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Abstract
In this paper, we give a new method to derive a binomial series identity discovered
by J.M. Borwein and R. Girgensohn.

– Dedicado a la memoria de Julia Villacorta

1. Introduction

The Gosper sum is defined by J.M. Borwein and R. Girgensohn as

b3(k) =
∞∑

n=1

nk

(
3n
n

)
2n

.

In a recent paper [3], Borwein and Girgensohn indicated that

b3(−2) =
π2

24
− 1

2
ln2 2. (1)

This identity was later proved by N. Batir [2]. Batir showed using integrals that for
|x| < 27/4, and integer n ≥ 2,

∞∑

k=1

xk

k2

(
3k
k

) = 6arctan2

( √
3

2φ(x)− 1

)
− 1

2
ln2

(
φ3(x) + 1

(φ(x) + 1)3

)
, (2)

where

φ(x) =
[
27− 2x + 3

√
81− 12x

2x

]1/3

.

By substituting x = 1/2 in the above and the identities arctan
(

π√
144

)
=

√
3

2ϕ−1 and
ϕ3+1

(ϕ+1)3 = 1
2 , where ϕ = φ(1/2) = 3

√
26 + 15

√
3, Batir deduced (1).

In the next section, we will present a generalization of (1). Our identity involves
computations that seem to be less complicated than that of Batir.
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2. Main Theorem

Theorem 1. For −1
2 ≤ t ≤ 1, we have

∞∑

n=1

1

n2

(
3n
n

) t3n

(1 + t)n
=

∞∑

n=1

1
n2

(
t

1 + t

)n

+2
∞∑

n=1

tn

n2
cos

(
n arctan

(√
(3− t)(1 + t)

1− t

))
. (3)

Proof. We begin with the identity

(1− xf)(1− xg)(1− xh) = 1− x(f + g + h) + x2(fg + gh + fh)− x3fgh, (4)

which is valid for all complex numbers x, f, g, h. Suppose f, g and h satisfy the
relations

f + g + h = fgh, fg + gh + fh = 0.

Then

f =
h

(
−1 + i

√
3 + 4h2

)

2(1 + h2)
and g =

h
(
−1− i

√
3 + 4h2

)

2(1 + h2)
. (5)

Substituting (5) into (4), we find that

(1− xh)

(
1− x

(
h

(
−1 + i

√
3 + 4h2

)

2(1 + h2)

))(
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(
h

(
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√
3 + 4h2

)

2(1 + h2)

))

= 1− h3

1 + h2
x(1 + x2). (6)

We next replace x in (6) by −x and deduce that

(1 + xh)

(
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(
h

(
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√
3 + 4h2

)

2(1 + h2)

))(
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(
h

(
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√
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)
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))

= 1 +
h3

1 + h2
x(1 + x2). (7)
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Multiplying (6) and (7), we obtain the identity

(1− x2h2)



1− x2

(
h

(
−1 + i

√
3 + 4h2

)

2(1 + h2)

)2






1− x2

(
h

(
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√
3 + 4h2

)

2(1 + h2)

)2




= 1− h6

(1 + h2)2
x2(1 + x2)2. (8)

Next, we replace h2 by h and x2 by −x in (8) and rewrite (8) as

(1 + xh)

(
1 +

xh

(1 + h)

(
−1 + i

√
3 + 4h

2
√

1 + h

)2
)(

1 +
xh

(1 + h)

(
−1− i

√
3 + 4h

2
√

1 + h

)2
)

= 1 +
h3

(1 + h)2
x(1− x)2. (9)

Writing

(
−1 + i

√
3 + 4h

2
√

1 + h

)2

= ei arctan{√3+4h/(1+2h)},

we deduce that

(1 + xh)
(

1 +
xh

1 + h
ei arctan(√4h+3/(1+2h))

)(
1 +

xh

1 + h
e−i arctan(√4h+3/(1+2h))

)

= 1 +
h3

(1 + h)2
x(1− x)2. (10)

By taking the logarithm of both sides of (10), dividing by x, and then integrating
over 0 ≤ x ≤ 1, we have

∫ 1

0

ln(1 + xh)
x

dx +
∫ 1

0

1
x

ln
(

1 +
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1 + h
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)
dx

+
∫ 1

0

1
x

ln
(

1 +
xh

1 + h
e−i arctan(√4h+3/(1+2h))

)
dx

=
∫ 1

0

1
x

ln
(

1 +
h3

(1 + h)2
x(1− x)2

)
dx

=
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n=1

(−1)n+1

n

h3n

(1 + h)2n

∫ 1

0
xn−1(1− x)2ndx. (11)
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In the left side of the last identity, the integration is valid for −1
2 ≤ h ≤ 1; in the

right side the interval is 3
2 [(
√

2− 1) 1
3 − (

√
2 + 1) 1

3 ] ≤ h ≤ 3.
Using the result

∫ 1

0
xn−1(1− x)2ndx =

(n− 1)!(2n)!
(3n)!

=
1

n

(
3n
n

) ,

and observing that
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=
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,

we deduce that
∞∑

n=1

(−1)n+1

n2
hn + 2
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(
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) h3n
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If we set h/(1 + h) = −t in (11), then (3) follow. The left side of identity (3) can
be write as:

∞∑

n=1

1

n2

(
3n
n

) t3n

(1 + t)n
=

t3

3(1 + t)
·4 F3

(
1, 1, 1,

3
2
;
4
3
,
5
3
, 2;

4t3

27(1 + t)

)

where 4F3(a, b, c, d; e, f, g; z) is a hypergeometric function (see [1, Chapter 5] for
the definition and properties). That implies the inequality | t3

1+t | < 27
4 or the more

explicit result

3
2
[(
√

2− 1)
1
3 − (

√
2 + 1)

1
3 ] < t < 3,
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and in the case of the function
∑∞

n=1
xn cos nu

n2 , where u is a constant or a variable,
the radius of convergence is at least |x| ≤ 1. !

Corollary 2 Let t = 1. Then the series in (3) converges and we have

∞∑

n=1

1
n2

(
1
2

)n

+ 2
∞∑

n=1

1
n2

cos
(
n

π

2

)
=

∞∑

n=1

1

n2

(
3n
n

) 1
2n

. (12)

Using Euler’s identity [4, pp. 39-41]

∞∑

n=1

1
n2

(
1
2

)n

=
π2

12
− 1

2
(ln 2)2 ,

and the identity

2
∞∑

n=1

1
n2

cos
(
n

π

2

)
= −π2

24
,

we complete the proof of (1).

We can derive, using (3) and Batir’s evaluation, the next identity:

Corollary 3 We have

6 arctan2

( √
3

2φ(u)− 1

)
− 1

2
ln2

(
φ3(u) + 1

(φ(u) + 1)3

)

=
∞∑

n=1

1
n2

(
1− 2 cosu

2(1− cosu)

)n

+ 2
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n=1

(1− 2 cosu)n

n2
cosnu, (13)

where

φ(u) =
[27(1−cosu)−(1−2 cosu)3+3

√
81(1−cosu)2−6(1−cosu)(1−2 cosu)3]

1
3

(1−2 cosu) ,

with the restriction 0 ≤ cosu ≤ 3
4 .
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