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Abstract

An overpartition of the nonnegative integer n is a non-increasing sequence of natural
numbers whose sum is n in which the first occurrence of a number may be overlined.
Let k ≥ 1 be an integer. An overpartition k-tuple of a positive integer n is a k-tuple
of overpartitions wherein all listed parts sum to n. Let pk(n) be the number of
overpartition k-tuples of n. In this paper, we will give a short proof of Keister,
Sellers and Vary’s theorem on congruences for pk(n) modulo powers of 2. We also
obtain some congruences for pk(n) modulo prime ! and integer 2k.

1. Introduction

An overpartition of the nonnegative integer n is a non-increasing sequence of natural
numbers whose sum is n in which the first occurrence of a number may be overlined
(see [3]). Let p(n) be the number of overpartitions of an integer n. For convenience,
define p(0) = 1. For example, the overpartitions of 4 are

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1,

4, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 1 + 1,

2 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1.

Thus p(4) = 14 . The generating function for p(n) is

P (q) :=
∞∑

n=0

p(n)qn =
∞∏

n=1

1 + qn

1− qn
= 1 + 2q + 4q2 + 8q3 + 14q4 + · · · .

An overpartition k-tuple of a positive integer n is a k-tuple of overpartitions
wherein all listed parts sum to n (see [6,9]). Let pk(n) be the number of overpar-
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tition k-tuples of n. The generating function for pk(n) is

P k(q) :=
∞∑

n=0

pk(n)qn =
∞∏

n=1

(
1 + qn

1− qn

)k

. (1)

A number of mathematicians have used the overpartition function to interpret
or to prove combinatorial identities arising from basic hypergeometric series. Many
arithmetic properties are also obtained. For more information about overpartitions,
see [2,3,4,5,7]. Recently, Keister, Sellers and Vary [6] studied some arithmetic prop-
erties of the number of overpartition k-tuples pk. They obtained some congruences
for pk modulo powers of 2 and modulo a prime. In this paper, we will give a short
proof of a theorem in [6] and determine the relation between p!s and p modulo a
prime !. For any positive integer k, we also prove a congruence for pk modulo 2k.

2. Congruences for pk Modulo Powers of 2

In this section we will prove the following Theorem 1. This theorem is proved in
[6] by induction arguments. Here we give a short proof by an application of the
binomial theorem which seems more clear and natural.

Theorem 1 Let m ≥ 0 be an integer and r ≥ 1 be an odd integer. If k = 2mr, then
for all n ≥ 1,

pk(n) ≡
{

2m+1 (mod 2m+2) if n is a square or twice a square,

0 (mod 2m+2) otherwise.

To begin, we prove the following preliminary lemma. Let p be a prime. We
denote by νp(m) the exponent of the highest power of p dividing integer m. Clearly,
νp(a

b ) = νp(a)− νp(b) if a
b ∈ Q and νp(ab) = νp(a) + νp(b) if a, b ∈ Z.

Lemma 2 Let m ≥ 1 and l ≥ 0 be an integer, and let p be a prime. Then for
1 ≤ s ≤ pm − 1, we have

νp

((
pm

s

)
pls

)
≥ ls + 1.
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Proof. Clearly, νp(pm−i
i ) = 0 for 1 ≤ i ≤ s− 1. We have

νp

((
pm

s

)
pls

)
= νp

(
pm · pm − 1

1
· pm − 2

2
· · · · pm − (s− 1)

s− 1
· pls

s

)

= νp(pm) + νp(
pm − 1

1
) + νp(

pm − 2
2

) + · · · +

+νp(
pm − (s− 1)

s− 1
) + νp(

pls

s
)

= m + ls− νp(s)

≥ ls + 1,

where we note that νp(s) ≤ m− 1 for any 1 ≤ s ≤ pm − 1. !

Remark Lemma 2 gives a natural generalization of Lemma 2 of [6]. When l = 0,
an immediate corollary of Lemma 2 is

(
pm

s

)
≡ 0 (mod p)

for p prime, m ≥ 1 and 1 ≤ s ≤ pm − 1. By the binomial theorem, this implies the
following well known fact:

(1 + aqt)pm

≡ 1 + (aqt)pm

(mod p) (2)

for any integer a.

Proof of Theorem 1. Let

θ1(q) :=
∞∏

n=1

1− qn

1 + qn
.

Then by (1) the generating function for pk is

P k(q) =
∞∑

n=0

pk(n)qn =
(

1
θ1(q)

)k

. (3)
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By Gauss’s identity [1,Corollary 2.10], we have

θ1(q) =
∞∑

−∞
(−1)nqn2

= 1 + 2
∞∑

n=1

q4n2
− 2

∞∑

n=1

q(2n−1)2

= 1 + 2
∞∑

n=1

qn2
− 4

∞∑

n=1

q(2n−1)2 . (4)

It is easy to see

θ1(q)2 ≡ 1 (mod 4).

Therefore we have

1
θ1(q)

≡ θ1(q) (mod 4).

This implies that
1

θ1(q)
= θ1(q) + 4f(q)

for some f(q) ∈ Z[[q]]. In view of the binomial theorem and Lemma 2, we have for
any m ≥ 0

(
1

θ1(q)

)2m

= (θ1(q) + 4f(q))2
m

≡ θ1(q)2
m

(mod 2m+2)

=

(
1 + 2

∞∑

n=1

qn2
− 4

∞∑

n=1

q(2n−1)2

)2m

≡
(

1 + 2
∞∑

n=1

qn2

)2m

(mod 2m+2)

≡ 1 + 2m+1
∞∑

n=1

qn2
+ 4

(
2m

2

)( ∞∑

n=1

qn2

)2

(mod 2m+2)

= 1 + 2m+1
∞∑

n=1

qn2
− 2m+1

( ∞∑

n=1

qn2

)2

(mod 2m+2)
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= 1 + 2m+1
∞∑

n=1

qn2
− 2m+1




∞∑

n=1

q2n2
+ 2

∞∑

n1,n2=1
n1<n2

qn2
1+n2

2





≡ 1 + 2m+1
∞∑

n=1

qn2
+ 2m+1

∞∑

n=1

q2n2
(mod 2m+2). (5)

Immediately,

(
1

θ1(q)

)2m+1

≡ 1 (mod 2m+2).

Now we suppose that k = 2mr and r = 2s + 1 > 0. It follows that

(
1

θ1(q)

)k

=
(

1
θ1(q)

)2m+1s (
1

θ1(q)

)2m

≡
(

1
θ1(q)

)2m

(mod 2m+2). (6)

Theorem 1 follows from (3), (6) and (5). !

3. Congruences for pk Modulo a Prime !

Theorem 3 Let ! be a prime and s be a positive integer. Then

p!s(n) ≡
{

p(m) (mod !) if n = !sm for some nonnegative integer m,

0 (mod !) otherwise.
(7)

We also have that
p!s−1(n) ≡ 0 (mod !) (8)

for each n which is not a square modulo !s.

Proof. By (2), it follows that

1
θ1(q)!s =

∞∏

n=1

(
1 + qn

1− qn

)!s

≡
∞∏

n=1

(
1 + q!si

1− q!si

)
=

1
θ1(q!s)

(mod !).

Therefore by (3) we have

∞∑

n=0

p!s(n)qn ≡
∞∑

m=0

p(m)q!sm(mod !).

Equating the coefficients, we get (7).
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Observe that

1
θ1(q)!s−1

=
θ1(q)

θ1(q)!s ≡
1

θ1(q!s)
· θ1(q)(mod !).

It follows from (3) and (4) that

∞∑

n=0

p!s−1(n)qn ≡
( ∞∑

i=0

p(i)q!si

)


∞∑

j=−∞
(−1)jqj2



 (mod !).

Therefore if n is not a square modulo !s, then p!s−1(n) vanishes modulo !. This
proves (8). !

Corollary 4 Let Q ≡ −1( mod 5) be a prime. Then for any integer s ≥ 1,

p5s(5s+1Q3n) ≡ 0 (mod 5)

for all n coprime to Q.

Proof. Treneer [8] proved that if Q ≡ −1( mod 5), then

p(5Q3n) ≡ 0 (mod 5)

for all n coprime to Q. Therefore the corollary follows from (7). !

Remarks (i) In fact, we can obtain congruence properties of pk modulo powers
of ! by the theory of modular forms. Treneer [8] showed that the coefficients of a
weakly holomorphic modular form satisfy congruence properties modulo powers of
a prime. Since the generating function for pk, i.e., 1

θ1(q)k , is a weakly holomorphic
modular form of weight k

2 on the congruence subgroup Γ0(16) of SL2(Z), it follows
from Corollary 1.3 of [8] that pk has the following property: Suppose that ! ≥ 5 is a
prime, k is an odd positive integer and m is a sufficiently large integer. Then for any
positive integer j, there is a positive proportion of the primes Q ≡ −1( mod 16!j)
such that

pk(Q3!mn) ≡ 0 ( mod !j)

for all n coprime to Q!. A similar result holds for k even.

(ii) Congruence (8) extends Theorem 1 in [6].
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4. Congruences for pk Modulo 2k

Theorem 5 Let k ≥ 1 be an integer. Then

npk(n) ≡ 0 (mod 2k).

In particular,
pk(n) ≡ 0 (mod 2k)

for all n with gcd(n, 2k) = 1.

Proof. Taking the logarithmic derivative of (3), we have

P k(q)′

P k(q)
= −k

θ1(q)′

θ1(q)
.

By (4), we have

θ1(q)′ = 2
∞∑

n=1

n2qn2−1 − 4
∞∑

n=1

(2n− 1)2q(2n−1)2−1.

Note that

P k(q)′ =
∞∑

n=1

npk(n)qn−1

and

1
θ1(q)

= P (q).

Therefore we deduce that

∞∑

n=1

npk(n)qn = q · P k(q)′

= −kq · θ1(q)′P k(q)P (q)

= −k

(
2
∞∑

n=1

n2qn2
− 4

∞∑

n=1

(2n− 1)2q(2n−1)2

)
P k(q)P (q).

It follows immediately that

npk(n) ≡ 0 (mod 2k). !
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Remark Let ! be a prime. Then Theorem 5 implies that

∞∑

n=0

p!(n)qn ≡
∞∑

n=0

p!(!n)q!n( mod !).

On the other hand,

∞∑

n=0

p!(n)qn =
1

θ1(q)!
≡ 1

θ1(q!)
=

∞∑

n=0

p(n)q!n( mod !).

It follows that
p!(!n) ≡ p(n)( mod !)

for all n ≥ 0. This gives an alternative proof of (7) in the case s = 1.
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