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Abstract
In this work, we state and prove Lerch’s theorems for Fermat and Euler quotients
over function fields defined analogously to the number fields.

1. Results

The Fermat’s little theorem states that if p is a prime and a is an integer not
divisible by p, then ap−1 ≡ 1 mod p. This gives rise to the definition of the Fermat
quotient of p with base a,

q(a, p) =
ap−1 − 1

p
,

which is an integer. This quotient has been widely investigated and applied by
many authors (see, e.g., [1, 2, 3, 7]). In 1905, Lerch [4] introduced and studied a
generalization of the Fermat quotient for an arbitrary composite modulus m ≥ 2
based on Euler’s theorem, so called the Euler quotient. The following congruence
is due to Lerch [1, 4]:

Theorem 1. [Lerch, 1905] If a and m ≥ 2 are relatively prime integers, then

q(a,m) =
aφ(m) − 1

m
≡

m∑

r=1
gcd(r,m)=1

1
ar

[ar

m

]
mod m,

where [x] denotes the greatest integer ≤ x.

It is well-known that the ring of integers Z has many properties in common with
A = Fq[x], the ring of polynomials over the finite field Fq in an indeterminate x.
Over a function field, we have not only the result parallel to Fermat’s little theorem,
but we also have Euler’s theorem on A (see, Chapters 1 and 3 of [5]).
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Let Fq be a finite field with q elements and set A = Fq[x]. Let a ∈ A and P
be irreducible over A. Write |P | for qdeg P . If P does not divide a, we know that
a|P |−1 ≡ 1 mod P , which is analogous to Fermat’s little theorem. Fix d | q − 1.
For P not dividing a, let ( a

P )d be the unique element of F×q such that a
|P |−1

d ≡ ( a
P )d

mod P. If P | a, we let ( a
P )d = 0. The symbol ( a

P )d is called the d-th power residue
symbol. We define thus the polynomial

qd(a, P ) =
a

|P |−1
d − ( a

P )d

P
,

called the Fermat quotient of degree d for P with base a. For d = 1, aq1(a, P ) =
a|P | − a

P
is the Fermat quotient studied in [6] by Sauerberg and Shu.

Another extension of the Fermat quotient, called the Euler quotient, is defined
from Euler’s theorem as follows: For a and f polynomials in A with gcd(a, f) = 1,
one has a result parallel to Euler’s theorem, namely,

aΦ(f) ≡ 1 mod f,

where Φ(f) denotes the cardinality of the unit group (A/fA)×. Following Lerch [4]
and Agoh et al. [1], the Euler quotient for f with base a is given by the polynomial

q(a, f) =
aΦ(f) − 1

f
.

Observe that Φ(P ) = |P | − 1 if P is irreducible. Hence the Euler quotient is a
generalization of the Fermat quotient q1(a, P ).

In this work, we study function field analogs of Lerch’s theorem for Euler and
Fermat quotients. We present our versions of Lerch’s congruence for Euler and
Fermat quotients in Theorems 2 and 3, respectively.

Theorem 2. For polynomials a and f in A with gcd(a, f) = 1, we have

q(a, f) ≡
∑

deg(r)<deg(f)
gcd(r,f)=1

1
ar

[
ar

f

]
mod f.

Here
[
ar

f

]
is the quotient when f divides ar.

Proof. For a polynomial r with deg r < deg f and gcd(r, f) = 1, we put ar ≡ c
mod f with c ∈ A and deg(c) < deg(f). Then ar = kf + c for some polynomial
k, and hence k = [ar

f ]. Note that as c goes through all polynomials with degree
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less than deg f and relatively prime to f , so does r. Let C denote the product of
all such polynomials c. It follows that

C =
∏

deg(r)<deg(f)
gcd(r,f)=1

(
ar − f

[
ar

f

])
= aΦ(f)C

∏

deg(r)<deg(f)
gcd(r,f)=1

(
1− f

ar

[
ar

f

])
.

Thus we find

1 = aΦ(f)
∏

deg(r)<deg(f)
gcd(r,f)=1

(
1− f

ar

[
ar

f

])

≡ aΦ(f)



1− f
∑

deg(r)<deg(f)
gcd(r,f)=1

1
ar

[
ar

f

]


 mod f2

≡ aΦ(f) − f
∑

deg(r)<deg(f)
gcd(r,f)=1

1
ar

[
ar

f

]
mod f2.

That is,

aΦ(f) − 1 ≡ f
∑

deg(r)<deg(f)
gcd(r,f)=1

1
ar

[
ar

f

]
mod f2.

Dividing both sides by f , we have

q(a, f) =
aΦ(f) − 1

f
≡

∑

deg(r)<deg(f)
gcd(r,f)=1

1
ar

[
ar

f

]
mod f

and we are done. !

Lerch’s theorem for the Fermat quotient of degree d is slightly different which
results from the presence of the d-th power residue symbol.

Theorem 3. Let a ∈ A and P be an irreducible polynomial over A. If P does not
divide a, then

qd(a, P ) ≡
( a

P

)

d

∑

deg(r)<deg(P ),

( r
P )d=1

1
ar

[ar

P

]
+

(
Ca
R −

(
a
P

)
d

P

)
mod P
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where
[ar

P

]
is the quotient when P divides ar,

R =
∏

deg(r)<deg(P ),

(
r
P )d=1

r and Ca =
∏

deg(r)<deg(P ),

( r
P )d=1

(
ar − P

[ar

P

])
.

Moreover, if there exists α ∈ F× such that ( a
P )d = ( α

P )d, then

qd(a, P ) ≡ α
q−1

d deg P
∑

deg(r)<deg(P ),

( r
P )d=1

1
ar

[ar

P

]
mod P.

Proof. For a polynomial r with deg r < deg P, gcd(r, P ) = 1 and ( r
P )d = 1, we put

ar ≡ c mod P with deg(c) < deg(P ). Then ar = kP + c for some polynomial k,
and so k =

[
ra
P

]
and ( c

p )d = (ar
p )d = (a

p )d. Let Ca denote the product of all such
polynomials c. Thus we get

Ca =
∏

deg(r)<deg(P ),

( r
P )d=1

(
ar − P

[ar

P

])

= a
|P |−1

d

∏

deg(r)<deg(P ),

( r
P )d=1

r
∏

deg(r)<deg(P ),

( r
P )d=1

(
1− P

ar

[ar

P

])
.

Write R =
∏

deg(r)<deg(P ),

( r
P )d=1

r. The above expression can be simplified as

Ca

R
= a

|P |−1
d

∏

deg(r)<deg(P ),

( r
P )d=1

(
1− P

ar

[ar

P

])

≡ a
|P |−1

d



1−
∑

deg(r)<deg(P ),

( r
P )d=1

P

ar

[ar

P

]


 mod P 2.

Hence we find

a
|P |−1

d P
∑

deg(r)<deg(P ),

( r
P )d=1

1
ar

[ar

P

]

≡ a
|P |−1

d − Ca
R mod P 2

=
(
a

|P |−1
d −

(
a
P

)
d

)
−

(
Ca
R −

(
a
P

)
d

)
mod P 2.
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Since a
|P |−1

d R ≡ Ca mod P ,

Ca

R
≡ a

|P |−1
d ≡

( a

P

)

d
mod P.

Dividing both sides by P , we obtain

( a

P

)

d

∑

deg(r)<deg(P ),

( r
P )d=1

1
ar

[ar

P

]
≡

a
|P |−1

d −
(

a
P

)
d

P
−

(
Ca
R −

(
a
P

)
d

P

)
mod P,

and finally reach

qd(a, P ) ≡
( a

P

)

d

∑

deg(r)<deg(P ),

( r
P )d=1

1
ar

[ar

P

]
+

(
Ca
R −

(
a
P

)
d

P

)
mod P.

To prove the last statement, we observe that as r runs through all polynomials
of degree less than deg P with ( r

P )d = 1, αr runs through polynomials of degree
less than deg P with (αr

P )d = ( α
P )d = ( a

P )d. Thus Ca = Cα and it follows that

Ca

R
=

Cα

R
= α

|P |−1
d =

( α

P

)

d
=

( a

P

)

d
.

Recall from Proposition 3.2 of [5] that ( α
P )d = α

q−1
d deg P . Therefore we have the

congruence

qd(a, P ) ≡ α
q−1

d deg P
∑

deg(r)<deg(P ),

( r
P )d=1

1
ar

[ar

P

]
mod P

as desired. !
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