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Abstract
A Sierpiński number is a positive odd integer k such that k · 2n +1 is composite for
all n > 0. It has been shown by Filaseta et al. that given any integer R > 0, there
are integers k for which k, k2, k3, . . . , kR are each Sierpiński numbers. In this paper
we seek to generalize this to bases other than 2.

1. Introduction

In 1960, W. Sierpiński [17] proved there are infinitely many odd integers k for
which k · 2n + 1 is composite for all integers n > 0. Such odd numbers k are called
Sierpiński numbers. In 1962, Selfridge [unpublished] found what is now believed to
be the least Sierpiński number, k = 78557. Both did this by finding a finite set of
primes S, called a cover (or covering set), for which each term of k · 2n + 1 (n > 0)
is divisible by at least one element of S.

Sierpiński’s original cover [17] was based on the factorization of Fermat numbers
Fn = 22n

+ 1. We repeat the construction here because it is central to the proofs
below. First, 22n ≡ −1 (mod Fn), so we know ordp(2) = 2n+1 (the order of 2
modulo p) for any divisor p > 1 of Fn. (This also means the Fermat numbers
are pairwise relatively prime.) Taking advantage of the fact that F5 factors into
641 · 6700417 = p1 · q1, we have the following implications.
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(No. 18540006) from the Japan Society for the Promotion of Science.
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




n ≡ 20 (mod 21), k ≡ 1 (mod F0) =⇒ k · 2n + 1 ≡ 0 (mod F0)
n ≡ 21 (mod 22), k ≡ 1 (mod F1) =⇒ k · 2n + 1 ≡ 0 (mod F1)
n ≡ 22 (mod 23), k ≡ 1 (mod F2) =⇒ k · 2n + 1 ≡ 0 (mod F2)
n ≡ 23 (mod 24), k ≡ 1 (mod F3) =⇒ k · 2n + 1 ≡ 0 (mod F3)
n ≡ 24 (mod 25), k ≡ 1 (mod F4) =⇒ k · 2n + 1 ≡ 0 (mod F4)
n ≡ 25 (mod 26), k ≡ 1 (mod p1) =⇒ k · 2n + 1 ≡ 0 (mod p1)
n ≡ 0 (mod 26), k ≡ −1 (mod q1) =⇒ k · 2n + 1 ≡ 0 (mod q1).

(1)

Using the Chinese Remainder Theorem to solve for k yields an arithmetic sequence
of values k for which the associated sequences k · 2n + 1 (n > 0) are each covered
by the set {F0, F1, F2, F3, F4, p1, q1}. Adding k ≡ 1 (mod 2) to the mix will ensure
that the resulting k values are all odd, hence Sierpiński numbers.

In this construction it does not matter that the first five terms were prime, it
would still work if they were composite. Also, rather than stop with F5 (as Sierpiński
did), we could stop with any composite Fn which is (at least) partially factored.
Finally, this cover has an even more interesting property: not only are the k values
so constructed Sierpiński numbers, but so are their odd powers:

k, k3, k5, k7, . . . , k2n+1, . . . . (2)

It is natural then to ask if we can fill in the gaps in this sequence of powers, and
find a k for which all powers of k are Sierpiński numbers. This avenue was first
explored for the usual Sierpiński numbers by Chen [6], and then completely solved
by Filaseta et al. [9]. The main goal of this paper is to generalize this work to bases
other than 2 by proving the following two analogs of their results.

Theorem 1. Let b > 1 be an integer for which b+1 is not a power of 2. If there are
at least r generalized Fermat numbers Fm(b) = b2m

+ 1 which are each divisible by
at least two distinct odd primes, then there are infinitely many integers k such that
ktbn + 1 (n > 0) are each divisible by at least two distinct primes for all positive
integers t not divisible by 2r.

Theorem 2. Let b > 1 be an integer. For every positive integer R, there exist
infinitely many integers k for which each of ktbbn + 1 (n > 0, 1 ≤ t ≤ R) have at
least two distinct prime divisors.

These will be shown in Sections 3 and 4 respectively.
We end this introduction with a definition. Brunner et al. [5] generalized the

Sierpiński numbers to other bases b as follows.
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Definition 3. A generalized Sierpiński number base b (or b-Sierpiński) is an
integer k > 1 for which gcd(k+1, b−1) = 1, k is not a rational power of b, and
k · bn+1 is composite for all n > 0.

They also proved that such b-Sierpiński numbers exist for every base b > 1, con-
jectured the least b-Sierpiński number for 2 ≤ b ≤ 100, and proved those conjectures
for 34 of these bases [5]. (Notice that this definition is even a slight generalization
within base 2.)

The restriction gcd(k+1, b−1) = 1 in the definition rules out the trivial covers—
those cases where a single prime divides every term k · bn+1 (n > 0). For example
if k and b are odd, then all terms are divisible by 2. Bowen [4] used such trivial
covers to settle virtually all bases, but those currently studying the problem (such
as Barnes’ Internet group [2] and those applying specific cases such as Bosma [3])
rule out these trivial covers.

The definition of the (usual) Sierpiński numbers requires that k be odd. This
is done to avoid the Fermat numbers. The only primes of the form 2m2n + 1
(with m and n integers) are the Fermat primes. It is possible (as mentioned in the
famous footnote of Hardy and Wright [11]) that there may be only finitely many
Fermat primes. If the Fermat primes F0, F1, F2, F3 and F4 are all there are, then
the smallest positive integer k for which k · 2n + 1 (n > 0) are all composite would
be 216 = 65536. This would make k = 65536, not Selfridge’s k = 78557, the least
“Sierpiński number,” but requiring Sierpiński numbers to be odd avoids this issue.

In the general case, it is again helpful to avoid the corresponding generalized
Fermat numbers Fn(b) = b2n

+1 (these numbers are discussed, for example, in [7]).
Hence Definition 3 requires that k is not a rational power of b. For the reader’s
convienence, we include a proof that this condition is necessary and sufficient (The-
orem 14).

Finally, the intriguing paper of Jones [13] also considers many bases, but rather
than fix the base b and seek k, he essentially does the reverse, creating non-trivial
covers for each case. Since he never seeks the least choice of multiplier, the issues
of trivial covers and Generalized Fermat numbers are inapplicable.

2. Erdös’ Cover Conjecture

Before proving our main theorems, we digress to discuss the fate of a conjecture
of Erdös, and its strengthening by Filaseta et al., in this new setting. Erdös [8]
introduced the use of covers to disprove the de Polignac conjecture. Apparently
Erdös believed that all Sierpiński numbers came from coverings [10, Section F13],
so the following conjecture must also hold.
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Conjecture 4. If k is a Sierpiński number, then the smallest prime divisor of
k · 2n + 1 is bounded as n tends to infinity.

This conjecture was called into doubt by Izotov [12] and then by Filaseta et al.
[9]. They each gave examples of Sierpiński numbers that arose from a combination
of a partial cover and a factorization for the rest of the terms. For the generalized
case we are able to show this conjecture fails.

Theorem 5. There are integers b > 1, and b-Sierpiński numbers k, for which the
least prime factor of k · bn + 1 is unbounded as n tends to infinity.

Proof. Note 8 ·27n +1 = (2 ·3n +1)(4 ·32n−2 ·3n +1) (n > 0), so every term in this
sequence is a composite number. It is clear that 8 meets the other requirements in
Definition 3 and so is a Sierpiński number base 27. Let N > 0 be an integer. For
every prime q ≤ N, we know that q−1 divides N !, so 8 ·27N !+1 ≡ 9 (mod q). Since
3 does not divide any term of this sequence, this shows that no prime less than or
equal to N can divide 8 · 27N ! + 1, hence the smallest prime divisor of 8 · 27n + 1 is
unbounded as n tends to infinity. !

It would be trivial to construct an infinite number of such examples for Theorem 5,
but just one suffices to make the point.

So how is this related to the focus of our paper (Sierpiński numbers which are rth
powers for r > 1)? As Filaseta et al. presented their evidence against Conjecture 4,
they offered the following stronger version.

Conjecture 6. If k is a Sierpiński number that is not of the form lr for some
integers l ≥ 1 and r > 1, then the smallest prime divisor of k · 2n + 1 is bounded as
n tends to infinity.

If we generalize this conjecture by just replacing 2 by b, then it is unlikely to be
true. For example, let b = 240, m = 4732988, and k = 4bm4. It is easy to check
that k · bn + 1 is divisible by 241 if n is even, and is divisible by 57601 if n ≡ 1
(mod 4). When n ≡ 3 (mod 4), write n = 4j + 3, then

k · bn + 1 = (2m2b2j+2 + 2mbj+1 + 1)(2m2b2j+2 − 2mbj+1 + 1). (3)

So each term of the sequence k ·bn+1 (n > 1) is composite, and as gcd(k+1, b−1) =
1, k is a b-Sierpiński number.

Note that when n = 63, the two factors in Eq. (3) are each 90-digit primes.
So if the prime factors of k · bn + 1 are bounded as n tends to infinity, then this
sequence has a cover P which must contain one (or both) of these primes. The
order of b modulo these primes p, q are (p − 1)/120 and (q − 1)/60 respectively.
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By the following theorem of D. Schleicher [16], this means the cover P contains at
least 65,371,156,178,359,310,155,826 primes!

Theorem 7 (Schleicher). Let e = lcm(e1, e2, . . . , es) have the prime decomposition
e =

∏
q

αj

j . If e1, e2, . . . , es forms an irreducible covering pattern of period e with s
minimal, then s ≥ 1 +

∑
αj(qj − 1).

Even though it is heuristically unlikely that both terms in Eq. (3) are again
simultaneously prime, there seems to be no a priori limit on the lower bound of their
factors as n approaches infinity. We choose to state our version of Conjecture 6 as
a question.

Open Question If k is a b-Sierpiński number that is not of the form lrbs for some
integers l ≥ 1, r > 1, and s ≥ 1, is the smallest prime divisor of k ·bn +1 unbounded
as n tends to infinity?

3. Proof of Theorem 1

To motivate our method of proof, let us first add the terms k2, k6, k10, k14, . . . ,
to the (regular) Sierpiński numbers listed in Eq. (2). Write F6 = p2q2 where
p2 = 274177 and q2 = 67280421310721. Add the following to the congruences in
Eq. (1).

n ≡ 26 (mod 27), k ≡ 1 (mod p2) =⇒ k · 2n + 1 ≡ 0 (mod p2)

n ≡ 0 (mod 27), k ≡ 225
(mod q2) =⇒ k · 2n + 1 ≡ 0 (mod q2)

(4)

If 27 ! n, then for all integers t > 0, kt2n + 1 ≡ 0 (mod p) for the correct choice of
p ∈ {F0, F1, F2, F3, F4, p1, p2}. If instead 27|n, then q1 divides kt2n + 1 for odd t,
and q2 divides kt2n + 1 for t ≡ 2 (mod 4) (since q1 | k + 1 and q2 | k2 + 1). These
last congruences are key—we need kt to be congruent to −1 at the correct times.
This can be arranged by making k congruent to the correct power of the base b (for
example, k ≡ 225

in the last case of both Eq. (1) and (4)).

By using multiple composite terms, we may use the same construction to find
k for which kt is also a b-Sierpiński for all t except those divisible by high powers
of 2. This was done by Filaseta et al. [9] for the regular Sierpiński numbers, and
virtually the same argument works here. We begin with a modified version of
Theorem 1.

Theorem 8. Let b > 1 be an integer for which b + 1 is not a power of 2. If
there are at least r generalized Fermat numbers Fm(b) = b2m

+ 1 which are each
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divisible by at least two distinct odd primes, then there is an arithmetic progression
of integers k such that ktbn +1 (n > 0) are composite for each integer t not divisible
by 2r.

Proof. Define the integer F ′
m(b) by Fm(b) = 2rmF ′

m(b) with rm ≥ 0 and F ′
m(b) odd.

(Note rm = 0 if b is even; also rm = 1 if b is odd and m > 0.) In what follows
we need the fact that F ′

m(b) has at least one prime factor. This is the case unless
F ′

m(b) = 1. If F ′
m(b) = 1, then b is odd. It follows that m = 0; otherwise b2m

+1 ≡ 2
(mod 8). So F ′

m(b) = 1 implies b + 1 = 2r0 . We have ruled out this case, so for the
rest of the proof we assume b + 1 is not a power of 2 (hence F ′

m(b) > 1).
Let m0 < m1 < · · · < mr−1 be non-negative integers for which the generalized

Fermat numbers Fmj (b), hence F ′
mj

(b), each have at least two distinct odd prime
factors, say pj and qj . Note that for i > 0 we have

b2i

− 1 = (b− 1)(b + 1)(b2 + 1)(b4 + 1) · · · (b2i−1
+ 1), (5)

so b, b − 1, and F ′
m(b) (m ≥ 0) are pairwise relatively prime. By the Chinese

Remainder Theorem there is an arithmetic sequence of solutions to the following
set of congruences:

k ≡






0 (mod b− 1)

1 (mod b)

1 (mod F ′
m(b)) for 0 ≤ m < mr−1 and m '∈ {m0, . . . ,mr−1}

1 (mod pj) for 0 ≤ j ≤ r − 1

b2mj−j

(mod qj) for 0 ≤ j ≤ r − 1.

We further restrict k to those solutions which are greater than each of the moduli
above. The first of these modular restrictions guarantees gcd(k + 1, b− 1) = 1, and
the second guarantees that gcd(k, b) = 1, so k is not a rational power of b.

Given any positive integer t not divisible by 2r, say t = 2wt′ where t′ is odd and
0 ≤ w < r, we must show ktbn + 1 is composite for each positive integer n. Fix a
positive integer n and let n = 2in′ where n′ is odd. We may complete this proof by
showing ktbn + 1 is divisible by d, where

d =






F ′
i (b) if i < mw and i '∈ {m0, . . . ,mw}

pj if i = mj for some j with 0 ≤ j ≤ w

qw if i > mw.

Since d < k < ktbn + 1, this will show the latter term is composite.
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If i ≤ mw, then d divides b2i
+1, which divides b2in′ +1 = bn +1. Because k ≡ 1

(mod d), it follows d divides ktbn + 1.
If instead i > mw, then

kt ≡ (b2mw−w

)2
wt′ ≡ (b2mw )t′ ≡ (−1)t′ ≡ −1 (mod qw).

Now d = qw divides b2mw + 1 which divides b2i − 1 by Eq. (5). Thus d divides
b2in′ − 1 and it follows that

kt · bn + 1 ≡ −(bn − 1) ≡ 0 (mod d).

This completes the proof of the theorem. !

For example, when b = 5, F ′
m(b) is prime for m = 0, 1, and 2. It is compos-

ite (with distinct prime divisors) for m0 = 3,m1 = 4, . . . ,m10 = 13. If we let qj

be the smallest prime factor of F ′
mj

(b) and pj be the second smallest, then we
get the b-Sierpiński numbers in Table . Of course, as noted in the discussion be-
fore the proof, rather than use prime factors, we may use any two relatively prime
(non-trivial) proper divisors. So it is sufficient to know any odd prime divisor and,
after checking that the given generalized Fermat is not a power of that prime, use

k r

23140626796 1

3352282631064632411056 2

38454071854799507248067375352496 3

295612797233398523232282186442005794587542575896 4

1202250010386171287615458085\ 5
386724017477152933279927552922222324231610279296

4833\ 6
96281140918612511630787705875212985273405983905\
512852696056665671273849671134513427529509057456

18081740848967\ 7
53044039134711401288516658002520824319923798573\
210660688220428187289811356995735827761349820556

Table 1: k such that kt is a 5-Sierpiński number when 2r ! t
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form number form number
22m

+ 1 238 62m
+ 1 222

(32m
+ 1)/2 256 102m

+ 1 232
(52m

+ 1)/2 246 122m
+ 1 230

Table 2: Number of generalized Fermat numbers known to be composite

the cofactor as the second “prime.” Table shows that there are 246 known com-
posite generalized Fermat numbers Fm(5) (Keller [14]), so there are 5-Sierpiński
numbers k for which k, k2, k3, . . . , k2246−1 are all 5-Sierpiński numbers.

Next, Theorem 1 states that the terms of the sequence k · bn + 1 are not only
composite, but have (at least) two distinct prime divisors. Towards this end we
prove the following.

Lemma 9. Let L > 0, b ≥ 2, and r ≥ 3 be integers. Then there is a positive integer
N = N(L, b, r) such that for each integer k > N and every integer n > 0, krbn + 1
has a prime factor greater than L.

Proof. With L and r fixed as in the lemma we must show there are only finitely
many integers n > 0 for which krbn + 1 contains no prime factors greater than L;
i.e.,

krbn + 1 = pe1
1 pe2

2 · · · pem
m (6)

where the pi are the primes less than or equal to L. Writing ei = qir + ri and
n = q0r+r0 where qi and ri are non-negative integers satisfying ri < r (0 ≤ i ≤ m),
Eq. (6) is

pr1
1 pr2

2 · · · prm
m (pq1

1 pq2
2 · · · pqm

m )r − br0(kbq0)r = 1. (7)

Thus n satisfies one of a finite number of Thue equations Axr −Byr = 1 (with rm

choices of A and r for B). Each such equation has only finitely many solutions [15,
Chpt. 22]. !

Proof of Theorem 1. By Theorem 8, we have infinitely many integers k such that
ktbn + 1 (n > 0, 2r ! t) are all divisible by a prime in the cover constructed in that
proof. Let L be the largest prime in that cover. These primes also cover k3tbn + 1
(n > 0, 2r ! t), so we may complete the proof by applying Lemma 9. !
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4. Removing the Dependence on Factorization

In this section we will show that we can do away with the need to know factors of
generalized Fermat numbers for those bases of the form bb. Remember that the key
to Sierpiński’s original cover (and our extension above) was finding a multiplier k
which, when raised to the correct power of two, gave us −1 modulo some prime.
Lemma 11 will help provide that term. First we need to recall a pivotal result of
A. S. Bang [1].

Theorem 10 (Bang’s Theorem). Let b and n be positive integers with b ≥ 2. Then
bn − 1 has a primitive divisor unless b = 2 and n = 6; or b + 1 is a power of 2 and
n = 2.

Lemma 11. Let b > 1 and s > 1 be integers. Let q be an odd prime which does
not divide b. Then there is an odd primitive prime divisor p of bbq2s − 1. Any such
divisor satisfies the following:

(i) ordp(b) = bq2s

(ii) the prime p does not divide Fn(b) or Fn(bb) for any n ≥ 0

(iii) there is an integer e for which eb2s ≡ −1 (mod p)

Proof. The prime 2 can not be a primitive divisor of bn − 1 for n > 1, so the
existence of an odd prime divisor p follows from Bang’s Theorem (Theorem 10).
Since p is a primitive divisor of bbq2s − 1, it does not divide bt − 1 for any t < bq2s,
proving (i). Note q is odd and does not divide b, so q does not divide the order of b
modulo any divisor of Fn(b) or Fn(bb), so (ii) now follows from (i). Also (i) implies
bq2s divides p − 1, so in particular, s > 1 implies (p − 1)(b − 1) ≡ 0 (mod 8), and
p ≡ 1 (mod b). The Jacobi symbol satisfies (b|p) = (p|b) = (1|b) = 1. This means
there is an integer x for which x2 ≡ b (mod p), so e = xq then has order 2s+1b by
part (i). Thus e2sb ≡ −1 (mod p), giving (iii). !

Now we may presents a version of Theorem 1 which does not require us to
know the factors of generalized Fermat numbers. (This is slightly stronger than the
version Theorem 2 stated in the introduction.)

Theorem 12. Let b > 1 be an integer. For every positive integer R, there exist
infinitely many integers k for which each of k, k2, k3, . . . , kR are each bb-Sierpiński
numbers, and the associated terms kt(bb)n +1 (n > 0, 1 ≤ t ≤ R) each have at least
two distinct prime divisors.
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Proof. So that we may apply Lemma 11, we will prove there are infinitely many
integers k for which

k4b(bb)n + 1, k8b(bb)n + 1, k12b(bb)n + 1, . . . , k4bR(bb)n + 1 (8)

each have at least two distinct prime divisors for each positive integer n. These
multipliers k4b will then meet the requirements of our theorem.

The terms in Eq. (8) have the form kr(bb)n + 1 with r a multiple of 4b. Write
r = 2sbr′ where r′ is odd. Note that s and r′ are functions of r, s ≥ 2 and
2s−2r′ ≤ R. Below we will find a cover Pr for a fixed value of r (with variable n),
and the final cover will be the union of the covers for each r.

Choose an odd prime q = q(r) such that gcd(q, r′b) = 1, and the primes q(r) are
distinct for each r. Let M be the maximum of {s(r) + q(r)− 1} over the values of
r.

Note that bb +1 is not a power of 2, so we may begin our cover just like Sierpiński
did, setting

k ≡ 1 (mod pj) for 0 ≤ j ≤M, (9)

where pj > 1 is any odd divisor of Fj(bb). If n ≡ 2j (mod 2j+1) for some j ≤ s+q−2,
then n = 2jn′ for some odd integer n′, and it follows that

kr(bb)n + 1 ≡ 1r(−1)n′ + 1 ≡ 0 (mod pj).

The set of congruences in Eq. (9) will be used as part of the cover for every r,
though not every r will require all of them.

This leaves
n ≡ 0 (mod 2s+q−1),

which we will cover with a different set of congruences for each r ≤ 4bR. Now n
must satisfy one of the q = q(r) congruences

n ≡ j2s+q−1 (mod 2s+q−1q) for 0 ≤ j ≤ q − 1.

As 2q and r′ are relatively prime, we know j2s+q−1 and jr′2s+q−1 produce the same
set of residues modulo 2s+q−1q, so n must satisfy one of

n ≡ jr′2s+q−1 (mod 2s+q−1q) for 0 ≤ j ≤ q − 1. (10)

Lemma 11 tells us that for each j there is a prime divisor p̂j = p̂j(r) of b2s+jbq − 1
together with an integer ej = ej(r) such that e2s+jb

j ≡ −1 (mod p̂j). To the cover
started in Eq. (9) we now add

k ≡ e2j

j b−j2q−1
(mod p̂j) for 0 ≤ j ≤ q − 1. (11)
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By Equation (10), for each j we now may write n as jr′2s+q−1 +2s+q−1qQ for some
integer Q. So modulo p̂j we now have

kr(bb)n ≡ (e2j

j b−j2q−1
)2

sbr′(bb)jr′2s+q−1+2s+q−1qQ

≡ (e2s+jbr′
j )(b−jbr′2s+q−1

bjbr′2s+q−1
)b2s+q−1bqQ

≡ (e2s+jb
j )r′(1)(b2s+jbq)2

q−j−1Q ≡ (−1)r′12q−j−1Q ≡ −1.

(12)

So p̂j divides kr(bb)n + 1.
Thus, for all n > 0, kr(bb)n + 1 has a divisor among the set

Pr = {p0, p1, . . . , ps+q−1, p̂0, p̂1, . . . , p̂q−1}.

By Lemma 11, p̂j(r) is an odd prime for which b has the order 2s+jbq(r). Since the
primes q(r) are distinct, these primes (as j and r vary) are all distinct. They also
do not divide b or b− 1, so we may apply the Chinese Remainder Theorem to show
there are infinitely many solutions to the system of congruences defined by

k ≡ 0 (mod b− 1) and k ≡ 1 (mod b) (13)

and those in Eq. (9) and (11) (for each r). These two additional congruences
(Eq. (13)) ensure that gcd(k − 1, b + 1) = 1 and k is not a rational power of b.

Thus for k sufficiently large, kr is a b-Sierpiński number for each r. If our desire
is solely to show these numbers are b-Sierpiński numbers, sufficiently large means
larger than the maximum L of the primes used to form the covers P = ∪Pr where
the union is over r ∈ {4, 8, 12, . . . 4R}. If we wish to prove the stronger statement
that each of the numbers kr(bb)n + 1 have at least two distinct prime divisors, we
can use Lemma 9 with this same maximal prime L, to define an appropriate lower
bound for k. !

We would have liked to use b, rather than bb, in the previous theorem, but we
needed (b|p) = 1 in Lemma 4.4. This requires b in the exponent of the Mersenne
term, so also in the exponent of the multiplier k. Finally, this requires b divide the
exponent of b, so that terms cancel appropriately in Eq. (12).

5. Additional Proofs

In this last section we prove the result mentioned at the end of Section 1. We begin
with an elementary lemma.

Lemma 13. Let e > 1, f > 0 and c '= 0 be integers. Write e = 2ne′ where e′ is
odd. Then gcd(cf − 1, ce + 1) > 1 if and only if c is odd or 2n+1 divides f .
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Proof. Let d = gcd(cf − 1, ce +1). First note that 2 divides d if and only if c is odd,
so assume c is even. Note that since e′ is odd, c2n

+1 divides ce +1. If 2n+1 divides
f , then c2n

+ 1 divides d. Conversely, if any odd prime p divides d, then ordp(c)
divides both 2e and f , but not e. This means 2n+1 divides ordp(c) and therefore
divides f. !

Theorem 14. Let b > 1 and k > 0 be integers for which gcd(k + 1, b − 1) = 1.
There is an integer c > 1 for which k · bn + 1 = Fr(c) for infinitely many integer
values of r and n, if and only if k is a rational power of b.

Proof. Let b > 1 and k > 0 be fixed integers for which gcd(k + 1, b− 1) = 1.
Suppose there is an integer c for which k ·bn +1 (n > 1) is the generalized Fermat

number Fr(c) for infinitely many pairs of integers r and n. Choose two such pairs
(r, n) and (s,m) with n < m. Then

k · bn + 1 = c2r

+ 1 and k · bm + 1 = c2s

+ 1.

Thus bm−n = c2s−2r
, and it follows b = c

2s−2r

m−n , k = c
m2r−n2s

m−n , and therefore k is a
rational power of b (and both are rational powers of c).

Conversely, suppose k is a rational power of b, say k = be/f for relatively prime
integers e and f with e ≥ 0 and f > 0. Then because b is an integer, b = cf

and k = ce for some integer c. Write f = 2tf ′ where f ′ is an odd integer. Now
gcd(cf − 1, ce +1) = 1, so by Lemma 13, c is even and the power of 2 which divides
e is at least as great as the power of 2 which divides f. So we may write e = 2te′

for some (not necessarily odd) integer e′. Note that if r is any positive multiple
of ordf ′(2), then e′ ≡ e′2r (mod f ′), so we may solve the following for a positive
integer n = n(r):

e′ + f ′n = e′2r.

So it follows that

e + fn = 2t(e′ + f ′n) = e′2r+t,

and there are infinitely many choices of r and n for which

k · bn + 1 = ce+fn + 1 = ce′2r+t

+ 1 = Fr+t(ce′).

!
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[13] L. Jones, Variations on a theme of Sierpiński, J. Integer Seq., 10 (2007), Article 07.4.4, 15
pp. (electronic); MR 2304362.

[14] W. Keller, Factors of generalized Fermat numbers found after Björn & Riesel, http://www1.
uni-hamburg.de/RRZ/W.Keller/GFNfacs.html, Jan. 2009.

[15] L. J. Mordell, Diophantine equations, Pure and Applied Mathematics, 30, Academic Press,
New York, 1969.

[16] D. Schleicher, unpublished notes, 1991.



INTEGERS: 10 (2010) 436
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