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Abstract
We show that the set of composite positive integers n ≤ x satisfying the congruence(2n−1

n−1

)
≡ 1 (mod n) is of cardinality at most x exp

(
−(1/

√
2 + o(1))

√
log x log log x

)

as x →∞.

1. Introduction

We consider the sequence

wn =
(

2n− 1
n− 1

)
=

1
2

(
2n
n

)
, n ≥ 1.

By the Wolstenholme theorem [18], for each prime p ≥ 5, we have

wp ≡ 1 (mod p3) (1)

(see also [2, 7, 10]). It is a long standing conjecture that the converse to this theorem
is true, namely, that wn (≡ 1 (mod n3) holds for all composite positive integers n (see,
for example, [7, 9, 16, 17]). This has been verified numerically up to 109 in [16], and
is easily verified for all even composite integers. Recently, Helou and Terjanian [11]
have investigated the distribution of wn modulo prime powers for composite values
of n.

Here, we show that the set of composite positive integers n satisfying the more
relaxed congruence

wn ≡ 1 (mod n) (2)



INTEGERS: 10 (2010) 486

is of asymptotic density zero. More precisely, if W (x) is defined to be the number of
composite positive integers n ≤ x which satisfy (2), then limx→∞W (x)/x = 0.

In what follows, the implied constants in the symbol ‘O’ and in the equivalent
symbol ‘)’ are absolute. The letter p is always used to denote a prime number.

Theorem 1. The estimate

W (x) ≤ x exp
(
−(1/

√
2 + o(1))

√
log x log log x

)

holds as x →∞.

Furthermore, let k remn denote the remainder of k on division by n. The congru-
ence (1) in particular implies that {wp rem p : p ≥ 5} = {1}. Furthermore, by [11,
Corollary 5], we also have {wp2 rem p2 : p ≥ 5} = {1}. However, we show that the
set

V(x) = {wn remn : n ≤ x}

is of unbounded size.

Theorem 2. We have
#V(x) * x1/4.

It is also interesting to study the behavior of the sequence of numbers gcd(n,wn−
1). Let us define

lix =
∫ x

2

d t

log t
.

Theorem 3. The estimate
∑

n≤x

gcd(n,wn − 1) =
1
2

xli (x) + O
(
x2 exp

(
−(1/

√
2 + o(1))

√
log x log log x

))

holds as x →∞.

2. Preparations

2.1. Smooth Numbers

For a positive integer n we write P (n) for the largest prime factor of n. As usual,
we say that n is y-smooth if P (n) ≤ y. Let

ψ(x, y) = #{1 ≤ n ≤ x : n is y-smooth}.

The following estimate is a substantially relaxed and simplified version of Corol-
lary 1.3 of [12] (see also [1, 8]).
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Lemma 4. For any fixed ε > 0, uniformly over y ≥ log1+ε x, we have

ψ(x, y) = x exp (−(1 + o(1))u log u) as u →∞,

where u = log x/ log y.

2.2. Distribution of wm in Residue Classes

We need some results about the distribution of wm in residue classes modulo primes.
These results are either explicitly given in [4, 5, 6], or can be obtained from those
results at the cost of merely minor typographical changes. More precisely, the results
are obtained in [4, 5, 6] apply to middle binomial coefficients and Catalan numbers

(
2m
m

)
and

1
m + 1

(
2m
m

)
, m = 1, 2, . . . ,

while the ones from [6] apply to the sequence of general term

2−2m

(
2m
m

)
, m = 1, 2, . . . ,

each of which is of the same type as the sequence with general term wm.
In fact, the method of [4, 5, 6] which in turn is based on the arguments from [3, 15],

can be applied to estimate the number of solutions of congruences

H(m) ≡ a (mod p), 1 ≤ m ≤ M,

uniformly in a ∈ {1, . . . , p − 1} for essentially all nontrivial “hypergeometric se-
quences” H(m), that is, sequences of general term having the form

H(m) = f(1) · · · f(m), m = 1, 2, . . . ,

where f(X) ∈ Q(X) is a nonconstant rational function. Note that the original result
of [3, 15] corresponds to the choice f(m) = m for which H(m) = m!, while here we
take f(m) = 2(2m− 1)/m for which H(m) = 2wm.

More precisely, let λ be an integer and define Rp(M,λ) to be the number of
solutions to the congruence

wm ≡ λ (mod p), 0 ≤ m ≤ M − 1. (3)

We have the following estimate which follows immediately from [6, Lemma 5].
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Lemma 5. Let p be an odd prime and let M be a positive integer. Then the estimate

Rp(M,λ) ) M2/3 + Mp−1/3

holds uniformly over λ ∈ {1, . . . , p− 1}.

Proof. For M ≤ p, the bound

Rp(M,λ) ) M2/3 (4)

is equivalent to [6, Lemma 5]. Indeed, the congruence (3) is equivalent to
(

2m
m

)
≡ 2λ (mod p), 0 ≤ m ≤ M − 1, (5)

which by [6, Lemma 5] has O(M2/3) solutions. We now assume that M > p. Write

m =
s∑

j=0

mjp
j , (6)

with p-ary digits mj ∈ {0, . . . , p − 1}, j = 0, . . . , s. Then, by Lucas’ Theorem (see
[14, Section XXI]), we have

wm =
1
2

(
2m
m

)
≡ 1

2

s∏

j=0

(
2mj

mj

)
(mod p). (7)

Every m with 0 ≤ m < M can be written as m = ph + k with nonnegative integers
h < M/p and k < p.

Clearly, if wm (≡ 0 (mod p), then it follows from (7) that in the representation (6)
we have

mj < p/2, j = 0, . . . , s.

We now see that for every m = ph + k with h < M/p and k < p, the congruence (7)
implies that

(
2k
k

)
≡ λh (mod p)

with some λh (≡ 0 (mod p) depending only on h.
Therefore, by (4), we obtain Rp(M,λ) ) p2/3(M/p) ) Mp−1/3.



INTEGERS: 10 (2010) 489

We remark that for λ ≡ 0 (mod p), the same bound also holds but only in the
range M < p/2, and certainly fails beyond this range.

We also note that on average over λ we have a better estimate.

Lemma 6. Let p be an odd prime and let M < p be a positive integer. Then

p−1∑

λ=0

Rp(M,λ)2 ) M3/2.

The above Lemma 6 follows from the equivalence between the congruences (3)
and (5) and [5, Theorem 1] taken in the special case $ = 1, a result which applies to
middle binomial coefficients and Catalan numbers and easily extends to the sequence
of general term wn (see also [4, Theorem 2]).

For large values M , we have a better bound which is based on some arguments
of [4].

Lemma 7. Let p be an odd prime and let M ≥ p7 be a positive integer. Then the
estimate

Rp(M,λ) ) M/p

holds uniformly over λ ∈ {1, . . . , p− 1}.

Proof. Every m with 0 ≤ m < M can be written as m = p7h + k, with nonnegative
integers h < M/p7 and k < p7.

Clearly, if wm (≡ 0 (mod p), then it follows from (7) that in the representation (6)
we have

mj < p/2, j = 0, . . . , s.

We now see that for every m = p7h+k with h < M/p7 and k < p7, the congruence (7)
implies that (

2k
k

)
≡ λh (mod p)

holds with some λh (≡ 0 (mod p) depending only on h. It now follows from [4,
Equation (13)], that the asymptotic

Rp(p7,λ) = (2−7 + o(1))p6

holds as p → ∞ uniformly over λ (≡ 0 (mod p) (see also the comment at the end
of [4, Section 2]). Therefore,

Rp(M,λ) ≤ (2−7 + o(1))p6(M/p7) as p →∞,

yielding the desired conclusion Rp(M,λ) ) M/p.
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3. Proofs of the Main Results

3.1. Proof of Theorem 1

We let x be a large positive real number and we fix some real parameters y > 3 and
z ≥ 1 depending on x to be chosen later.

Let N be the set of composite n ≤ x which satisfy (2). We note that, again by
Lucas’ Theorem, for any prime p and positive integer m we have

(
2mp

mp

)
≡

(
2m
m

)
(mod p).

Hence, if n = mp ∈ N , then

wm ≡ wn ≡ 1 (mod p). (8)

Let E1 be the set of y-smooth integers n ∈ N and let N1 be the set of remaining
integers, that is,

N1 = N \ E1.

By Lemma 4,

#E1 ≤ x exp (−(1 + o(1))u log u) as u →∞, (9)

where u = log x/ log y, provided that y > (log x)2, which will be the case for us.
Next, we define the set

E2 = {n ∈ N1 : P (n) > z}.

For n ∈ E2, we write n = mp, where p = P (n) ≥ z and m ≤ x/z. We see from (8)
that each p which appears as p = P (n) for some n ∈ E2 must divide

Q =
∏

2≤m≤x/z

(wm − 1) = exp
(
O

(
(x/z)2

))
.

Observe that Q is nonzero because m = 1 is not allowed in the product since n is
not prime. Therefore such p can take at most O(log Q) = O

(
(x/z)2

)
possible values.

Since m takes at most x/z possible values, we obtain

#E2 ) (x/z)3. (10)

Let N2 be the set of remaining n ∈ N1, that is

N2 = N1 \ E2.



INTEGERS: 10 (2010) 491

We see from (8) that
#N2 ≤

∑

y≤p≤z

Rp(,x/p- , 1).

Using Lemma 5 for x1/8 < p ≤ z and Lemma 7 for p ≤ x1/8 and choosing

z = x7/8,

we derive

#N2 )
∑

x1/8<p≤z

(
.x/p/ p−1/3 + .x/p/2/3

)
+

∑

y≤p≤x1/8

.x/p/
p

) x
∑

x1/8<p≤z

p−4/3 + x2/3
∑

x1/8<p≤z

p−2/3 + x
∑

y≤p≤x1/8

p−2

) x23/24 + x2/3z1/3 + xy−1.

The above estimates together with the given choice for z lead to the estimate

#N2 ) x23/24 + xy−1. (11)

Collecting (9), (10) and (11), we obtain

#N ) x exp (−(1 + o(1))u log u) + x23/24 + xy−1.

Choosing next

log y =
√

1
2

log x log log x, (12)

to match the first and third terms, we conclude the proof.

3.2. Proof of Theorem 2

Let x be large and let us fix a prime x1/2 < p ≤ 2x1/2. Define Mp = .x/p/. We now
consider integers n = mp for which we have wm ≡ wn (mod p). Therefore,

#V(x) ≥ #{λ ∈ {0, . . . , p− 1} : Rp(Mp,λ) > 0}.

We see that by the Cauchy-Schwartz inequality
(

p−1∑

λ=0

Rp(Mp,λ)

)2

≤ #V(x)
p−1∑

λ=0

Rp(Mp,λ)2.

Using the trivial identity
p−1∑

λ=0

Rp(Mp,λ) = Mp

and Lemma 6, we conclude the proof.
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3.3. Proof of Theorem 3

We follow the same approach as in the proof of Theorem 1. In particular, we let x
be large and we fix some real parameter y > 3 depending on x to be chosen later.

Let R be the set of integers n ≤ x which are not y-smooth and for which

P (n) | gcd(n,wn − 1).

We see that (8) holds with p = P (n) and m = n/p. Since this property is the only
one used in the proof of the upper bound on #N , we obtain the same bound on #R,
that is

#R) x23/24 + xy−1.

For those n ≤ x which are y-smooth and for n ∈ R, we estimate gcd(n,wn − 1)
trivially as x. For all the remaining composite integers n ≤ x, we have

gcd(n,wn − 1) ≤ n/P (n) ≤ x/y.

Therefore,
∑

n≤x
n composite

gcd(n,wn − 1) ) xψ(x, y) + (x23/24 + xy−1)x + x2/y.

Choosing y as in (12) and recalling Lemma 4, we obtain

∑

n≤x
n composite

gcd(n,wn − 1) ≤ x2 exp
(
−

(
1√
2

+ o(1)
)√

log x log log x

)
, (13)

as x →∞.
Now, by (1), we see that

∑

p≤x
p prime

gcd(p,wp − 1) =
∑

p≤x
p prime

p.

Using the Prime Number Theorem in the form given, for example, in [13, Theo-
rem 8.30], as well as partial summation, we easily derive that the estimate

∑

p≤x
p prime

p =
1
2
x li (x) + O

(
x2 exp

(
−C(log x)3/5(log log x)−1/5

))

holds with some positive constant C, which combined with (13) concludes the proof.



INTEGERS: 10 (2010) 493

4. Comments

It follows from [11, Corollary 5] that if n = p2 for some prime p, then n satisfies the
congruence wn ≡ 1 mod n. In particular, by the Prime Number Theorem, we get that
W (x) ≥ (1/2+o(1))

√
x/ log x as x →∞. There are perhaps very few positive integers

n with at least two distinct prime factors satisfying this congruence. There are only
two such n ≤ 109, namely n = 27173 = 29× 937 and n = 2001341 = 787× 2543, and
one more example beyond this range (see [16, Section 3]).

There is little doubt that the bound of Theorem 2 is not tight and, based on
somewhat limited numerical tests, we expect that the estimate #V(x) = (c + o(1))x
holds as x → ∞ with c ≈ 0.355. Studying the distribution of the fractional parts
{wn/n} or maybe the easier question about the fractional parts {wn/P (n)} is of
interest as well. A natural way to treat these question is to estimate the exponential
sums

∑

n≤x

exp
(
2πik

wn

n

)
and

∑

n≤x

exp
(

2πik
wn

P (n)

)
,

which may be of independent interest.
It follows from [4, Theorem 3], that if p is large and Mp = .p13/2(log p)6/, then

there are (1+o(1))Mp/p positive integers 2 ≤ m ≤ Mp such that wm ≡ 1 (mod p) as
p → ∞. Clearly, only O(1) of them are powers of p. Taking n = mp for such an m
which is not a power of p, we conclude that there are infinitely many n with at least
two distinct prime factors such that the inequality gcd(n,wn− 1) ≥ n2/15+o(1) holds
as n → ∞. Further investigation of the distribution of the numbers gcd(n,wn − 1)
for composite positive integers n is of ultimate interest.
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