) where D is a
distance set can be recast in the language of p-adic numbers. The reverse is also
true as illustrated above and in Theorems 3, 5, 7. However, sometimes it may be
more convenient to use one language over the other. For example, if D is the set
of all positive multiples of the prime number 2 which are not divisible by 4, then
the distance graph G(Z,D) is more neatly described as the distance graph G(Z,D)
where D = {1/2} and x is adjacent to y iff ||x− y||2 = 1/2.

4. Distance Graphs With p-Adic Distance Sets in Finite Unions

In this section, we give exact chromatic numbers of several distance graphs arising
from p-adic norms introduced in Section 3.

Theorem 2 Let p be a prime, and let D(p) be a p-adic distance set of size k. Then
χ(G(Z,D(p))) = pk.

Proof. Suppose that D(p) = {1/pni : 1 ≤ i ≤ k} for some integers n1 > n2 > . . . >
nk ≥ 0. Define f : Z → {0, 1, . . . , p− 1}k by

f(x) := (ank , ank−1 , . . . , an1)

where ani is the coefficient of pni in the p-adic representation of x for i = 1, 2, . . . , k.
We show that f does indeed give a coloring of G(Z,D). Let x, y ∈ Z and suppose
that x has p-adic representation . . . a2a1a0 and that y has p-adic representation
. . . b2b1b0. If x is adjacent to y then for some i we have that

ani %= bni

yet
ani−1 . . . a1a0 = bni−1 . . . b1b0.

whence f(x) %= f(y). Thus χ(G(Z,D)) ≤ pk. On the other hand, observe that the
subgraph induced by V := {

∑k
i=1 anip

ni : 0 ≤ ai ≤ p− 1 for i = 1, 2, . . . , k} forms
a clique in G(Z,D) since the p-adic norm of the difference of two distinct elements of
V is of the form 1/pni for some 1 ≤ i ≤ k. Thus χ(G(Z,D)) ≥ pk. This completes
the proof. !
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Corollary 3 Suppose that n1 > n2 > . . . > nk ≥ 0 are integers and

D = {apni : 1 ≤ i ≤ k and a ∈ Z with p ! a}.

Then χ(G(Z,D)) = pk.

Proof. This follows from Theorem 2 and the discussion in Section 3. !

Theorem 4 Let p1, p2, . . . , pt be a collection of distinct prime numbers. Then

χ
(
G(Z,D(p1) )D(p2) ) . . . )D(pt))

)
= pk1

1 pk2
2 . . . pkt

t ,

where ki = |D(pi)| for 1 ≤ i ≤ t.

Proof. Put G := G(Z,D(p1) ) D(p2) ) . . . ) D(pt)). By Theorem 2, we can
choose a coloring fi : Z → {0, 1, . . . , pi − 1}ki of G(Z,D(pi)). Define f : Z →∏t

i=1{0, 1, . . . , pi − 1}ki by

f(x) = (f1(x), f2(x), . . . , ft(x)).

Then, by using similar arguments to those of Theorem 2, f is a coloring of G. Thus
χ(G) ≤ pk1

1 pk2
2 . . . pkt

t .
For each 1 ≤ i ≤ t, let A′i be the set of all prime powers pm

i such that 1/pm
i ∈

D(pi) and let Ai be the set of all linear combinations of elements of A′i with coef-
ficients from 0, 1, 2, . . . , p − 1. Note that |Ai| = pki

i and put Mi = pki+1
i . For each

(a1, a2, . . . , at) ∈ A1×A2× . . .×At, it follows from the Chinese remainder theorem
that there exists an a ≥ 0, unique modulo M =

∏
i Mi, such that a ≡ ai mod Mi

for 1 ≤ i ≤ t. Let A be the set of all such a’s. Then |A| = |A1||A2| . . . |At|. Next
we show that the vertices in A form a clique. Let a, a′ ∈ A and suppose they cor-
respond to (a1, a2, . . . , at) and (a′1, a′2, . . . , a′t). Then a − a′ ≡ (ai − a′i) mod Mi so
||a− a′||pi = ||ai − a′i||pi ∈ D(pi). Thus a is joined to a′ and the chromatic number
of G is at least |A| = pk1

1 pk2
2 . . . pkt

t . !

Corollary 5 Let p1, p2, . . . , pt be a collection of distinct prime numbers. Corre-
sponding to each prime pi, 1 ≤ i ≤ t, let Di be a finite set of distinct non-negative
powers of pi of size ki := |Di|. Let

D := {ax : for some 1 ≤ i ≤ t, x ∈ Di and a ∈ Z with pi ! a}.

Then χ(G(Z,D)) = pk1
1 pk2

2 . . . pkt
t .

Proof. By the product formula (4), the graph G(Z,D) is isomorphic to the distance
graph G(Z, D(p1)) D(p2)) . . .) D(pt)) of Theorem 4. !
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Theorem 6 Let p1, p2, . . . , pt be a collection of distinct prime numbers. Then

χ
(
G(Z,D(p1) *D(p2) * . . . *D(pt))

)
= min{pki

i : 1 ≤ i ≤ t},

where ki = |D(pi)| for 1 ≤ i ≤ t.

Proof. Put G := G(Z,D(p1)*D(p2)* . . .*D(pt))
)
. The upper bound follows from

the observation that G is a subgraph of G(Z,D(pi)) for each i and Theorem 2. For
the reverse inequality, we may assume that

pk1
1 < pk2

2 < · · · < pkt
t .

For each i, let A′i be the set of all numbers pk
i such that 1/pk

i ∈ D(pi). Let Ai :=
{a(i, 1) < a(i, 2) < . . .} be the set of all non-zero linear combinations of elements
of A′i with coefficients from 0, 1, . . . , pi − 1. Note that |Ai| = pki

i − 1 and the set
A1 is the smallest. Put Mi := pki+1

i . From the Chinese remainder theorem, for
each 1 ≤ j ≤ pk1 , there exists an xj , unique modulo M1M2 . . .Mt, such that xj ≡
a(!, j) mod M! for 1 ≤ ! ≤ t. Now, for 1 ≤ ! ≤ pk1 , xi−xj ≡ a(!, i)−a(!, j) mod M!

so ||xi − xj ||p! = ||a(!, i) − a(!, j)||p! ∈ D(p!). Thus xi is joined to xj . It follows
that the pk1

1 numbers xi form a clique in G. Thus χ(G) ≥ pk1
1 . !

Corollary 7 Let p1, p2, . . . , pt be a collection of distinct prime numbers. Corre-
sponding to each prime pi, 1 ≤ i ≤ t, let Di be a finite set of non-negative powers
of pi of size ki := |Di|. Let

D := {ax1x2 . . . xt : xi ∈ Di and a ∈ Z with pi ! a for 1 ≤ i ≤ t}.

Then χ(G(Z,D)) = min{pki
i : 1 ≤ i ≤ t}.

Proof. By the product formula (4), the graph G(Z,D) is isomorphic to the distance
graph G(Z, D(p1) *D(p2) * . . . *D(pt)) of Theorem 6. !

Theorem 8 Let pi,j 1 ≤ i ≤ t, 1 ≤ j ≤ ki be a collection of distinct prime numbers,
and let D(pi,j) be a finite set of pi,j-adic distances. If Di := *1≤j≤ki D(pi,j) for
each i, and D :=

⊔
1≤i≤t Di, then

χ(G(Z,D)) =
t∏

i=1

χ(G(Z,Di)).
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Proof. Let G denote the graph G(Z,)1≤i≤tDi). By Theorem 6, for each i =
1, 2, . . . , t, we can choose a coloring fi : Z → Ki of G(Z,Di) with |Ki| = χ(G(Z,Di)).
Define f : Z →

∏t
i=1 Ki by

f(x) = (f1(x), f2(x), . . . , ft(x)).

Then one easily checks that f is a coloring of G. Thus χ(G) ≤
∏t

i=1 χ(G(Z,Di)).
To prove the reverse inequality, we use induction on t. More specifically, we will
show by induction on t that the graph G contains a clique of size

∏t
i=1 χ(G(Z,Di)).

For t = 1, this result follows from the proof of Theorem 6. Assume this result is
true for t ≥ 1, and let a1, a2, . . . , a! ∈ Z (! =

∏t
i=1 χ(G(Z,Di)) be vertices that

form a clique in G. Let b1, b2, . . . , bm (m = χ(G(Z,Dt+1))) be vertices that form a
clique in G(Z,Dt+1). Let C1 :=

∏t
i=1

∏ki

j=1 pi,j be the product of all prime numbers
corresponding to the distance sets in D1, D2, . . ., Dt; and let C2 :=

∏ki

j=1 pt+1,j be
the product of all prime numbers corresponding to the distance sets in Dt+1. Then
for sufficiently large M the numbers

CM
2 ai + CM

1 bj for 1 ≤ ! and 1 ≤ j ≤ m

form a clique of the desired size. !

Example 9 Suppose that D(2) = {1/2}, D(3) = {1} and D(5) = {1/5, 1/25}.
Consider the graph G = G(Z, (D(2) *D(3)) )D(5)). Then by Theorem 8 we have
that χ(G) = min(2, 3) · 25 = 50. Let D be the set of all numbers of the form 2a
where a is relatively prime to 6 together with the set of numbers of the form 5b and
25c where b and c are not divisible by 5. Then G(Z,D) is isomorphic to the graph
G.

Theorem 10 Let pi,j 1 ≤ i ≤ t, 1 ≤ j ≤ ki be a collection of distinct prime num-
bers, and let D(pi,j) be a finite set of pi,j-adic distances. If Di :=

⊔
1≤j≤ki

D(pi,j)
for each i, and D := *1≤i≤t Di, then

χ(G(Z,D)) = min {χ(G(Z,Di)) : 1 ≤ i ≤ t} .

Proof. Put ρ := min {(χ(G(Z,Di)) : 1 ≤ i ≤ t}. Let G denote the graph G(Z,D1 *
D2 * . . . * Dt). Clearly G is a subgraph of G(Z,Di) for any i. This implies that
χ(G) ≤ ρ.

To prove the reverse inequality, as in the proof of Theorem 8, we show by
induction on t that the graph G contains a clique of size ρ. Put κi := χ(G(Z,Di))
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for i = 1, 2, . . . , t + 1. After rearranging the Di’s we can assume that κ1 ≤ κ2 ≤
. . . ≤ κt+1.

Suppose that a1, a2, . . . , aκ1 ∈ Z form a clique in G and that b1, b2, . . . , bκt+1 form
a clique in G(Z,Dt+1). Put C1 :=

∏t
i=1

∏ki

j=1 pi,j and C2 :=
∏ki

j=1 pt+1,j . Then for
sufficiently large M , the numbers

CM
2 ai + CM

1 bi for 1 ≤ i ≤ κ1

form a clique of the desired size. !

Example 11 Suppose that D(2) = {1/2}, D(3) = {1} and D(5) = {1/5, 1/25}.
Consider the graph G = G(Z, (D(2) )D(3))*D(5)). Then by Theorem 10, we have
that

χ(G) = min(χ(G(Z,D(2) )D(3))),χ(G(Z,D(5)))).

By Theorem 4 we have that χ(G(Z,D(2) )D(3))) = 6 and by Theorem 2 we have
that χ(G(Z,D(5))) = 25. Thus χ(G) = 6.

5. Distance Graphs With p-Adic Distance Sets in Infinite Unions

As discussed in Section 3, an Euclidean distance set can be transformed into a p-
adic distance set in infinite unions

⊔∞
i=1 Di where Di is the intersection of {1/pe},

p primes, e ∈ N0. In the light of this, we would like to know the chromatic number
of the p-adic distance graph G(Z,D) with distance set D =

⊔∞
i=1 Di where Di has

the form {1/pk1
1 }* {1/pk2

2 }* . . .* {1/pkt
t } for t ∈ N0 and distinct primes p1, . . . , pt.

In this section, we give a characterization of p-adic distance graphs with fi-
nite chromatic number when all the Di are described in terms of fixed primes
p1, . . . , pt.

Lemma 12 Let p1 < p2 < . . . < pt be t prime numbers, and let !1, !2, . . . , !t be
fixed non-negative integers. Let Λ := Λ(!1, !2, . . . , !t) be the collection of all t-tuples
(k1, k2, . . . , kt) such that ki ≤ !i for some i = 1, 2, . . . , t. Put

D :=
⊔

(k1,k2,...,kt)∈Λ

(
{1/pk1

1 } * {1/pk2
2 } * . . . * {1/pkt

t }
)

.

Then the distance graph G(Z,D) has finite chromatic number.
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Proof. First, we consider a special type Λ′ of Λ, where Λ′ := Λ′(!1, !2, . . . , !t) is any
collection of t-tuples (k1, k2, . . . , kt) such that ki ≥ !i for each i = 1, 2, . . . , t, with
equality for at least one i.

Claim: χ(G(Z,D)) ≤ p1p2 . . . p! when Λ = Λ′.
Proof of Claim: Let x ∈ Z and let x := . . . a(i)

2 a(i)
1 a(i)

0 be the pi-adic representa-
tion. Then we will show that

x → (a(1)
!1

, a(2)
!2

, . . . , a(t)
!t

)

is a proper coloring of the graph G(Z,D). If two integers x, y are adjacent and
their pi-adic representations are x := . . . a(i)

2 a(i)
1 a(i)

0 and y := . . . b(i)
2 b(i)

1 b(i)
0 for each

i, there exists (k1, k2, . . . , kt) ∈ Λ′ such that ‖a(i)
ki
− b(i)

ki
‖pi = 1/pki

i for all 1 ≤ i ≤ t.
At those i with ki = !i, which is guaranteed to occur in Λ′, we have a(i)

!i
%= b(i)

!i
. The

Claim follows from that 0 ≤ a(i)
!i
≤ pi − 1 for each 1 ≤ i ≤ t.

Now, result of Theorem follows from the two observations: (1) Λ is a finite union
of translates of sets of the form of Λ′, and (2) if D1,D2, . . . ,Dr are p-adic distance
sets, then χ(G(Z,)1≤i≤rDi)) ≤

∏
1≤i≤r χ(G(Z,Di)). !

Lemma 13 Let p1 < p2 < . . . < pt be t prime numbers. Suppose that D1,D2, . . . ,Dr

are distance sets of the form

{1/pk1
1 } * {1/pk2

2 } * . . . * {1/pkt
t } (5)

with the property that: whenever i < j and 1/pk
α appears in Di for some α, 1 ≤ α ≤

t, then 1/pk′
α appears in Dj for some k′ > k. Then the graph G(Z,

⊔r
i=1 Di) has a

clique of size at least 2r.

Proof. For a distance set Di of the form in (5), we define P (Di) := pk1
1 pk2

2 . . . pkt
t to

be the product of the relevant prime powers involved in the definition of D. Let K
be the set of linear combinations for the form

∑r
i=1 aiP (Di), where the ai’s take on

the values 0 or 1. Then since the subgraph induced by K is the complete graph on
2r vertices, the desired result follows. !

Theorem 14 Let p1 < p2 < . . . < pt be prime numbers and let Λ be a nonempty
subset of Nt

0. Put

D :=
⊔

(k1,k2,...,kt)∈Λ

(
{1/pk1

1 } * {1/pk2
2 } * . . . * {1/pkt

t }
)

.

Then the following are equivalent:

(i) The chromatic number of the distance graph G(Z,D) is finite.

(ii) There exists (!1, !2, . . . , !t) ∈ Nt
0 such that for all (k1, k2, . . . , kt) ∈ Λ we have

that ki ≤ !i for some 1 ≤ i ≤ t.
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Proof. The fact that (14) implies (14) follows from Lemma 12
For non-negative integers k1, k2, . . . , kt, let Λ(k1, k2, . . . , kt) be the collection

of all t-tuples (m1,m2, . . . ,mt) such that mi ≤ ki for some i = 1, 2, . . . , t. As-
sume that G(Z,D) has finite chromatic number but that (14) is false. Let u1 :=
(k1, k2, . . . , kt) ∈ Λ.

Since we are assuming that (14) is false, it follows that Λ %⊆ Λ(k1, k2, . . . , kt).
Thus we can find and element u2 ∈ Λ \ Λ(k1, k2, . . . , kt). Then u2 has the form
u2 := (k′1, k′2, . . . , k′t) of Λ where k′1 > k1, k′2 > k2, . . ., k′t > kt. Continuing in this
way, we can find a sequence u1, u2, . . . ∈ Λ such that their respective coordinates
form strictly increasing sequences. Now put

D′ :=
⊔

(k1,k2,...,kt)∈{ui | i=1,2,...}

(
{1/pk1

1 } * {1/pk2
2 } * . . . * {1/pkt

t }
)

.

Then G(Z,D′) is a subgraph of G(Z,D) with infinite chromatic number by
Lemma 13. This implies that the chromatic number of G(Z,D) is infinite, a con-
tradiction. !

Corollary 15 Suppose that p1 < p2 < . . . < pt are prime numbers, and Λ ⊆ Nt
0.

Let D be the distance set of all positive numbers of the form apk1
1 pk2

2 . . . pkt
t with

(k1, k2, . . . , kt) ∈ Λ and a ∈ Z such that gcd(a, p1p2 . . . pt) = 1. Then the chromatic
number of G(Z,D) is finite iff there exist nonnegative integers !1, !2, . . . , !t such
that no number in D is divisible by p!1

1 p!2
2 . . . p!t

t .

6. Applications: p-Adic Method for Euclidean Graphs

We show simple applications of p-adic results to bound the chromatic numbers on
Euclidean distance graphs. First, we give a general bound on the chromatic number
of a distance graph G(Z,D).

Theorem 16 Let D := {d1 < d2 < . . .} be a (possibly finite) set of positive integers.
For each prime number p, let

D(p) := {||di||p : i = 1, 2, . . .}.

Then

χ(G(Z,D)) ≤ min{p|D(p)| : p is prime}.

Proof. The the graph G(Z,D) is a subgraph of the graph G(Z,D(p)) which, from
Theorem 4, has chromatic number p|D(p)|. !
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It follows from this theorem that if the chromatic number of G(Z,D) is infinite,
then arbitrarily high powers of every prime number appear among the divisors of
the numbers in the set D.

The following example compares two different p-adic results in applications.

Example 17 Let P be the set of primes and let c > 1 be an integer. We obtain
upper bounds on the chromatic number of the distance set of the translate P + c.
Suppose that p is the smallest integer that divides c. Then the elements of P + c
are of the form either p + c or q + c, q ∈ P \ {p}.

To apply Theorem 16, note that p| p + c and p ! q + c. The p-adic distance
set D corresponding to D satisfies the inclusion D ⊂ D(p) = {1/p0, 1/pe} where
||p + c||p = 1/pe for some e ≥ 1. Hence χ(G(Z, P + c)) ≤ p2.

We can obtain a better upper bound by applying Theorem 4. Observe that 2| p+c
(say ||p + c||2 = 1/2!) and p ! q + c. Putting D(2) = {1/2!} and D(p) = {1/p0}, we
have D ⊂ D(2) )D(p) hence χ(G(Z, P + c)) ≤ 2p.

7. Future Research

Characterization of Distance Sets. It is easy to see that if the chromatic num-
ber of G(Z,D) is infinite, then multiples of every positive integer appear in the the
set D. If there is no multiple of m, then the m-coloring assigning colors to integers
modulo m would be a proper coloring of Z. On the other hand, it is interesting
to see that Theorem 14, obtained from a generalized form of p-adic distance sets,
induces the same necessity condition as follows. Let D = {d1, d2, . . .} be a distance
set and suppose that the graph G(Z,D) has infinite chromatic number. Let m be
a positive integer and suppose that m has prime factorization p!1

1 p!2
2 . . . p!t

t . Let Λ
be the set of all t-tuples (k1, k2, . . . , kt) ∈ Nt

0 such that some di has factorization of
the form apk1

1 pk2
2 . . . pkt

t where gcd(a,m) = 1. Form the distance set

D :=
⊔

(k1,k2,...,kt)∈Λ

(
{1/pk1

1 } * {1/pk2
2 } * . . . * {1/pkt

t }
)

.

The distance graph G1 := G(Z,D) is a subgraph of G2 := G(Z,D). Since G1 has
infinite chromatic number, the same must be true for G2. Theorem 14 implies that
D contains multiples of m.

Based on our methods, we conjecture on the characterization of Euclidean dis-
tance sets having infinite chromatic number.

Conjecture 18 Suppose that D is a given distance set. The chromatic num-
ber of Euclidean distance graph G(Z,D) is infinite iff for every finite partition of
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D = ∪1≤j≤kDj , there exists j, 1 ≤ j ≤ k, such that some multiples of every integer
appear in the set Dj = {d1 < d2 < . . .} and infdi∈Dj di+1/di = 1.

In the above conjecture, considering finite partitions is important as can be shown
as follows. If D := {n!, n! + 1 : n ∈ Z}, then D contains multiples of every integer
and infdi∈D di+1/di = 1. Partition D = D1 ∪ D2 where D1 = {n! : n ∈ Z} and
D2 = {n! + 1 : n ∈ Z}. Then infdi∈Dj di+1/di > 1 for j = 1, 2, and Theorem 1
of Ruzsa–Tuza–Voigt implies that the chromatic numbers of both graphs G(Z,Dj)
are finite. Their finite union graph G(Z,D) also has finite chromatic number.

Generalization to Rings of Integers. In this paper we considered p-adic norm
distance graphs in addition to the usual Euclidean distance graphs. From a number
theoretic point of view, this approach is quite natural because both classes of norms
go hand in hand by the product formula (4). In future work the authors will
consider distance graphs where Z is replaced by other rings R with suitable norms.
Specifically we will consider univariate polynomial rings and rings of integers in
number fields. It would be of interest to consider the distance graph G(Fq[x],D)
where Fq is a finite field with q elements and D is a (non-archimedian) distance set
because for such polynomial rings, all norms are non-archemedian. If R is a ring
of integers in a number field, then it is possible for R to have several inequivalent
archemedian norms. It would interesting to study how the structure of the distance
graphs would change when one transitions from Z to general rings of integers. It is
hoped that by studying such generalisations, light would be shed on the standard
distance graph problem on Z.
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