SOME DIVISIBILITY PROPERTIES OF BINOMIAL COEFFICIENTS AND THE CONVERSE OF WOLSTENHOLME'S THEOREM

Kevin A. Broughan
Department of Mathematics, University of Waikato, Hamilton, New Zealand kab@waikato.ac.nz
Florian Luca
Instituto de Matemáticas, Universidad Nacional Autonoma de México, Ap. Postal 61-3 (Xangari), C.P. 58089, Morelia, Michoacán, México
fluca@matmor.unam.mx
Igor E. Shparlinski
Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
igor@ics.mq.edu.au

Received: 6/9/09, Revised: 3/16/10, Accepted: 5/11/10, Published: 9/23/10

Abstract

We show that the set of composite positive integers $n \leq x$ satisfying the congruence $\binom{2 n-1}{n-1} \equiv 1(\bmod n)$ is of cardinality at most $x \exp (-(1 / \sqrt{2}+o(1)) \sqrt{\log x \log \log x})$ as $x \rightarrow \infty$.

1. Introduction

We consider the sequence

$$
w_{n}=\binom{2 n-1}{n-1}=\frac{1}{2}\binom{2 n}{n}, \quad n \geq 1
$$

By the Wolstenholme theorem [18], for each prime $p \geq 5$, we have

$$
\begin{equation*}
w_{p} \equiv 1\left(\bmod p^{3}\right) \tag{1}
\end{equation*}
$$

(see also $[2,7,10]$). It is a long standing conjecture that the converse to this theorem is true, namely, that $w_{n} \not \equiv 1\left(\bmod n^{3}\right)$ holds for all composite positive integers n (see, for example, $[7,9,16,17])$. This has been verified numerically up to 10^{9} in [16], and is easily verified for all even composite integers. Recently, Helou and Terjanian [11] have investigated the distribution of w_{n} modulo prime powers for composite values of n.

Here, we show that the set of composite positive integers n satisfying the more relaxed congruence

$$
\begin{equation*}
w_{n} \equiv 1(\bmod n) \tag{2}
\end{equation*}
$$

is of asymptotic density zero. More precisely, if $W(x)$ is defined to be the number of composite positive integers $n \leq x$ which satisfy (2), then $\lim _{x \rightarrow \infty} W(x) / x=0$.

In what follows, the implied constants in the symbol ' O ' and in the equivalent symbol ' \ll ' are absolute. The letter p is always used to denote a prime number.

Theorem 1. The estimate

$$
W(x) \leq x \exp (-(1 / \sqrt{2}+o(1)) \sqrt{\log x \log \log x})
$$

holds as $x \rightarrow \infty$.
Furthermore, let k rem n denote the remainder of k on division by n. The congruence (1) in particular implies that $\left\{w_{p} \operatorname{rem} p: p \geq 5\right\}=\{1\}$. Furthermore, by [11, Corollary 5], we also have $\left\{w_{p^{2}} \operatorname{rem} p^{2}: p \geq 5\right\}=\{1\}$. However, we show that the set

$$
\mathcal{V}(x)=\left\{w_{n} \operatorname{rem} n: n \leq x\right\}
$$

is of unbounded size.
Theorem 2. We have

$$
\# \mathcal{V}(x) \gg x^{1 / 4}
$$

It is also interesting to study the behavior of the sequence of numbers $\operatorname{gcd}\left(n, w_{n}-\right.$ 1). Let us define

$$
\operatorname{li} x=\int_{2}^{x} \frac{d t}{\log t} \text {. }
$$

Theorem 3. The estimate

$$
\sum_{n \leq x} \operatorname{gcd}\left(n, w_{n}-1\right)=\frac{1}{2} x \operatorname{li}(x)+O\left(x^{2} \exp (-(1 / \sqrt{2}+o(1)) \sqrt{\log x \log \log x})\right)
$$

holds as $x \rightarrow \infty$.

2. Preparations

2.1. Smooth Numbers

For a positive integer n we write $P(n)$ for the largest prime factor of n. As usual, we say that n is y-smooth if $P(n) \leq y$. Let

$$
\psi(x, y)=\#\{1 \leq n \leq x: n \text { is } y \text {-smooth }\}
$$

The following estimate is a substantially relaxed and simplified version of Corollary 1.3 of [12] (see also [1, 8]).

Lemma 4. For any fixed $\varepsilon>0$, uniformly over $y \geq \log ^{1+\epsilon} x$, we have

$$
\psi(x, y)=x \exp (-(1+o(1)) u \log u) \quad \text { as } u \rightarrow \infty
$$

where $u=\log x / \log y$.

2.2. Distribution of w_{m} in Residue Classes

We need some results about the distribution of w_{m} in residue classes modulo primes. These results are either explicitly given in $[4,5,6]$, or can be obtained from those results at the cost of merely minor typographical changes. More precisely, the results are obtained in $[4,5,6]$ apply to middle binomial coefficients and Catalan numbers

$$
\binom{2 m}{m} \quad \text { and } \quad \frac{1}{m+1}\binom{2 m}{m}, \quad m=1,2, \ldots
$$

while the ones from [6] apply to the sequence of general term

$$
2^{-2 m}\binom{2 m}{m}, \quad m=1,2, \ldots
$$

each of which is of the same type as the sequence with general term w_{m}.
In fact, the method of $[4,5,6]$ which in turn is based on the arguments from $[3,15]$, can be applied to estimate the number of solutions of congruences

$$
H(m) \equiv a(\bmod p), \quad 1 \leq m \leq M
$$

uniformly in $a \in\{1, \ldots, p-1\}$ for essentially all nontrivial "hypergeometric sequences" $H(m)$, that is, sequences of general term having the form

$$
H(m)=f(1) \cdots f(m), \quad m=1,2, \ldots,
$$

where $f(X) \in \mathbb{Q}(X)$ is a nonconstant rational function. Note that the original result of $[3,15]$ corresponds to the choice $f(m)=m$ for which $H(m)=m$!, while here we take $f(m)=2(2 m-1) / m$ for which $H(m)=2 w_{m}$.

More precisely, let λ be an integer and define $R_{p}(M, \lambda)$ to be the number of solutions to the congruence

$$
\begin{equation*}
w_{m} \equiv \lambda(\bmod p), \quad 0 \leq m \leq M-1 \tag{3}
\end{equation*}
$$

We have the following estimate which follows immediately from [6, Lemma 5].

Lemma 5. Let p be an odd prime and let M be a positive integer. Then the estimate

$$
R_{p}(M, \lambda) \ll M^{2 / 3}+M p^{-1 / 3}
$$

holds uniformly over $\lambda \in\{1, \ldots, p-1\}$.

Proof. For $M \leq p$, the bound

$$
\begin{equation*}
R_{p}(M, \lambda) \ll M^{2 / 3} \tag{4}
\end{equation*}
$$

is equivalent to [6, Lemma 5]. Indeed, the congruence (3) is equivalent to

$$
\begin{equation*}
\binom{2 m}{m} \equiv 2 \lambda(\bmod p), \quad 0 \leq m \leq M-1 \tag{5}
\end{equation*}
$$

which by [6, Lemma 5] has $O\left(M^{2 / 3}\right)$ solutions. We now assume that $M>p$. Write

$$
\begin{equation*}
m=\sum_{j=0}^{s} m_{j} p^{j} \tag{6}
\end{equation*}
$$

with p-ary digits $m_{j} \in\{0, \ldots, p-1\}, j=0, \ldots, s$. Then, by Lucas' Theorem (see [14, Section XXI]), we have

$$
\begin{equation*}
w_{m}=\frac{1}{2}\binom{2 m}{m} \equiv \frac{1}{2} \prod_{j=0}^{s}\binom{2 m_{j}}{m_{j}}(\bmod p) \tag{7}
\end{equation*}
$$

Every m with $0 \leq m<M$ can be written as $m=p h+k$ with nonnegative integers $h<M / p$ and $k<p$.

Clearly, if $w_{m} \not \equiv 0(\bmod p)$, then it follows from (7) that in the representation (6) we have

$$
m_{j}<p / 2, \quad j=0, \ldots, s
$$

We now see that for every $m=p h+k$ with $h<M / p$ and $k<p$, the congruence (7) implies that

$$
\binom{2 k}{k} \equiv \lambda_{h}(\bmod p)
$$

with some $\lambda_{h} \not \equiv 0(\bmod p)$ depending only on h.
Therefore, by (4), we obtain $R_{p}(M, \lambda) \ll p^{2 / 3}(M / p) \ll M p^{-1 / 3}$.

We remark that for $\lambda \equiv 0(\bmod p)$, the same bound also holds but only in the range $M<p / 2$, and certainly fails beyond this range.

We also note that on average over λ we have a better estimate.
Lemma 6. Let p be an odd prime and let $M<p$ be a positive integer. Then

$$
\sum_{\lambda=0}^{p-1} R_{p}(M, \lambda)^{2} \ll M^{3 / 2}
$$

The above Lemma 6 follows from the equivalence between the congruences (3) and (5) and [5, Theorem 1] taken in the special case $\ell=1$, a result which applies to middle binomial coefficients and Catalan numbers and easily extends to the sequence of general term w_{n} (see also [4, Theorem 2]).

For large values M, we have a better bound which is based on some arguments of [4].

Lemma 7. Let p be an odd prime and let $M \geq p^{7}$ be a positive integer. Then the estimate

$$
R_{p}(M, \lambda) \ll M / p
$$

holds uniformly over $\lambda \in\{1, \ldots, p-1\}$.

Proof. Every m with $0 \leq m<M$ can be written as $m=p^{7} h+k$, with nonnegative integers $h<M / p^{7}$ and $k<p^{7}$.

Clearly, if $w_{m} \not \equiv 0(\bmod p)$, then it follows from (7) that in the representation (6) we have

$$
m_{j}<p / 2, \quad j=0, \ldots, s
$$

We now see that for every $m=p^{7} h+k$ with $h<M / p^{7}$ and $k<p^{7}$, the congruence (7) implies that

$$
\binom{2 k}{k} \equiv \lambda_{h}(\bmod p)
$$

holds with some $\lambda_{h} \not \equiv 0(\bmod p)$ depending only on h. It now follows from [4, Equation (13)], that the asymptotic

$$
R_{p}\left(p^{7}, \lambda\right)=\left(2^{-7}+o(1)\right) p^{6}
$$

holds as $p \rightarrow \infty$ uniformly over $\lambda \not \equiv 0(\bmod p)$ (see also the comment at the end of [4, Section 2]). Therefore,

$$
R_{p}(M, \lambda) \leq\left(2^{-7}+o(1)\right) p^{6}\left(M / p^{7}\right) \quad \text { as } \quad p \rightarrow \infty
$$

yielding the desired conclusion $R_{p}(M, \lambda) \ll M / p$.

3. Proofs of the Main Results

3.1. Proof of Theorem 1

We let x be a large positive real number and we fix some real parameters $y>3$ and $z \geq 1$ depending on x to be chosen later.

Let \mathcal{N} be the set of composite $n \leq x$ which satisfy (2). We note that, again by Lucas' Theorem, for any prime p and positive integer m we have

$$
\binom{2 m p}{m p} \equiv\binom{2 m}{m}(\bmod p)
$$

Hence, if $n=m p \in \mathcal{N}$, then

$$
\begin{equation*}
w_{m} \equiv w_{n} \equiv 1(\bmod p) \tag{8}
\end{equation*}
$$

Let \mathcal{E}_{1} be the set of y-smooth integers $n \in \mathcal{N}$ and let \mathcal{N}_{1} be the set of remaining integers, that is,

$$
\mathcal{N}_{1}=\mathcal{N} \backslash \mathcal{E}_{1}
$$

By Lemma 4,

$$
\begin{equation*}
\# \mathcal{E}_{1} \leq x \exp (-(1+o(1)) u \log u) \quad \text { as } u \rightarrow \infty \tag{9}
\end{equation*}
$$

where $u=\log x / \log y$, provided that $y>(\log x)^{2}$, which will be the case for us. Next, we define the set

$$
\mathcal{E}_{2}=\left\{n \in \mathcal{N}_{1}: P(n)>z\right\} .
$$

For $n \in \mathcal{E}_{2}$, we write $n=m p$, where $p=P(n) \geq z$ and $m \leq x / z$. We see from (8) that each p which appears as $p=P(n)$ for some $n \in \mathcal{E}_{2}$ must divide

$$
Q=\prod_{2 \leq m \leq x / z}\left(w_{m}-1\right)=\exp \left(O\left((x / z)^{2}\right)\right)
$$

Observe that Q is nonzero because $m=1$ is not allowed in the product since n is not prime. Therefore such p can take at most $O(\log Q)=O\left((x / z)^{2}\right)$ possible values. Since m takes at most x / z possible values, we obtain

$$
\begin{equation*}
\# \mathcal{E}_{2} \ll(x / z)^{3} . \tag{10}
\end{equation*}
$$

Let \mathcal{N}_{2} be the set of remaining $n \in \mathcal{N}_{1}$, that is

$$
\mathcal{N}_{2}=\mathcal{N}_{1} \backslash \mathcal{E}_{2}
$$

We see from (8) that

$$
\# \mathcal{N}_{2} \leq \sum_{y \leq p \leq z} R_{p}(\lceil x / p\rceil, 1)
$$

Using Lemma 5 for $x^{1 / 8}<p \leq z$ and Lemma 7 for $p \leq x^{1 / 8}$ and choosing

$$
z=x^{7 / 8}
$$

we derive

$$
\begin{aligned}
\# \mathcal{N}_{2} & \ll \sum_{x^{1 / 8}<p \leq z}\left(\lfloor x / p\rfloor p^{-1 / 3}+\lfloor x / p\rfloor^{2 / 3}\right)+\sum_{y \leq p \leq x^{1 / 8}} \frac{\lfloor x / p\rfloor}{p} \\
& \ll x \sum_{x^{1 / 8}<p \leq z} p^{-4 / 3}+x^{2 / 3} \sum_{x^{1 / 8}<p \leq z} p^{-2 / 3}+x \sum_{y \leq p \leq x^{1 / 8}} p^{-2} \\
& \ll x^{23 / 24}+x^{2 / 3} z^{1 / 3}+x y^{-1}
\end{aligned}
$$

The above estimates together with the given choice for z lead to the estimate

$$
\begin{equation*}
\# \mathcal{N}_{2} \ll x^{23 / 24}+x y^{-1} \tag{11}
\end{equation*}
$$

Collecting (9), (10) and (11), we obtain

$$
\# \mathcal{N} \ll x \exp (-(1+o(1)) u \log u)+x^{23 / 24}+x y^{-1}
$$

Choosing next

$$
\begin{equation*}
\log y=\sqrt{\frac{1}{2} \log x \log \log x} \tag{12}
\end{equation*}
$$

to match the first and third terms, we conclude the proof.

3.2. Proof of Theorem 2

Let x be large and let us fix a prime $x^{1 / 2}<p \leq 2 x^{1 / 2}$. Define $M_{p}=\lfloor x / p\rfloor$. We now consider integers $n=m p$ for which we have $w_{m} \equiv w_{n}(\bmod p)$. Therefore,

$$
\# \mathcal{V}(x) \geq \#\left\{\lambda \in\{0, \ldots, p-1\}: R_{p}\left(M_{p}, \lambda\right)>0\right\}
$$

We see that by the Cauchy-Schwartz inequality

$$
\left(\sum_{\lambda=0}^{p-1} R_{p}\left(M_{p}, \lambda\right)\right)^{2} \leq \# \mathcal{V}(x) \sum_{\lambda=0}^{p-1} R_{p}\left(M_{p}, \lambda\right)^{2}
$$

Using the trivial identity

$$
\sum_{\lambda=0}^{p-1} R_{p}\left(M_{p}, \lambda\right)=M_{p}
$$

and Lemma 6, we conclude the proof.

3.3. Proof of Theorem 3

We follow the same approach as in the proof of Theorem 1. In particular, we let x be large and we fix some real parameter $y>3$ depending on x to be chosen later.

Let \mathcal{R} be the set of integers $n \leq x$ which are not y-smooth and for which

$$
P(n) \mid \operatorname{gcd}\left(n, w_{n}-1\right)
$$

We see that (8) holds with $p=P(n)$ and $m=n / p$. Since this property is the only one used in the proof of the upper bound on $\# \mathcal{N}$, we obtain the same bound on $\# \mathcal{R}$, that is

$$
\# \mathcal{R} \ll x^{23 / 24}+x y^{-1}
$$

For those $n \leq x$ which are y-smooth and for $n \in \mathcal{R}$, we estimate $\operatorname{gcd}\left(n, w_{n}-1\right)$ trivially as x. For all the remaining composite integers $n \leq x$, we have

$$
\operatorname{gcd}\left(n, w_{n}-1\right) \leq n / P(n) \leq x / y
$$

Therefore,

$$
\sum_{\substack{n \leq x \\ n \text { composite }}} \operatorname{gcd}\left(n, w_{n}-1\right) \ll x \psi(x, y)+\left(x^{23 / 24}+x y^{-1}\right) x+x^{2} / y
$$

Choosing y as in (12) and recalling Lemma 4, we obtain

$$
\begin{equation*}
\sum_{\substack{n \leq x \\ n \text { composite }}} \operatorname{gcd}\left(n, w_{n}-1\right) \leq x^{2} \exp \left(-\left(\frac{1}{\sqrt{2}}+o(1)\right) \sqrt{\log x \log \log x}\right) \tag{13}
\end{equation*}
$$

as $x \rightarrow \infty$.
Now, by (1), we see that

$$
\sum_{\substack{p \leq x \\ p \text { prime }}} \operatorname{gcd}\left(p, w_{p}-1\right)=\sum_{\substack{p \leq x \\ p \text { prime }}} p
$$

Using the Prime Number Theorem in the form given, for example, in [13, Theorem 8.30], as well as partial summation, we easily derive that the estimate

$$
\sum_{\substack{p \leq x \\ p \text { prime }}} p=\frac{1}{2} x \operatorname{li}(x)+O\left(x^{2} \exp \left(-C(\log x)^{3 / 5}(\log \log x)^{-1 / 5}\right)\right)
$$

holds with some positive constant C, which combined with (13) concludes the proof.

4. Comments

It follows from [11, Corollary 5] that if $n=p^{2}$ for some prime p, then n satisfies the congruence $w_{n} \equiv 1 \bmod n$. In particular, by the Prime Number Theorem, we get that $W(x) \geq(1 / 2+o(1)) \sqrt{x} / \log x$ as $x \rightarrow \infty$. There are perhaps very few positive integers n with at least two distinct prime factors satisfying this congruence. There are only two such $n \leq 10^{9}$, namely $n=27173=29 \times 937$ and $n=2001341=787 \times 2543$, and one more example beyond this range (see [16, Section 3]).

There is little doubt that the bound of Theorem 2 is not tight and, based on somewhat limited numerical tests, we expect that the estimate $\# \mathcal{V}(x)=(c+o(1)) x$ holds as $x \rightarrow \infty$ with $c \approx 0.355$. Studying the distribution of the fractional parts $\left\{w_{n} / n\right\}$ or maybe the easier question about the fractional parts $\left\{w_{n} / P(n)\right\}$ is of interest as well. A natural way to treat these question is to estimate the exponential sums

$$
\sum_{n \leq x} \exp \left(2 \pi i k \frac{w_{n}}{n}\right) \quad \text { and } \quad \sum_{n \leq x} \exp \left(2 \pi i k \frac{w_{n}}{P(n)}\right)
$$

which may be of independent interest.
It follows from [4, Theorem 3], that if p is large and $M_{p}=\left\lfloor p^{13 / 2}(\log p)^{6}\right\rfloor$, then there are $(1+o(1)) M_{p} / p$ positive integers $2 \leq m \leq M_{p}$ such that $w_{m} \equiv 1(\bmod p)$ as $p \rightarrow \infty$. Clearly, only $O(1)$ of them are powers of p. Taking $n=m p$ for such an m which is not a power of p, we conclude that there are infinitely many n with at least two distinct prime factors such that the inequality $\operatorname{gcd}\left(n, w_{n}-1\right) \geq n^{2 / 15+o(1)}$ holds as $n \rightarrow \infty$. Further investigation of the distribution of the numbers $\operatorname{gcd}\left(n, w_{n}-1\right)$ for composite positive integers n is of ultimate interest.

Acknowledgements We thank the anonymous referees for useful comments which improved the quality of this paper. Research of F. L. was supported in part by Grant SEP-CONACyT 79685, and that of I. S. was supported in part by ARC Grant DP0881473.

References

[1] E. R. Canfield, P. Erdős and C. Pomerance, 'On a problem of Oppenheim concerning "Factorisatio Numerorum"', J. Number Theory, 17 (1983), 1-28.
[2] L. E. Dickson, History of the Theory of Numbers, Vol 1, Chelsea, 1996.
[3] M. Z. Garaev, F. Luca and I. E. Shparlinski, 'Character sums and congruences with n!', Trans. Amer. Math. Soc., 356 (2004), 5089-5102.
[4] M. Z. Garaev, F. Luca, and I. E. Shparlinski, 'Catalan and Apéry numbers in residue classes', J. Combin. Theory, 113 (2006), 851-865.
[5] M. Z. Garaev, F. Luca, and I. E. Shparlinski, 'Exponential sums with Catalan numbers', Indag. Math., 18 (2007), 23-37.
[6] M. Z. Garaev, F. Luca, I. E. Shparlinski, and A. Winterhof, 'On the lower bound of the linear complexity over \mathbb{F}_{p} of Sidelnikov sequences', IEEE Trans. on Inform. Theory, 52 (2006), 3299-3304.
[7] A. Granville, 'Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers', Organic Mathematic, Burnaby, 1995, Canadian Math. Soc. Conf. Proc., Vol. 20, Amer. Math. Soc., 1997, 253-275.
[8] A. Granville, 'Smooth numbers: Computational number theory and beyond', Algorithmic Number Theory: Lattices, Number Fields, Curves, and Cryptography, Cambridge University Press, 2008, 267-322.
[9] R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York, 2004.
[10] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, Oxford, 1979.
[11] C. Helou and G. Terjanian, 'On Wolstenholme's theorem and its converse', J. Number Theory, 128 (2008), 475-499.
[12] A. Hildebrand and G. Tenenbaum, 'Integers without large prime factors', J. de Théorie des Nombres de Bordeaux, 5 (1993), 411-484.
[13] H. Iwaniec and E. Kowalski, Analytic number theory, Amer. Math. Soc., Providence, RI, 2004.
[14] E. Lucas, 'Théorie des fonctions numériques simplement périodiques', Amer. J. Math., 1 (1878), 184-240 and 289-321.
[15] F. Luca and I. E. Shparlinski, 'Prime divisors of shifted factorials', Bull. Lond. Math. Soc., 37 (2005), 809-817.
[16] R. J. McIntosh, 'On the converse of Wolstenholme's theorem', Acta. Arith., 71 (1995). 381389.
[17] P. Ribenboim, The New Book of Prime Number Records, 3rd ed., Springer, 1996.
[18] J. Wolstenholme, 'On certain properties of prime numbers', Quart. J. Pure Appl. Math., 5 (1862), 35-39.

