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Abstract
We show that the set of composite positive integers n < z satisfying the congruence

(2:__11) = 1 (mod n) is of cardinality at most zexp (—(1/v2 + o(1))y/log zloglog z)

as r — OQ.

1. Introduction

We consider the sequence

w. — 2n—1 _1 2n n>1
" \n-1) 2\n)’ -
By the Wolstenholme theorem [18], for each prime p > 5, we have
w, =1 (mod p?) (1)

(see also [2, 7, 10]). It is a long standing conjecture that the converse to this theorem
is true, namely, that w,, #Z 1 (mod n3) holds for all composite positive integers n (see,
for example, [7, 9, 16, 17]). This has been verified numerically up to 10° in [16], and
is easily verified for all even composite integers. Recently, Helou and Terjanian [11]
have investigated the distribution of w,, modulo prime powers for composite values
of n.

Here, we show that the set of composite positive integers n satisfying the more

relaxed congruence
wy, =1 (mod n) (2)
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is of asymptotic density zero. More precisely, if W (z) is defined to be the number of
composite positive integers n < x which satisfy (2), then lim, ..o W(x)/z = 0.

In what follows, the implied constants in the symbol ‘O’ and in the equivalent
symbol ‘<’ are absolute. The letter p is always used to denote a prime number.

Theorem 1. The estimate
W(z) < xexp (—(1/\/§ + 0(1))\/logxloglogx)

holds as © — o0.

Furthermore, let k£ rem n denote the remainder of k£ on division by n. The congru-
ence (1) in particular implies that {w, remp : p > 5} = {1}. Furthermore, by [11,
Corollary 5], we also have {wy2 remp? : p > 5} = {1}. However, we show that the
set

V(z) = {w, remn : n <z}

is of unbounded size.

Theorem 2. We have
#V(z) > /4,

It is also interesting to study the behavior of the sequence of numbers ged(n, w, —
1). Let us define

Theorem 3. The estimate

Z ged(n,w, — 1) = % zli(z) + O (a:Q exp (—(1/\/5 + 0(1))\/m>)

n<x

holds as © — o0.

2. Preparations

2.1. Smooth Numbers

For a positive integer n we write P(n) for the largest prime factor of n. As usual,
we say that n is y-smooth if P(n) <y. Let

Y(z,y) =#{1 <n <z : nis y-smooth}.

The following estimate is a substantially relaxed and simplified version of Corol-
lary 1.3 of [12] (see also [1, 8]).
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Lemma 4. For any fized € > 0, uniformly over y > log' ™€z, we have
P(x,y) = zexp (—(1 4 o(1))ulogu) as u — 0o,

where v = log x/logy.

2.2. Distribution of w,, in Residue Classes

We need some results about the distribution of w,, in residue classes modulo primes.
These results are either explicitly given in [4, 5, 6], or can be obtained from those
results at the cost of merely minor typographical changes. More precisely, the results
are obtained in [4, 5, 6] apply to middle binomial coefficients and Catalan numbers

(2m) and L(2m)7 m=12,...,
m m+1\m

while the ones from [6] apply to the sequence of general term

2—2m<2m>, m=12,...,
m

each of which is of the same type as the sequence with general term w,,.
In fact, the method of [4, 5, 6] which in turn is based on the arguments from [3, 15],
can be applied to estimate the number of solutions of congruences

H(m) = a (mod p), 1<m < M,

uniformly in @ € {1,...,p — 1} for essentially all nontrivial “hypergeometric se-
quences” H(m), that is, sequences of general term having the form

where f(X) € Q(X) is a nonconstant rational function. Note that the original result
of [3, 15] corresponds to the choice f(m) = m for which H(m) = m!, while here we
take f(m) = 2(2m — 1)/m for which H(m) = 2w,.

More precisely, let A be an integer and define R,(M,\) to be the number of
solutions to the congruence

Wy = A (mod p), 0<m<M-—1. (3)

We have the following estimate which follows immediately from [6, Lemma 5].
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Lemma 5. Let p be an odd prime and let M be a positive integer. Then the estimate
R, (M, \) < M?/3 4 Mp=1/3

holds uniformly over A € {1,...,p — 1}.

Proof. For M < p, the bound
R,(M,\) < M*/? (4)

is equivalent to [6, Lemma 5]. Indeed, the congruence (3) is equivalent to

(2m) = 2 (mod p), 0<m<M-—1, (5)
m

which by [6, Lemma 5] has O(M?/3) solutions. We now assume that M > p. Write
m = Z m;p’, (6)
§=0

with p-ary digits m; € {0,...,p—1}, 5 =0,...,s. Then, by Lucas’ Theorem (see
[14, Section XXI]), we have

w _1 2m
™ o\m

Every m with 0 < m < M can be written as m = ph + k with nonnegative integers
h < M/pand k < p.

Clearly, if wy, # 0 (mod p), then it follows from (7) that in the representation (6)
we have

%1_1 (%) tmod ) )

mj < p/2, j=0,...,s.

We now see that for every m = ph + k with h < M/p and k < p, the congruence (7)
implies that

BT

with some Aj, #Z 0 (mod p) depending only on h.
Therefore, by (4), we obtain R, (M, \) < p*/3(M/p) < Mp~'/3. 0
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We remark that for A = 0 (mod p), the same bound also holds but only in the
range M < p/2, and certainly fails beyond this range.
We also note that on average over A\ we have a better estimate.

Lemma 6. Let p be an odd prime and let M < p be a positive integer. Then

p—1
> Ry (M, ) < M3/,
A=0

The above Lemma 6 follows from the equivalence between the congruences (3)
and (5) and [5, Theorem 1] taken in the special case £ = 1, a result which applies to
middle binomial coefficients and Catalan numbers and easily extends to the sequence
of general term w,, (see also [4, Theorem 2]).

For large values M, we have a better bound which is based on some arguments
of [4].

Lemma 7. Let p be an odd prime and let M > p” be a positive integer. Then the
estimate
R,(M,\) < M/p

holds uniformly over A € {1,...,p—1}.

Proof. Every m with 0 < m < M can be written as m = p’h + k, with nonnegative
integers h < M/p” and k < p".
Clearly, if w,, #Z 0 (mod p), then it follows from (7) that in the representation (6)
we have
m; < p/2, j=0,...,s.

We now see that for every m = p”h+k with h < M/p” and k < p”, the congruence (7)

implies that
2
( :) = Ay (mod p)

holds with some A, # 0 (mod p) depending only on h. It now follows from [4,
Equation (13)], that the asymptotic

Ry(p",A) = (277 4 o(1))p°

holds as p — oo uniformly over A #Z 0 (mod p) (see also the comment at the end
of [4, Section 2]). Therefore,

Ry(M,A) < (277 +o(1))p*(M/p")  as p— 0,

yielding the desired conclusion R,(M,\) < M/p. O
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3. Proofs of the Main Results

3.1. Proof of Theorem 1

We let x be a large positive real number and we fix some real parameters y > 3 and
z > 1 depending on x to be chosen later.

Let NV be the set of composite n < x which satisfy (2). We note that, again by
Lucas’ Theorem, for any prime p and positive integer m we have

2 2
< mp> = < m) (mod p).
mp m
Hence, if n = mp € N, then

Wi = wp, = 1 (mod p). (8)

Let & be the set of y-smooth integers n € N and let Nj be the set of remaining
integers, that is,

Nl :N\gl
By Lemma 4,

#& < zexp(—(1+o0(1))ulogu) as u — 00, 9)

where u = logx/logy, provided that y > (logx)?, which will be the case for us.
Next, we define the set

52:{n€N1 : P(n)>z}

For n € &, we write n = mp, where p = P(n) > z and m < z/z. We see from (8)
that each p which appears as p = P(n) for some n € £ must divide

0= I (wn-1=ex(0((/5?).

2<m<z/z

Observe that () is nonzero because m = 1 is not allowed in the product since n is
not prime. Therefore such p can take at most O(log Q) = O ((2/z)?) possible values.
Since m takes at most x/z possible values, we obtain

#HE < (x/2)>. (10)
Let N> be the set of remaining n € N7, that is

NQ :Nl \52
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We see from (8) that
#N> < Y Ry([z/p] 1),

y<p<z

Using Lemma 5 for /8 < p < z and Lemma 7 for p < '/® and choosing

z:m7/8,
we derive
X
#N < 3 (Ll L)+ Y e/l
al/f<p<z y<pzarre P
< Z P34 203 Z 23 4 g Z p2
x1/8<p<z x1/8<p<z y<p<wzl/s

< @B/ 4 238 gyt
The above estimates together with the given choice for z lead to the estimate
H#Ny < B/ gyt (11)
Collecting (9), (10) and (11), we obtain

#N < zexp (—(1 + o(1))ulogu) + 22/%* 4 2y~ L.

1
logy =4/ 3 log x loglog x, (12)

to match the first and third terms, we conclude the proof.

Choosing next

3.2. Proof of Theorem 2

Let x be large and let us fix a prime 2'/2 < p < 22'/2. Define M, = |z/p|. We now
consider integers n = mp for which we have w,,, = w, (mod p). Therefore,

#V(x) > #{re€{0,...,p—1} : R,(Mp,,\) > 0}.

We see that by the Cauchy-Schwartz inequality

p—1 2 p—1
(Z Ry (M, A)) < #V(z) Z Ry (M, )‘)2-
A=0 A=0
Using the trivial identity
p—1
Z Ry(Mp, X) = M,
A=0

and Lemma 6, we conclude the proof.
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3.3. Proof of Theorem 3

We follow the same approach as in the proof of Theorem 1. In particular, we let x
be large and we fix some real parameter y > 3 depending on x to be chosen later.
Let R be the set of integers n < x which are not y-smooth and for which

P(n) | ged(n, w, — 1).

We see that (8) holds with p = P(n) and m = n/p. Since this property is the only
one used in the proof of the upper bound on #N, we obtain the same bound on #R,
that is

#R < B/ gyt

For those n < x which are y-smooth and for n € R, we estimate ged(n,w, — 1)
trivially as x. For all the remaining composite integers n < x, we have
ged(n,w, — 1) <n/P(n) <z/y.

Therefore,

S gedln,w, — 1) < oz, y) + (@27 + 2y~ + 22y,

n<lz
n composite

Choosing y as in (12) and recalling Lemma 4, we obtain

> wdlnw, 1) <o (- (5 o) Viogseioge ), (13)

n<x
n composite

as & — 0.
Now, by (1), we see that

> edlpuw,—1)= Y p

p<w p<w
p prime p prime

Using the Prime Number Theorem in the form given, for example, in [13, Theo-
rem 8.30], as well as partial summation, we easily derive that the estimate

1
Y p=sali(x)+0 (2’ —~C(logz)*/*(loglog x)~/°
= p 2:r 1(x (m exp( ogx og log x ))
P prime

holds with some positive constant C', which combined with (13) concludes the proof.
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4. Comments

It follows from [11, Corollary 5] that if n = p? for some prime p, then n satisfies the
congruence w, = 1 mod n. In particular, by the Prime Number Theorem, we get that
W(x) > (1/2+0(1))\/z/logx as x — oo. There are perhaps very few positive integers
n with at least two distinct prime factors satisfying this congruence. There are only
two such n < 10, namely n = 27173 = 29 x 937 and n = 2001341 = 787 x 2543, and
one more example beyond this range (see [16, Section 3]).

There is little doubt that the bound of Theorem 2 is not tight and, based on
somewhat limited numerical tests, we expect that the estimate #V(z) = (¢ + o(1))x
holds as x — oo with ¢ = 0.355. Studying the distribution of the fractional parts
{wy/n} or maybe the easier question about the fractional parts {w,/P(n)} is of
interest as well. A natural way to treat these question is to estimate the exponential

sums
Wn
P(n))’

Z exp (QWik%) and Z exp <2m'k
n

n<z n<x

which may be of independent interest.

It follows from [4, Theorem 3], that if p is large and M, = [p'®/?(logp)®|, then
there are (14 o0(1))M,/p positive integers 2 < m < M, such that w,, = 1 (mod p) as
p — oo. Clearly, only O(1) of them are powers of p. Taking n = mp for such an m
which is not a power of p, we conclude that there are infinitely many n with at least
two distinct prime factors such that the inequality ged(n, w, — 1) > n?/15+°() holds
as n — oo. Further investigation of the distribution of the numbers ged(n, w, — 1)
for composite positive integers n is of ultimate interest.
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