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Abstract
We give common generalizations of three formulae involving the number of relatively
prime subsets of {1, 2, . . . , n} with some additional constraints. We also generalize
a fourth formula concerning the Euler-type function Φk, and investigate certain
related divisor-type, sum-of-divisors-type and gcd-sum-type functions.

1. Introduction

For a nonempty subset A of {1, 2, . . . , n} let gcd(A) denote the gcd of the elements
of A. Then A is said to be relatively prime if gcd(A) = 1, i.e., the elements of
A are relatively prime. Let f(n) denote the number of relatively prime subsets of
{1, 2, . . . , n}. Then

f(n) =
n∑

d=1

µ(d)
(
2!n/d" − 1

)
, n ∈ N, (1)

where µ is the Möbius function and N = {1, 2, . . .}. A similar formula is valid
for the number fk(n) of relatively prime k-subsets (subsets with k elements) of
{1, 2, . . . , n}. These functions were investigated by M. B. Nathanson [6].

Let Rk(n) denote the number of k-compositions of n such that the summands
are relatively prime, i.e., Rk(n) is the number of ordered k-tuples (a1, a2, . . . , ak) of
positive integers such that a1 + a2 + . . . + ak = n and gcd(a1, a2, . . . , ak) = 1. Then

Rk(n) =
∑

d|n

µ(d)
(

n/d− 1
k − 1

)
, n, k ∈ N (2)

(see H. W. Gould [4], T. Shonhiwa [10]).
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Furthermore, let pk(n) denote the number of partitions of n into k summands
and consider the number pk(n) of partitions of n into k parts such that the parts
are relatively prime. Then

pk(n) =
∑

d|n

µ(d)pk(n/d), n, k ∈ N (3)

(see T. Shonhiwa [9]).
Also, consider the Euler-type functions Φ(n) and Φk(n), representing the number

of nonempty subsets A of {1, 2, . . . , n} and k-subsets A of {1, 2, . . . , n}, respectively,
such that gcd(A) and n are coprime. Note that Φ1(n) = ϕ(n) is Euler’s function.
One has

Φk(n) =
∑

d|n

µ(d)
(

n/d

k

)
, n, k ∈ N. (4)

The functions Φ and Φk were defined and studied by M. B. Nathanson [6]. For
further properties and generalizations see also M. Ayad, O. Kihel [1, 2] and their
references.

It is the aim of the present paper to give common generalizations of formulae
(1), (2), (3), (4). We also consider certain related divisor-type, sum-of-divisors-type
and gcd-sum-type functions.

The definitions of our general arithmetical functions are given in Section 2. As-
suming a natural condition we give arithmetical identities and formulas for certain
formal series in Sections 3 and 4, respectively. In Section 5 we show that if two
additional conditions are fulfilled, then we have asymptotic formulae for the values
of these general functions. Finally, special cases and references to known results are
given in Section 6.

We remark that the asymptotic formulae for the values Φk(n), given by M. B.
Nathanson [6, Th. 4] are ambiguous. See Section 6, Case C of the present paper.

2. Arithmetical Functions

For k, n ∈ N let {1, . . . , n}k = {(a1, . . . , ak) : a1, . . . , ak ∈ N, 1 ≤ a1, . . . , ak ≤ n}
be the set of all ordered k-tuples of positive integers ≤ n. Let S = (S(n))n∈N be
a system of nonempty subsets S(n) of the set

⋃n
!=1{1, . . . , n}!. If a = (a1, . . . , ak)

is a k-tuple in S(n) (where 1 ≤ k ≤ n) we denote by gcd(a) the gcd of the num-
bers a1, . . . , ak. Also, let gcd(a, n) denote the gcd of gcd(a) and n (the gcd of
a1, . . . , ak, n).

Consider the following functions:
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(i) the function counting the number of all relatively prime k-tuples of S(n), i.e.,

fS(n) = #{a ∈ S(n) : gcd(a) = 1}, (5)

(ii) the divisor-type function

τS(n) = #{a ∈ S(n) : gcd(a) | n}, (6)

(iii) the sum-of-divisors-type function

σS(n) =
∑

a∈S(n)
gcd(a)|n

gcd(a), (7)

(iv) the Euler-type function attached to S, given by

φS(n) = #{a ∈ S(n) : gcd(a, n) = 1}, (8)

(v) the gcd-sum-type function

PS(n) =
∑

a∈S(n)

gcd(a, n). (9)

3. Arithmetical Identities

If a = (a1, . . . , ak) is a k-tuple and j ∈ N let ja denote the k-tuple ja = (ja1, . . . , jak).
Assume in what follows that for every n ∈ N, S(n) is an arbitrary nonempty subset
of

⋃n
!=1{1, . . . , n}! such that the following condition is valid:

(C1) For any j ∈ N, 1 ≤ j ≤ n, ja ∈ S(n) holds if and only if a ∈ S($n/j%).

Theorem 1. Assuming condition (C1), we have for any n ∈ N,
n∑

j=1

fS($n/j%) = #S(n), (10)

fS(n) =
n∑

j=1

µ(j)#S($n/j%). (11)

Proof. Grouping the k-tuples a = (a1, . . . , ak) ∈ S(n) according to the values
gcd(a) = j, where 1 ≤ j ≤ n, a1 = jb1, . . . , ak = jbk, gcd(b) = gcd(b1, . . . , bk) = 1,
and using the given condition (C1),

#S(n) =
n∑

j=1

∑

a∈S(n)
gcd(a)=j

1 =
n∑

j=1

∑

jb∈S(n)
gcd(b)=1

1 =
n∑

j=1

∑

b∈S(!n/j")
gcd(b)=1

1 =
n∑

j=1

fS($n/j%),
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which proves (10). Now (11) follows at once by Möbius inversion. Alternatively,
for a direct proof of (11) we use the following property of the Möbius function:∑

d|n µ(d) = δn,1 (Kronecker-delta) and obtain

fS(n) =
∑

a∈S(n)

∑

j|gcd(a)

µ(j) =
n∑

j=1

µ(j)
∑

jb∈S(n)

1

=
n∑

j=1

µ(j)
∑

b∈S(!n/j")

1 =
n∑

j=1

µ(j)#S($n/j%).

!

Theorem 2. Let h be an arbitrary arithmetic function. Then, assuming condition
(C1), we have for any n ∈ N,

∑

a∈S(n)
gcd(a)|n

h(gcd(a)) =
∑

d|n

h(d)fS(n/d), (12)

τS(n) =
∑

d|n

fS(d), σS(n) =
∑

d|n

dfS(n/d). (13)

Proof. If a ∈ S(n), gcd(a) = d | n, then a = db, where b ∈ S(n/d) by condition
(C1) and gcd(b) = 1. Hence

∑

a∈S(n)
gcd(a)|n

h(gcd(a)) =
∑

d|n

h(d)
∑

b∈S(n/d)
gcd(b)=1

1 =
∑

d|n

h(d)fS(n/d),

which proves (12). For h(n) = 1 and h(n) = n, respectively, we have (13). !

Theorem 3. Assuming (C1), we have for any n ∈ N,
∑

d|n

φS(d) = #S(n), (14)

φS(n) =
∑

d|n

µ(d)#S(n/d). (15)

Proof. Similar to the proof of Theorem 1. We give the direct proof of (15):

φS(n) =
∑

a∈S(n)

∑

d|(gcd(a),n)

µ(d) =
∑

d|n

µ(d)
∑

db∈S(n)

1

=
∑

d|n

µ(d)
∑

b∈S(n/d)

1 =
∑

d|n

µ(d)#S(n/d).

!
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Theorem 4. Assuming (C1), we have for every n ∈ N,

PS(n) =
∑

d|n

dφS(n/d), (16)

PS(n) =
∑

d|n

ϕ(d)#S(n/d), (17)

(where ϕ is Euler’s function).

Proof. Grouping the k-tuples a ∈ S(n) according to the values (gcd(a), n) = d,
where a = jb, (gcd(b), n/d) = 1, we obtain (16) using condition (C1):

PS(n) =
∑

d|n

d
∑

b∈S(n)
(gcd(b),n/d)=1

1 =
∑

d|n

dφS(n/d).

Now using (16) and (15),

PS(n) = n
∑

d|n

1
d
φS(d) = n

∑

d|n

1
d

∑

e|d

µ(e)#S(d/e) = n
∑

ejm=n

µ(e)
em

#S(m)

= n
∑

m!=n

1
m

#S(m)
∑

ej=!

µ(e)
e

= n
∑

m!=n

1
m

#S(m)
ϕ(&)

&
=

∑

m!=n

#S(m)ϕ(&).

!

Note, that if #S(n) is multiplicative in n, then the functions φS and PS are also
multiplicative, while fS is, in general, not multiplicative, cf. Section 6, Case A.

4. Formal Series

Next we consider the formal power series of (fS(n))n∈N. Let

FS(x) =
∞∑

n=1

#S(n)xn, (18)

be the formal power series of (#S(n))n∈N.

Theorem 5. Assuming condition (C1), we have for any n ∈ N,

∞∑

n=1

fS(n)xn =
1

1− x

∞∑

n=1

µ(n)(1− xn)FS(xn). (19)
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Proof. Using (11),

∞∑

n=1

fS(n)xn =
∞∑

n=1

n∑

j=1

µ(j)#S($n/j%)xn =
∞∑

j=1

µ(j)
∞∑

n=j

#S($n/j%)xn,

where the inner sum is

2j−1∑

n=j

#S(1)xn +
3j−1∑

n=2j

#S(2)xn +
4j−1∑

n=3j

#S(3)xn + . . .

=
1− xj

1− x

(
#S(1)xj + #S(2)x2j + #S(3)x3j + . . .

)
=

1− xj

1− x
FS(xj).

!

Regarding the formal Lambert series of (φS(n))n∈N we have the following formula.

Theorem 6. Assuming (C1), for every n ∈ N we have

∞∑

n=1

φS(n)
xn

1− xn
= FS(x). (20)

Proof. Apply (14) and the following well-known result: If A and B are any arith-
metical functions such that

∑
d|n A(d) = B(n) (n ∈ N), then

∑∞
n=1 A(n) xn

1−xn =∑∞
n=1 B(n)xn. !

5. Asymptotic Formulae

Assume in this section that, in addition to condition (C1), the following also hold:

(C2) the sequence (#S(n))n∈N is increasing;

(C3) n#S(n)/#S(2n)→ 0, as n→∞.

We show that under these conditions almost all sets in S(n) are relatively prime.
The proof of the next result is along the same lines as that of [6, Th. 2].

Theorem 7. Assuming conditions (C1), (C2) and (C3), for every n ∈ N, n ≥ 3,
we have

fS(n) = #S(n)−#S($n/2%) + R(fS)(n), (21)

where
−(n− 2)#S($n/3%) ≤ R(fS)(n) ≤ 0. (22)

Furthermore, fS(n) ∼ #S(n), as n→∞.
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Proof. By (10) we have using condition (C2),

#S(n) = fS(n)+fS($n/2%)+
n∑

j=3

fS($n/j%) ≤ fS(n)+#S($n/2%)+(n−2)#S($n/3%).

The numbers 2a1, . . . , 2ak are not relatively prime for any k-tuple a = (a1, . . . , ak),
and 2a ∈ S(n) holds if and only if a ∈ S($n/2%) by (C1). Hence

fS(n) ≤ #S(n)−#S($n/2%).

Here #S($n/2%)/#S(n) → 0 and n#S($n/3%)/#S(n) → 0, as n → ∞. This
follows from

n#S($n/2%)
#S(n)

≤ 3
m#S(m)
#S(2m)

→ 0, n→∞,

where m = $n/2%, using conditions (C2) and (C3). Therefore, fS(n)/#S(n) → 1,
as n→∞. !

Let q(n) denote the least prime divisor of n. The next two results are inspired
by [6, Th. 4].

Theorem 8. Assuming (C1), (C2) and (C3), we have for every n ∈ N, n > 1,

φS(n) = #S(n)−#S

(
n

q(n)

)
+ R(φS)(n), (23)

where

|R(φS)(n)| ≤ τ(n)#S

(⌊
n

q(n) + 1

⌋)
* nε#S

(⌊
n

q(n) + 1

⌋)
, (24)

for every ε > 0, where τ(n) is the number of divisors of n. Furthermore, φS(n) ∼
#S(n), as n→∞.

Proof. By (15) we have

φS(n) = #S(n) + µ(q(n))#S(n/q(n)) +
∑

d|n
d>q(n)

µ(d)#S(n/d)

= #S(n)−#S(n/q(n)) + R(φS)(n),
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where by condition (C2),

|R(φS)(n)| ≤
∑

d|n
d>q(n)

#S(n/d) ≤ τ(n)#S

(⌊
n

q(n) + 1

⌋)
.

Now, #S(n/q(n))/#S(n) → 0 and τ(n)#S($n/(q(n) + 1)%)/#S(n) → 0, as
n→∞. This is obtained by

n#S(n/q(n))
#S(n)

≤ 3
m#S(m)
#S(2m)

→ 0, n→∞,

where m = $n/2%, by conditions (C2) and (C3). Consequently, φS(n)/#S(n) → 1,
as n→∞. !

Theorem 9. Assuming (C1), (C2) and (C3), we have for every n ∈ N, n > 1,

PS(n) = #S(n) + (q(n)− 1)#S

(
n

q(n)

)
+ R(PS)(n), (25)

where
0 ≤ R(PS)(n) ≤ n#S

(⌊
n

q(n) + 1

⌋)
, (26)

and PS(n) ∼ #S(n), as n→∞.

Proof. Similar to the above, by (17) we have

PS(n) = #S(n) + ϕ(q(n))#S(n/q(n)) +
∑

d|n
d>q(n)

ϕ(d)#S(n/d)

= #S(n) + (q(n)− 1)#S(n/q(n)) + R(PS)(n),

where by (C2),

0 ≤ R(PS)(n) ≤ #S

(⌊
n

q(n) + 1

⌋)∑

d|n

ϕ(d) = n#S

(⌊
n

q(n) + 1

⌋)
.

!

6. Special Cases

We now consider special cases for which condition (C1) is verified and the results
of Sections 3 and 4 can be applied. Furthermore, we indicate the cases for which
(C2) and (C3) also hold and the asymptotic results of Section 5 apply.
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Case A. S = S(k-tuples)

Let k ∈ N be fixed and let S be the set of all ordered k-tuples, i.e., S(n) =
S(k-tuples)(n) := {1, . . . , n}k for all n ∈ N. Then #S(k-tuples)(n) = nk, which is
multiplicative in n. Conditions (C1) and (C2) hold true, (C3) fails. Here

fS(k-tuples)(n) =
n∑

j=1

µ(j)$n/j%k, n ∈ N, (27)

which is well-known (see [8, Th. 2], [12]). Note that for k = 1, Equation (27)
gives

∑n
j=1 µ(j)$n/j% = 1 (n ∈ N). Furthermore, Jk(n) := φS(k-tuples)(n) =∑

d|n µ(d)(n/d)k is the Jordan function, and Pk(n) := PS(k-tuples)(n) =
∑

d|n ϕ(d)(n/d)k

is the generalized Pillai function (see [11, 13]). Note that the functions Jk and Pk

are multiplicative, while fS(k-tuples) is not multiplicative.
We point out that

FS(k-tuples)(x) =
∞∑

n=1

nkxn =
1

(1− x)k+1

k∑

j=0

a(k, j)xk−j , (28)

where a(k, j) are the Eulerian numbers, representing the number of permutations
of {1, . . . , k} having j rises (see, e.g., [3, Section 6.5]). Therefore, by Theorems 5
and 6 we obtain

∞∑

n=1

fS(k-tuples)(n)xn =
1

1− x

∞∑

n=1

µ(n)(1− xn)
(1− xn)k+1

k∑

j=0

a(k, j)xn(k−j), (29)

∞∑

n=1

Jk(n)
xn

1− xn
=

1
(1− x)k+1

k∑

j=0

a(k, j)xk−j . (30)

Formula (30) is given in [3, p. 199], and for k = 1 we reobtain the familiar formula∑∞
n=1 ϕ(n) xn

1−xn = x
(1−x)2 .

Case B. S = S(all k-tuples)

Let S be the system of all ordered k-tuples, where 1 ≤ k ≤ n; that is, S(n) =
S(all k-tuples)(n) :=

⋃n
k=1{1, . . . , n}k for all n ∈ N. Then #S(all k-tuples)(n) =

n + n2 + . . . + nk. Conditions (C1) and (C2) hold true and (C3) fails.
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Case C. S = S(k-sets)

Let k ∈ N be fixed and let S be the system of all ordered k-tuples a = (a1, . . . , ak)
such that a1, . . . , ak ∈ N, 1 ≤ a1 < a2 < . . . < ak ≤ n; that is, S(n) is the
family of all sets with k elements from {1, . . . , n}, notation S(k-sets)(n). Then
#S(k-sets)(n) =

(n
k

)
. (C1) and (C2) are valid, (C3) fails.

This is a special case investigated by M. B. Nathanson [6] (see Introduction).
Note that Theorems 7, 8, and 9, concerning asymptotic estimates, are not valid
now. It is trivial that Φk(n) ≤

(n
k

)
. In [6, Th. 4] it is stated that for n odd,

Φk(n) =
(n

k

)
+ O(n

(!n/3")
k

)
) (for n even another similar result is also given). But

here n
(!n/3")

k

)
∼ nk+1, while

(n
k

)
∼ nk, so this does not give any new information

on the size of Φk(n).
Using the formula x(x − 1) · · · (x − n + 1) =

∑n
k=1 s(n, k)xk, where s(n, k) are

the Stirling numbers of the first kind, we obtain from (4),

Φk(n) =
1
k!

k∑

m=1

s(k,m)Jm(n), (31)

where Jm is the Jordan function (see Case A). It is well-known that
∑

n≤x Jm(n) =
1

(m+1)ζ(m+1)x
m+1 + O(xm) for m ≥ 2, and we obtain

∑

n≤x

Φk(n) =
1

(k + 1)!ζ(k + 1)
xk+1 + O(xk), k ≥ 2, (32)

giving the average order of Φk(n).
As new results we also give the following ones:

τS(k-sets)(n) =
∑

d|n

fS(k-sets)(d) =
∑

d|n

d∑

j=1

µ(j)
(
$d/j%

k

)
, n ∈ N, (33)

where for k = 1 this is the usual divisor function τ(n) :=
∑

d|n 1,

PS(k-sets)(n) =
∑

d|n

dΦk(n/d) =
∑

d|n

ϕ(d)
(

n/d

k

)
, n ∈ N, (34)

∞∑

n=1

fS(k-sets)(n)xn =
1

1− x

∞∑

n=1

µ(n)xkn

(1− xn)k
, (35)

∞∑

n=1

Φk(n)
xn

1− xn
=

xk

(1− x)k+1
, (36)

where (35) and (36) follow by the familiar formula
∑∞

n=1

(n
k

)
xn = xk

(1−x)k+1 .



INTEGERS: 10 (2010) 417

Also, by (34) and (32) we obtain

∑

n≤x

PS(k-sets)(n) =
ζ(k)

(k + 1)!ζ(k + 1)
xk+1 + O(ψk(x)), k ≥ 2, (37)

where ψk(x) = xk for k ≥ 3 and ψ2(x) = x2 log x.

Case D. S = S(sets)

Let S be the system of all ordered k-tuples (a1, . . . , ak) such that a1, . . . , ak ∈ N, 1 ≤
a1 < a2 < . . . < ak ≤ n, where 1 ≤ k ≤ n; that is, S(n) is the family of all nonempty
subsets of {1, . . . , n}, notation S(sets)(n). Then #S(sets)(n) = 2n− 1. All of (C1),
(C2) and (C3) hold true. Hence the asymptotic estimates are valid.

This is the another special case studied by Nathanson [6]. We have the following
additional results:

PS(sets)(n) =
∑

d|n

ϕ(d)2n/d − n, n ∈ N, (38)

∞∑

n=1

fS(sets)(n)xn =
1

1− x

∞∑

n=1

µ(n)xn

1− 2xn
, (39)

∞∑

n=1

φS(sets)(n)
xn

1− xn
=

x

(1− x)(1− 2x)
, (40)

where (39) and (40) are obtained by
∑∞

n=1(2
n − 1)xn = x

(1−x)(1−2x) . Note that
formula (39) is given, without proof, in [7, Item A085945]. Note also that 1 +
1
nPS(sets)(n) = 1

n

∑
d|n ϕ(d)2n/d is exactly the number of circular permutations of

two distinct elements taken n at a time (repetitions allowed). As a consequence we
obtain that PS(sets)(n) ≡ 0 (mod n) for any n ∈ N.

Furthermore, φS(sets)(n) =
∑

d|n µ(d)2n/d (n ∈ N, n > 1), given in [6, Th. 3]. It
follows that φS(sets)(n) ≡ 0 (mod n) for any n ∈ N, n > 1, by a well-known result
( 1

n

∑
d|n µ(d)2n/d represents the number of irreducible polynomials of degree n over

the field Z/2Z).

Case E. S = S(k-multisets)

Let k ∈ N be fixed and let S be the system of all ordered k-tuples a = (a1, . . . , ak)
such that a1, . . . , ak ∈ N, 1 ≤ a1 ≤ a2 ≤ . . . ≤ ak ≤ n; that is, S(n) is the family
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of all multisets with k elements from {1, . . . , n}, denoted by S(k-multisets)(n). Now
#S(k-multisets)(n) =

(n+k−1
k

)
. (C1) and (C2) are valid and (C3) fails.

This is a special case investigated by Shonhiwa [8]. We have for n ∈ N,

fS(k-multisets)(n) =
n∑

j=1

µ(j)
(
$n/j%+ k − 1

k

)
, (41)

φS(k-multisets)(n) =
∑

d|n

µ(d)
(

n/d + k − 1
k

)
, (42)

PS(k-multisets)(n) =
∑

d|n

ϕ(d)
(

n/d + k − 1
k

)
, (43)

where (42) is given in [8, p. 70].

Here FS(k-multisets)(x) =
∑∞

n=1

(n+k−1
k

)
xn = x

(1−x)k+1 and obtain

∞∑

n=1

fS(k-multisets)(n)xn =
1

1− x

∞∑

n=1

µ(n)(1− xn)xn

(1− xn)k+1
. (44)

Case F. S = S(all multisets)

Take all nonempty multisubsets of {1, . . . , n}. Then we have #S(all multisets)(n)
=

∑n
k=1

(n+k−1
k

)
=

(2n
n

)
− 1. All of (C1), (C2), and (C3) hold true. Hence the

asymptotic results are also valid:

fS(multisets)(n) ∼ φS(multisets)(n) ∼ PS(multisets)(n) ∼
(

2n
n

)
∼ 4n

√
πn

, n→∞. (45)

Case G. S = S(k-compositions)

Let k ∈ N be fixed and let S(n) = S(k-compositions)(n) := {(a1, . . . , ak) : a1, . . . , ak ∈
N, a1 + . . . + ak = n}. Then #S(k-compositions)(n) =

(n−1
k−1

)
. Conditions (C1) and

(C2) hold, while (C3) does not hold.
If a ∈ S(k-compositions)(n), then gcd(a) | n, and hence gcd(a, n) = gcd(a)

and we obtain that fS(k-compositions)(n) := Rk(n) = φS(k-compositions)(n) for any
n ∈ N, where Rk(n) was given in the Introduction. Also, τS(k-compositions)(n) =
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(n−1
k−1

)
. In this case we have, from Theorems 4 and 6,

PS(k-compositions)(n) =
∑

d|n

ϕ(d)
(

n/d− 1
k − 1

)
, n ∈ N, (46)

∞∑

n=1

Rk(n)
xn

1− xn
=

xk

(1− x)k
(47)

(for (47), see [4, 10]).

Case H. S = S(all compositions)

Let S(n) = S(all compositions)(n) :=
⋃

1≤k≤n{(a1, . . . , ak) : a1, . . . , ak ∈ N, a1 +
. . . + ak = n}. Then #S(all compositions)(n) = 2n−1. All of (C1), (C2), (C3) are
valid. Hence, among others,

fS(all compositions)(n) = φS(all compositions)(n) ∼ PS(all compositions)(n) ∼ 2n−1, n→∞.
(48)

Case I. S = S(k-partitions)

Let k ∈ N, k ≥ 2, be fixed and let S(n) = S(k-partitions) := {(a1, . . . , ak) : 1 ≤
a1 ≤ a2 ≤ . . . ≤ ak ≤ n, a1 + . . . + ak = n}, where #S(k-partitions) = pk(n) is the
number of k-partitions of n.

Conditions (C1) and (C2) are valid. Condition (C3) does not hold, since pk(n) ∼
nk−1

(k−1)!k! , as n→∞ (see, e.g., [5, Chapter 4]).
Here fS(k-partitions)(n) := pk(n) = φS(k-partitions)(n), like in Case H, where pk(n)

is the function studied in [9], see Introduction. Note that p3(n) = (n2 − 1)/12 for
any n ≡ ±1 (mod 6) (see [5, Chapter 4]). We obtain from (3) that for any n ∈ N,
n > 1, such that 6 ! n,

p3(n) =
∑

d|n

µ(d)p3(n/d) =
1
12

∑

d|n

µ(d)(n2/d2 − 1) =
1
12

J2(n), (49)

where J2(n) = n2
∏

p|n(1− 1/p2) is the Jordan function of order 2 (see Case A).
Similarly, from (17) we have for any n ∈ N, such that 6 ! n,

PS(3-partitions)(n) =
1
12

(P2(n)− n) , (50)

where P2(n) =
∑

d|n ϕ(d)(n/d)2 (see Case A).
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Case J. S = S(all partitions)

Let S(n) = S(all partitions) :=
⋃n

k=1{(a1, . . . , ak) : 1 ≤ a1 ≤ a2 ≤ . . . ≤ ak ≤
n, a1 + . . . + ak = n}. Here #S(all partitions) = p(n) is the number of unrestricted
partitions of n. Each of (C1), (C2), and (C3) hold.

We have

fS(all partitions)(n) = φS(all partitions)(n)

∼ PS(all partitions)(n) ∼ p(n) ∼ eK
√

n

4n
√

3
, n→∞, (51)

where K = π
√

2/3, by the result of Hardy and Ramanujan.
Finally, we note that one can consider other special cases too. Let, for example,

S(n) =
⋃m

k=1{(a1, . . . , ak) : 1 ≤ a1 ≤ a2 ≤ . . . ≤ ak ≤ n, a1 + . . . + ak = n}, where
m is fixed, 1 ≤ m ≤ n. Then #S(n) is the number of partitions of n with at most
m summands. Conditions (C1) and (C2) hold, while (C3) does not hold.
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