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Abstract
We are interested in subsets S of Z which admit simultaneous orderings, that is,
sequences {an}n≥0 such that

∏n−1
k=0(an − ak) divides

∏n−1
k=0(x − ak) for every x ∈

S (analogously to n! which divides (m + n)!/m! for every m). In particular, we
characterize the polynomials f of degree 2 such that f(N) admits a simultaneous
ordering.

1. Introduction

Let D be an integral domain with quotient field K and let S be an infinite subset
of D. Recall that we may define a sequence of generalized factorials associated to
S in the following way:

Definition 1. (cf. [4, §§ I.1, II.1], [5] and [7])

1. The ring of integer-valued polynomials on S with respect to D is Int(S,D) =
{f ∈ K[X] | f(S) ⊆ D}.

2. The n-th characteristic ideal of S with respect to D is the fractional ideal
In(S,D) formed by the leading coefficients of the polynomials of Int(S,D)
with degree ≤ n.

3. The n-th factorial ideal of S with respect to D is the ideal n!DS ‘inverse’ of
In(S,D), that is, n!DS = {x ∈ D | xIn(S,D) ⊆ D}.

For instance, when D = S = Z, the n-th factorial ideal n!ZZ is exactly n!Z.
When D is a Dedekind domain, these factorial ideals are defined locally by Bhar-

gava [2] by means of what he called p-orderings. In [3] he showed that they satisfy
several nice properties which generalize those of the classical factorials. Actually, we
want to restrict our study to subsets of Dedekind domains which have simultaneous
orderings in the following sense:
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Definition 2. [3] A sequence {an}n≥0 of elements of S is said to be a simultaneous
ordering of S (with respect to the domain D) if the following equivalent asssertions
are satisfied :

1. For all n > 0 and for all x ∈ S,

n−1∏

k=0

(an − ak) divides
n−1∏

k=0

(x− ak) in D.

2. For all n > 0 and for all x0, x1, . . . , xn ∈ S,
∏

0≤i<j≤n

(aj − ai) divides
∏

0≤i<j≤n

(xj − xi) in D.

3. The following polynomials form a basis of the D-module Int(S,D) :

f0(X) = 1 and fn(X) =
n−1∏

k=0

X − ak

an − ak
for n ≥ 0.

For a proof of the equivalences, see [7, §6] or [11, §2].
For instance, when D = Z, the sequence {n}n≥0 is a simultaneous ordering of

N (resp. Z). Moreover, {n}n≥k for k ∈ N (resp. {n}n≥k and {−n}n≥k for k ∈ Z)
are simultaneous orderings of N (resp. Z). Note that N denotes here the set of
non-negative integers. More generally, the following lemma is obvious:

Lemma 3. If the sequence {an}n≥0 is a simultaneous ordering for S, then

1. For all n > 0,

n!DS =
n−1∏

k=0

(an − ak)D,

2. for every α ∈ D \ {0}, β ∈ D, the sequence {αan + β}n≥0 is a simultaneous
ordering of the subset αS + β = {αs + β | s ∈ S},

3. for all n > 0, for all α ∈ D \ {0}, and for all β ∈ D,

n!DαS+β = αnn!DS .

Remark 4.

1. If D is a Dedekind domain, S is a subset of D, and p is a maximal ideal of D,
then we could define a p-ordering of S as a ‘simultaneous ordering’ of S with
respect to the local domain A = Dp.



INTEGERS: 10 (2010) 439

2. A priori, a simultaneous ordering of S is an infinite sequence of elements of S.
But, we could also consider finite simultaneous orderings, specially when S is
finite : a simultaneous ordering of S of length m is a sequence {a0, a1, . . . , am}
of elements of S which satisfies the equivalent assertions of Definition 2 with
the restriction: 1 ≤ n ≤ m.

In fact, we want also to restrict our study to subsets of Z. Note that in this case,
factorial ideals are principal and so may be considered as represented by integers.
The aim of this paper is to look for natural examples of sets of integers which admit
simultaneous orderings. We have already seen the sequence {n}n∈N. The following
examples are well-known.

Example 5.

1. For every integer q ≥ 2, the sequence {qn}n≥0 is a simultaneous ordering of
the subset S = {qn | n ≥ 0} (cf. [3]). Indeed, for every m ≥ n, the number:

(qm − 1)(qm − q) . . . (qm − qm−1)
(qn − 1)(qn − q) . . . (qn − qn−1)

= q
(m−n)(m+n−1)

2 (qm − 1)(qm−1 − 1) . . . (qn+1 − 1)

is an integer. (In fact, this is the number of n-dimensional subspaces of a
m-dimensional Fq-vector space, when q is a prime power.) Consequently, by
Lemma 3,

n!ZS = q
n(n−1)

2 (qn − 1)(qn−1 − 1) . . . (q − 1).

2. The sequence {n2}n≥0 is a simultaneous ordering of S = {n2 | n ≥ 0} (cf.
[3]). Indeed, for every n > 0, the polynomial

n−1∏

k=0

X − k2

n2 − k2

of degree 2n takes integral values on 2n +1 consecutive integers x (−n ≤ x ≤
n). And then, it takes integral values on every integer. Consequently,

n!ZS =
1
2
(2n)!.



INTEGERS: 10 (2010) 440

3. Analogously
{

n(n+1)
2

}

n≥0
is a simultaneous ordering of S =

{
n(n+1)

2 | n ≥ 0
}

(cf. [8, Exercise II.11.6]). Indeed, for every n > 0, the polynomial

n−1∏

k=0

X(X + 1)− k(k + 1)
n(n + 1)− k(k + 1)

=
n−1∏

k=0

(X − k)(X + k + 1)
(n− k)(n + k + 1)

of degree 2n takes integral values for −n ≤ X ≤ n. As a consequence,

n!ZS =
(2n)!
2n

.

Remark 6. Using Lemma 3.1, it is easy to construct other subsets which ad-
mit simultaneous orderings. But, are there other ‘natural’ examples? Note that
it is more likely to find a subset with a simultaneous ordering by considering
the polynomial closures of the subsets S, that is, the largest subsets S such that
Int(S, Z) = Int(S, Z), since if S admits a simultaneous ordering then S does also.
The converse is not always true: the subset S = {n+n! | n ∈ N} does not have any
simultaneous ordering, while S = Z does.

Let us consider the set P of prime numbers and its polynomial closure P =
P ∪ {±1} [6]. Then, one may check that the sequence {1, 2, 3, 5} is a simultaneous
ordering (of length 3), but there are no simultaneous orderings of length 4 [10]. Note
that we could construct infinite subsets S of P such that S admits a simultaneous
ordering (see [9, Corollary 5.6]), but they are obtained by an ad hoc construction
choosing the elements one by one, and they do not form ‘natural’ sets.

In order to find other ‘natural’ subsets, we are going to consider two types of
subsets which in some sense generalize the sequence {n2}n∈N : first the sets formed
by the k-th powers of the integers, then the sets formed the range of integer-valued
polynomials of degree 2.

2. General Remarks

Since, we are going to focus our study on the subsets S of the form f(N) = {f(n) |
n ∈ N} or f(Z) = {f(n) | n ∈ Z} where f denotes a non-constant polynomial, we
begin with two general results. The first proposition is obvious:

Proposition 7. Let f(X) be a non-constant polynomial with coefficients in Z such
that f(N) (resp. f(Z)) admits a simultaneous ordering {f(an)}n∈N. Let

g(X) = α(f(ε(X − λ)) + γ where α, γ ∈ Z, ε = 1,λ ∈ N

(resp. ε ∈ {±1},λ ∈ Z).
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Then the sequence {ε(an +λ)}n∈N is a simultaneous ordering for g(N) (respectively,
g(Z)).

Proposition 8. Let f(X) ∈ Z[X] be a non-constant polynomial such that the subset
f(N) admits a simultaneous ordering {f(an)}n∈N where the an’s are in N. Then
there exists an integer m such that, for n ≥ m, an+1 = 1 + an.

Proof. We may assume that the leading coefficient of f is positive. Then, there
exists n1 ≥ a0 such that f is strictly increasing on the interval [n1,+∞[ and f(n1)
is the maximum value of f on [0, n1].

Let l > 0 be the least integer such that al > n1 : all the elements a0, . . . , al−1 are
≤ n1. As

∏l−1
k=0(f(al)− f(ak)) divides

∏l−1
k=0(f(x)− f(ak)) for every x > n1, as all

the factors in both products are strictly positive and as f is increasing on [n1,+∞[,
necessarily al, which is the least possible, is equal to n1 + 1.

Let us consider al+1. Either al+1 < n1, or al+1 > n1. Asume that al+1 > n1, and
hence, that al+1 > al = n1 + 1. The previous argument shows that al+1 = al + 1.
And so on ... If al+s > n1, then al+s = 1 + max{al, al+1, . . . , al+s−1}.

As there are at most finitely many elements ak’s between 0 and n1, there is some
integer m ≥ l such that an > n1 for every n ≥ m. Consequently, for every n ≥ m,
one has: an+1 = 1 + an.

Remark 9.

1. Obviously, if m satisfies the condition in Proposition 8, then

n ≥ m ⇒ an = am + n−m,

k < m < n < n′ ⇒ ak < am < an < an′ .

2. The previous proof still holds if we replace the polynomial function f by any
function f : N → Z such that f is ultimately strictly increasing.

3. Simultaneous Orderings for {nr | n ∈ N} and {nr | n ∈ Z}

In the introduction we recalled that, for r = 1 or r = 2, the set {nr | n ∈ N} admits
a simultaneous ordering. In this section, we prove that this is no more true for
r ≥ 3.

Proposition 10. The set {nr | n ≥ 0} admits an infinite simultaneous ordering if
and only if r = 1 or r = 2.
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Proof. Let r ≥ 2. Assume that Sr = {nr | n ≥ 0} admits a simultaneous ordering
{an}n≥0. Since a1 − a0 divides all the differences x1 − x0 for x0, x1 ∈ Sr, we
necessarily have

{a0, a1} = {0, 1}.

Moreover, since for every n ≥ 2,
∏n−1

k=0(an − ak) divides
∏n−1

k=0(mr − ak) for all
m ≥ an, the sequence ak is strictly increasing and

ak = kr for k ≥ 2.

Consequently, 2r(2r − 1) divides mr(mr − 1) for every m ≥ 0.
Assume now that r ≥ 3. We know that the unit group of Z/2rZ is :

(Z/2rZ)× * (Z/2Z)× (Z/2r−2Z).

Thus, there exists an odd integer m whose class in (Z/2rZ)× is of order 2r−2.
Since 2r divides mr − 1, 2r−2 divides r. Then, necessarily, r = 4. Since, the first
terms of the sequence are 0, 1, 2, 3 or 1, 0, 2, 3, 34(34 − 1)(34 − 24) has to divide
44(44 − 1)(44 − 24). But, it does not.

Remark 11.

1. The previous proof shows that a simultaneous ordering of {nr | n ∈ N} has at
most 3 terms if r = 3 or r ≥ 5, and 4 terms if r = 4.

2. A simultaneous ordering of {n2 | n ∈ N} is necessarily the sequence {n}n≥0,
except for the first two terms, which may be 1 and 0 instead of 0 and 1. It is
then a natural question to ask whether the subset {n2 | n ∈ N∗} admits also
a simultaneous ordering. Strangely, it does not: a2

1 − a2
0 would divide x2 − y2

for all x, y ∈ N∗, and then must be 1, and no such pair (a0, a1) exists.

Proposition 12. The set {n2s+1 | n ∈ Z} with s ≥ 1 does not admit any infinite
simultaneous ordering.

Proof. Let s ≥ 1 and assume that {n2s+1 | n ∈ Z} admits a simultaneous ordering
{an}n≥0. Analogously to the previous proof, we necessarily have:

{a0, a1, a2} = {0, 1,−1}.

Moreover, since
∏2

k=0(a3−ak) divides
∏2

k=0(m
r−ak) for all m ∈ Z, we necessarily

have a3 ∈ {±2}. Consequently, for every m ∈ Z:

22s+1(22s+1 − 1)(22s+1 + 1) | m2s+1(m2s+1 − 1)(m2s+1 + 1).
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In particular, if m is odd:
22s+1 | m2(2s+1) − 1.

If we choose for m an odd integer whose class in (Z/22s+1Z)× is of order 22s−1, we
then see that 22s−1 divides 2(2s + 1). This is impossible unless s = 1.

Let us look at the case 2s + 1 = 3. We first check that 7 × 8 × 9 divides
m3(m3 − 1)(m3 + 1) for every m ∈ Z, that is, a3 = ±2 is the fourth term of a
simultaneous ordering. Then, necessarily a4 = ∓2, but:

23(23 − 1)(23 + 1)(23 + 23) ! 33(33 − 1)(33 + 1)(33 + 23).

Remark 13. The previous proof shows that a simultaneous ordering of {n2s+1 |
n ∈ Z} has at most 4 terms if 2s + 1 = 3, and 3 terms if 2s + 1 ≥ 5.

4. The Range on N of Polynomials of Degree 2

Theorem 14. Let f ∈ Int(Z) = {g ∈ Q[X] | g(Z) ⊆ Z} be a polynomial of degree
2. Then, the subset f(N) admits a simultaneous ordering if and only if f is of one
of the forms:

αX(X − 2λ) + β or α
X(X − 1− 2λ)

2
+ β where α,β ∈ Z,λ ∈ N.

Proof. Assume that f ∈ Int(Z) has degree 2 and that f(N) admits a simultaneous
ordering. Then, 2f = aX2 + bX + c belongs to Z[X] and has the same property. Of
course, the polynomial aX2 + bX has the same property. Moreover, one may divide
aX2 + bX by the g.c.d. of a and b, and hence, one may assume that a and b are
relatively prime and also that a > 0. Thus, consider g(X) = aX2 +bX ∈ Z[X] with
a > 0 and a and b relatively prime, such that g(N) admits a simultaneous ordering
{g(an)}n≥0.

Consider the subset T = {an | n ≥ 0}. If T -= N, Lemma 15 below implies that
a = 1 and b < 0, that is, g(X) is of the form X(X − 2λ) or X(X − (2λ− 1)) where
λ > 0. Replacing X by X + λ, we are led to consider (X + λ)(X −λ) = X2−λ2 or
(X + λ)(X − λ− 1) = X(X − 1)− λ(λ + 1). Now, with a translation on the values,
we are led to consider X2 or X(X − 1). They are Examples 5. Consequently, when
T -= N, f is of one of the given forms with λ > 0.

Assume now that T = N. Then, Lemma 16 below implies that a = 1 and b ≤ 1.
If b < 0, we are led to the previous forms. If b = 0 or 1, then f is of the forms given
in the theorem with λ = 0.
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Lemma 15. Let f = aX2 + bX ∈ Z[X] with a > 0 and a and b relatively prime.
Assume that the subset f(N) admits a simultaneous ordering {f(an)}n≥0 where
an ∈ N and consider the subset T = {an | n ∈ N}. If T -= N, then a = 1 and b < 0.

Proof. It follows from Proposition 8 that there exists m such that:

n ≥ m ⇒ an = n−m + am.

Consequently, there exists a greatest integer r such that r− 1 /∈ T . The hypothesis
T -= N means that r ≥ 1. For every n > m, let

Tn = {ak | 0 ≤ k < n} = {t ∈ T | t ≤ an−1}.

By definition of a simultaneous ordering,

∀n ∈ N∗ ∀x ∈ S
n−1∏

k=0

(f(an)− f(ak)) divides
n−1∏

k=0

(x− f(ak)).

In particular, for x = f(an+1):

n−1∏

k=0

(f(an)− f(ak)) divides
n−1∏

k=0

(f(an+1)− f(ak)). (∗)

Taking into account the form of f , we have:

∀x, y ∈ Z f(x)− f(y) = (x− y)(a(x + y) + b).

Consequently, (*) is equivalent to

n−1∏

k=0

an+1 − ak

an − ak
×

n−1∏

k=0

a(an+1 + ak) + b

a(an + ak) + b
∈ Z,

which may be written

∏

t∈Tn

an+1 − t

an − t
×

∏

t∈Tn

a(an+1 + t) + b

a(an + t) + b
∈ Z.

Note that, for n > m, one has

∏

t∈Tn

an+1 − t

an − t
=

∏

t∈Tn,t≤r−2

an + 1− t

an − t
×

∏

r≤t≤an−1

an − (t− 1)
an − t
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and ∏

r≤t≤an−1

an − (t− 1)
an − t

= an − r + 1.

Similarly,

∏

t∈Tn

a(an+1 + t) + b

a(an + t) + b
=

∏

t∈Tn,t≤r−2

a(an + 1 + t) + b

a(an + t) + b
×

∏

r≤t≤an−1

a(an + 1 + t) + b

a(an + t) + b

and

∏

r≤t≤an−1

a(an + t + 1) + b

a(an + t) + b
=

2aan + b

a(an + r) + b
.

Consequently, if (*) is satisfied, then a(an + r) + b divides:

(an − r + 1)× (2aan + b)×
∏

t∈Tn, t≤r−2

(an + 1− t)×
∏

t∈Tn, t≤r−2

(a(an + 1 + t) + b).

For n > m, a(an + r) + b = an + c where c = a(am + r −m) + b and a and c are
relatively prime. Hence, by Dirichlet’s theorem, one may choose n as large as we
want such that a(an + r) + b is a prime number.

From now on, we fix such an n with an > 2|b|+3r. Then, π = a(an +r)+b being
prime must divide at least one of the factors of the above product, and clearly, it
does not divide an − r + 1. We consider three cases: the first one is impossible, the
two others imply the announced conclusion.

1. For t ≤ r − 2, a(an + 1 + t) + b < a(an + r) + b = π, and hence, π does not
divide the product

∏
t∈Tn, t≤r−2(a(an + 1 + t) + b).

2. If π divides 2aan + b, then it divides the difference 2π− (2aan + b) = 2ar + b.
Since an is choosen large enough such that π > |2ar+b|, if π divides 2aan +b,
one has 2ar + b = 0. And, r = −b/2a implies b < 0 and a = 1 (since r ≥ 1
and (a, b) = 1).

3. Finally, π − (an + 1 − t) = (a − 1)an + ar + b − 1 + t > (a − 1)an + b (since
r ≥ 1 and, if t = 0, then r ≥ 2) and this last number is ≥ 0 if a ≥ 2 or if
b ≥ 0. Thus, if π divides the product

∏
t∈Tn, t≤r(an +1− t), necessarily a = 1

and b < 0. .

Lemma 16. Let f = aX2 + bX ∈ Z[X] with a > 0, and a and b relatively prime.
Assume that the subset f(N) admits a simultaneous ordering {f(an)}n≥0 and that
T = {an | n ≥ 0} = N. Then, a = 1 and b ≤ 1.
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Proof. We may assume that b -= 0. It follows from Proposition 8 that there exists
an integer m such that, for n ≥ m, we have an = n − m + am. Then, for every
n ≥ m, we have an = n, since T = N.

Moreover, since T = N, the integer r that we introduced in the proof of Lemma 15
is equal to 0. Thus, the divisibility condition (*) reduces to:

an + b divides (n + 1)× (2an + b).

One may choose n > 2|b| such that an + b is prime. Since an + b does not divide
2an + b, an + b has to divide n + 1, and hence, to be ≤ n + 1. Then, necessarily,
a = 1 and b ≤ 1.

5. The Range on Z of Polynomials of Degree 2

Theorem 17. Let f ∈ Int(Z) = {g ∈ Q[X] | g(Z) ⊆ Z} be a polynomial of degree
2. Then, the subset f(Z) admits a simultaneous ordering if and only if f is of one
of the forms:

αX(X − 2λ) + β, α
X(X − 1− 2λ)

2
+ β or αX(2X − 1− 2λ) + β where α,β,λ ∈ Z.

Proof. Let f(X) = aX2 + bX + c with a -= 0. As previously seen, we may assume
that a, b, c ∈ Z. Write:

a = αd, b = −εαe with d > 0, e ≥ 0, ε ∈ {±1} and (d, e) = 1.

Let
e = 2dq + r with 0 ≤ r < 2d.

If Y = εX − q, then

aX2 + bX + c = α(dY 2 − rY ) + β for some β ∈ Z.

It follows from Proposition 7 that it is enough to restrict our study to polynomials
of the form

f(X) = aX2 − bX with a ≥ 1, 0 ≤ b < 2a and (a, b) = 1.

If a = 1, then b = 0 or 1, f(X) = X2 or X(X − 1), f(Z) = f(N) and we saw that
the corresponding subsets have simultaneous orderings. This case corresponds to
the first and the second types of polynomials given in the theorem.
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Consequently, from now on, we assume that a ≥ 2 and b ≥ 1. Then, b/a /∈ Z,
and hence, f is injective on Z since:

f(x)− f(y) = (x− y)(a(x + y)− b).

Assume that f(Z) admits a simultaneous ordering {f(an)}n∈N. It follows from
the fact that 0 < b < 2a and from the minimality of |f(a0)− f(a1)| that {a0, a1} =
{0, 1}. Consequently,

f(1)− f(0) = a− b divides f(−1)− f(0) = a + b.
As a consequence, a− b divides 2b and so, since (a, b) = 1, a− b divides 2..

Assume first that 0 < b < a. Then a2 = −1 and, more generally, a2n = −n,
while a3 = 2 and, more generally, a2n+1 = n + 1. Then,

(f(−1)− f(0))(f(−1)− f(1)) = 2(a + b)b = 2(ab + b2)

divides

(f(2)− f(0))(f(2)− f(1)) = 2(2a− b)(3a− b) = 2(6a2 − 5ab + b2).

Equivalently,

b(a + b) divides 6a(a− b).

Consequently,

b(a + b) divides 12.

With a− b|2 and 0 < b < a, that is, b = a− 1 or b = a− 2, necessarily, a = 2 or 3
and b = 1.

The case a = 3 and b = 1 does not work since

2∏

k=0

(f(2)− f(ak)) !
2∏

k=0

(f(−2)− f(ak)).

On the other hand, a = 2 and b = 1; that is, f(X) = 2X2 − X works, since
f(Z) = g(Z) = g(N) where g(Y ) = 1

2Y (Y − 1).
Assume now that a < b < 2a. Then, a2 = 2, a3 = −1 and, more generally,

a2n = n + 1 and a2n+1 = −n. Then, conversely,

6a2 − 5ab + b2 divides b(a + b).

Consequently,
6a2 − 5ab + b2 divides 6a(b− a),



INTEGERS: 10 (2010) 448

and analogously,
6a2 − 5ab + b2 divides 12.

With (a − b)|2 and a < b < 2a, that is b = a + 1 or b = a + 2, necessarily, either
a = 2 and b = 3, or a = 3 and b = 5.

The case a = 3 and b = 5 does not work since

2∏

k=0

(f(−1)− f(ak)) !
2∏

k=0

(f(3)− f(ak)).

On the other hand, if a = 2 and b = 3, the polynomial f(X) = 2X2 − 3X works
(consider the translation X → X − 1 ).

6. Orbits Under the Action of a Polynomial

We end this paper with a surprising example which could be considered as a gen-
eralization of Example 5.1.

Proposition 18. Consider the discrete dynamical system (Z, f) formed by the set
Z and a non-constant polynomial f ∈ Z[X]. Then, for every x ∈ Z, the orbit of x
under the action of f , that is,

Ωf (x) = {fn(x) | n ≥ 0},

where fn denotes the n-th iterate of f , admits a simultaneous ordering, namely, the
sequence {fn(x)}n≥0.

In other words, for every x ∈ Z and for all m,n ∈ N with m ≥ n ≥ 1:

n−1∏

j=0

(fn(x)− f j(x)) divides
n−1∏

j=0

(fm(x)− f j(x)).

Note that this is equivalent to the fact that the following rational function

n−1∏

j=0

fm(X)− f j(X)
fn(X)− f j(X)

belongs to Int(Z) since a rational function ϕ ∈ Q(X) such that ϕ(x) ∈ Z for
infinitely many x ∈ Z is necessarily an integer-valued polynomial [4, Prop. X.1.1].

We remark also that this assertion is already known when deg(f) = 1 since the
rational function

∏n−1
j=0

fm(X)−fj(X)
fn(X)−fj(X) is an integer equal to

(m
n

)
if f(X) = X +b with

b -= 0 and to
∏n−1

j=0
am−aj

an−aj if f(X) = ax + b with a -= 1.
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In fact, Proposition 18 is an obvious consequence of Proposition 19 below which
says that the coefficients of the previous integer-valued polynomial are in Z.

Proposition 19. For every f ∈ Z[X] and for all m,n ∈ N such that m ≥ n ≥ 1 :

n−1∏

j=0

(fn(X)− f j(X)) divides
n−1∏

j=0

(fm(X)− f j(X)) in Z[X].

For the proof of Proposition 19 we may assume that deg(f) ≥ 2. The proposition
is then a consequence, obtained by specialization, of the still more general following
result:

Proposition 20. Let G(X) = tdXd+· · ·+t0 ∈ Z[td, · · · , t0][X] where d ≥ 2. Then,
for m > n ≥ 1,

n−1∏

j=0

(Gn(X)−Gj(X)) divides
n−1∏

j=0

(Gm(X)−Gj(X)) in Z[td, td−1, · · · , t0,X].

Although not explicitely stated, we may find in Bézivin’s paper [1] all the el-
ements for the proof of Proposition 20. We recall them below in order to give a
self-contained proof and begin with a technical lemma:

Lemma 21. Let g ∈ Z[X] and n ∈ N be such that, for every j < n, the polynomial
gj(X)−X has only simple roots. Then,

1. For every z ∈ C and every j < n such that gn(z) = gj(z), the multiplicity of
the root z in gn(X)− gj(X) is equal to the multiplicity of z in gj(X)− gj(z).

2. For every m ≥ n :

n−1∏

j=0

(gn(X)− gj(X)) divides
n−1∏

j=0

(gm(X)− gj(X)) in Q[X].

Proof. (See the proof of [1, Lemma 2.6]) Assume that j < n is such that gn(z) =
gj(z) and let h(X) = gn−j(X)−X. Then, gj(z) is a simple root of h. Thus,

gn(X)− gj(X) = h(gj(X)) = (gj(X)− gj(z))l(gj(X)) where l(gj(z)) -= 0.

This is the first assertion.
Let us prove the second assertion. Let z be any element of C such that gj(z) =

gn(z) for some j < n. Then, z is a preperiodic point for g with a least period l.
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Write n = lr + n0 with 0 ≤ n0 < l and m = ls + m0 with 0 ≤ m0 < l. Clearly,
the exponents j < n such that gj(z) = gn(z) (resp. gj(z) = gm(z)) are of the form
j = lh + n0 (resp. j = lh + m0) with 0 ≤ h < r (resp. 0 ≤ h < r if n0 ≤ m0 and
0 ≤ h ≤ r if m0 < n0). Consequently, to each j = lh + n0 such that gj(z) = gn(z)
corresponds some j′ = lh+m0 if n0 ≤ m0 and j′ = l(h+1)+m0 else which is such
that gj′(z) = gm(z) and j ≤ j′. The second assertion follows then from the first
one and the fact that the multiplicity of z in f j(X)− f j(z) is clearly an increasing
function of j.

Proof. of Proposition 20. Note first that, for every i > 0, the discriminant ∆j(td,
. . . , t0) of the polynomial Gj(X)−X is a polynomial function which is not identically
zero [1, Lemma 2.7]. Clearly, it is enough to give, for each degree d, an example of
a polynomial g(X) ∈ Z[X] such that, for each j > 0, gj(X) − X has only simple
roots. For instance, for d ≥ 2, we may choose g(X) = (X + 1)d − 1 (cf. [1]) since
gj(X)−X = (X + 1)dj −X.

Let us prove now the proposition. Fix m > n ≥ 1 and put

N =
n−1∏

j=0

(Gn(X)−Gj(X)) and M =
n−1∏

j=0

(Gm(X)−Gj(X)).

Since the leading coefficient of N is a power of td, there is an integer γ such that:

tγdM = HN + R with degX R < degX N and H,R ∈ Z[td, . . . , t0][X].

It follows from Lemma 21(2) that R(yd, . . . , y0) = 0 for all (yd, . . . , y0) ∈ Cd+1 such
that

∏n−1
j=0 ∆j(yd, . . . , y0) -= 0. Since the interior of a hypersurface of Cd+1 is empty,

we have R = 0, and hence, tγdM = HN .
Considered as polynomials in X with coefficients in the unique factorization

domain Z[td, . . . , t0], M and N have a content equal to 1 since the leading coefficient
of Gj(X) − Gi(X), for i -= j, is a power of td while the constant term is prime to
td. Thus, by Gauss’ lemma, tγd divides the coefficients of H, and Proposition 20 is
proved.

Application. Proposition 18 applied to the orbit of the integer 3 under the iteration
of the polynomial f(X) = X2 − 2X + 2 shows that the set

{Fn = 22n

+ 1 | n ≥ 0}

formed by the Fermat numbers has a simultaneous ordering.
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